Theory and practice of algorithmic self-assembly

Damien Woods
Cnría
Paris

Structure

- Monday (lecture 1). Some high-level motivations, basic algorithmic selfassembly models (definitions) and very recent results on implementing algorithmic DNA nanotube circuits, a self-assembly model, in the wet-lab
- Tuesday (lecture 2): DNA sequence design and results on the DNA nanotube circuit model
- Wednesday (lecture 3). Complexity theory for self assembly.
- Theorem: The (cooperative, temperature >= 2) abstract tile assembly model is intrinsic universal
- Thursday (lecture 4). Complexity theory for self assembly.
- Theorem: The noncooperative (temperature 1) abstract tile assembly model does not simulate the cooperative model

Abstract tile assembly model

- Square tiles
- finite set of tile types, unlimited supply of each type, non-rotatable
- Each side has a glue (colour) and strength ($0,1,2,3, \ldots$)
- System has a temperature (e.g. 2)
- Simple local binding rule: A tile sticks to an assembly if enough of its glues match so that the sum of the strengths
 of the matching glues is at least the temperature
- Tile assembly system:
tile set, seed tile, temperature

Abstract tile assembly model

- Square tiles
- finite set of tile types, unlimited supply of each type, non-rotatable
- Each side has a glue (colour) and strength ($0,1,2,3, \ldots$)
- System has a temperature (e.g. 2)
- Simple local binding rule: A tile sticks to an assembly if enough of its glues match so that the sum of the strengths
strength 2
 of the matching glues is at least the temperature
- Tile assembly system:
tile set, seed tile, temperature

Abstract tile assembly model

- Square tiles
- finite set of tile types, unlimited supply of each type, non-rotatable
- Each side has a glue (colour) and strength ($0,1,2,3, \ldots$)
- System has a temperature (e.g. 2)
- Simple local binding rule: A tile sticks to an assembly if enough of its glues match so that the sum of the strengths
strength 2
 of the matching glues is at least the temperature
- Tile assembly system:
tile set, seed tile, temperature

Abstract tile assembly model

- Square tiles
- finite set of tile types, unlimited supply of each type, non-rotatable
- Each side has a glue (colour) and strength ($0,1,2,3, \ldots$)
- System has a temperature (e.g. 2)
- Simple local binding rule: A tile sticks to an assembly if enough of its glues match so that the sum of the strengths
strength 2
 of the matching glues is at least the temperature
- Tile assembly system:
tile set, seed tile, temperature

Abstract tile assembly model

- Square tiles
- finite set of tile types, unlimited supply of each type, non-rotatable
- Each side has a glue (colour) and strength ($0,1,2,3, \ldots$)
- System has a temperature (e.g. 2)
- Simple local binding rule: A tile sticks to an assembly if enough of its glues match so that the sum of the strengths
strength 2
 of the matching glues is at least the temperature
- Tile assembly system:
tile set, seed tile, temperature

Abstract tile assembly model

- Square tiles
- finite set of tile types, unlimited supply of each type, non-rotatable
- Each side has a glue (colour) and strength ($0,1,2,3, \ldots$)
- System has a temperature (e.g. 2)
- Simple local binding rule: A tile sticks to an assembly if enough of its glues match so that the sum of the strengths
strength 2
 of the matching glues is at least the temperature
- Tile assembly system:
tile set, seed tile, temperature

Abstract tile assembly model

- Square tiles
strength 2
- finite set of tile types, unlimited supply of each type, non-rotatable
- Each side has a glue (colour) and strength ($0,1,2,3, \ldots$)
- System has a temperature (e.g. 2)
- Simple local binding rule: A tile sticks to an assembly if enough of its glues match so that the sum of the strengths
 of the matching glues is at least the temperature
- Tile assembly system:
tile set, seed tile, temperature

Abstract tile assembly model

- Square tiles
- finite set of tile types, unlimited supply of each type, non-rotatable
- Each side has a glue (colour) and strength ($0,1,2,3, \ldots$)
- System has a temperature (e.g. 2)
- Simple local binding rule: A tile sticks to an assembly if enough of its glues match so that the sum of the strengths
strength 2
 of the matching glues is at least the temperature
- Tile assembly system:
tile set, seed tile, temperature

Abstract tile assembly model

- Square tiles
- finite set of tile types, unlimited supply of each type, non-rotatable
- Each side has a glue (colour) and strength ($0,1,2,3, \ldots$)
- System has a temperature (e.g. 2)
- Simple local binding rule: A tile sticks to an assembly if enough of its glues match so that the sum of the strengths
strength 2
 of the matching glues is at least the temperature
- Tile assembly system:
tile set, seed tile, temperature

Abstract tile assembly model

- Square tiles
- finite set of tile types, unlimited supply of each type, non-rotatable
- Each side has a glue (colour) and strength ($0,1,2,3, \ldots$)
- System has a temperature (e.g. 2)
- Simple local binding rule: A tile sticks to an assembly if enough of its glues match so that the sum of the strengths
strength 2
 of the matching glues is at least the temperature
- Tile assembly system:
tile set, seed tile, temperature

Abstract tile assembly model

Tile assembly system: tile set, seed tile, temperature

Temperature $=2$

- Finite set of square tiles, each side has a glue and strength
- Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

Tile assembly system:
tile set, seed tile, temperature

Temperature $=2$

- Finite set of square tiles, each side has a glue and strength
- Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

Tile assembly system:
tile set, seed tile, temperature

- Finite set of square tiles, each side has a glue and strength
- Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

Tile assembly system:
tile set, seed tile, temperature

- Finite set of square tiles, each side has a glue and strength
- Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

Tile assembly system:
tile set, seed tile, temperature

- Finite set of square tiles, each side has a glue and strength
- Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

Tile assembly system:
tile set, seed tile, temperature

Temperature $=2$

- Finite set of square tiles, each side has a glue and strength
- Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

Tile assembly system:
tile set, seed tile, temperature

Temperature $=2$

- Finite set of square tiles, each side has a glue and strength
- Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

Tile assembly system: tile set, seed tile, temperature

- Finite set of square tiles, each side has a glue and strength
- Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

Tile assembly system: tile set, seed tile, temperature

- Finite set of square tiles, each side has a glue and strength
- Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

Tile assembly system:
tile set, seed tile, temperature

- Finite set of square tiles, each side has a glue and strength
- Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

Tile assembly system:
tile set, seed tile, temperature

- Finite set of square tiles, each side has a glue and strength
- Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

Tile assembly system:
tile set, seed tile, temperature

Temperature $=2$

- Finite set of square tiles, each side has a glue and strength
- Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

Tile assembly system:
tile set, seed tile, temperature

- Finite set of square tiles, each side has a glue and strength
- Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

Tile assembly system:
tile set, seed tile, temperature

- Finite set of square tiles, each side has a glue and strength
- Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

Tile assembly system:
tile set, seed tile, temperature

- Finite set of square tiles, each side has a glue and strength
- Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

Tile assembly system:
tile set, seed tile, temperature

- Finite set of square tiles, each side has a glue and strength
- Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

Tile assembly system:
tile set, seed tile, temperature

- Finite set of square tiles, each side has a glue and strength
- Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

Tile assembly system:
tile set, seed tile, temperature

- Finite set of square tiles, each side has a glue and strength
- Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

Tile assembly system:
tile set, seed tile, temperature

- Finite set of square tiles, each side has a glue and strength
- Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

Tile assembly system:
tile set, seed tile, temperature

- Finite set of square tiles, each side has a glue and strength
- Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

Tile assembly system:
tile set, seed tile, temperature

- Finite set of square tiles, each side has a glue and strength
- Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

Tile assembly system:
tile set, seed tile, temperature

- Finite set of square tiles, each side has a glue and strength
- Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

Tile assembly system:
tile set, seed tile, temperature

- Finite set of square tiles, each side has a glue and strength
- Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

Tile assembly system:
tile set, seed tile, temperature

- Finite set of square tiles, each side has a glue and strength
- Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

Tile assembly system:
tile set, seed tile, temperature

- Finite set of square tiles, each side has a glue and strength
- Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

Tile assembly system:
tile set, seed tile, temperature

- Finite set of square tiles, each side has a glue and strength
- Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

Tile assembly system:
tile set, seed tile, temperature

- Finite set of square tiles, each side has a glue and strength
- Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

Tile assembly system:
tile set, seed tile, temperature

- Finite set of square tiles, each side has a glue and strength
- Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

Tile assembly system:
tile set, seed tile, temperature

- Finite set of square tiles, each side has a glue and strength
- Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

- Finite set of square tiles, each side has a glue and strength
trength 1 - Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

- Finite set of square tiles, each side has a glue and strength
strength 1 • Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

- Finite set of square tiles, each side has a glue and strength
strength 1 • Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

- Finite set of square tiles, each side has a glue and strength
strength 1 • Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

- Finite set of square tiles, each side has a glue and strength
strength 1 • Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

- Finite set of square tiles, each side has a glue and strength
trength 1 • Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

- Finite set of square tiles, each side has a glue and strength
trength 1 • Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

- Finite set of square tiles, each side has a glue and strength
strength 1 • Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

- Finite set of square tiles, each side has a glue and strength
strength 1 • Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

- Finite set of square tiles, each side has a glue and strength
strength 1 • Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

Order of tile placement is nondeterminisitc
(asynchronous growth).
More than one tile type can go at a given position

- Finite set of square tiles, each side has a glue and strength
trength 1 • Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

Order of tile placement is nondeterminisitc
(asynchronous growth).
More than one tile type can go at a given position

- Finite set of square tiles, each side has a glue and strength
strength 1 • Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

Order of tile placement is nondeterminisitc
(asynchronous growth).
More than one tile type can go at a given position

- Finite set of square tiles, each side has a glue and strength
strength 1 • Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

Order of tile placement is nondeterminisitc
(asynchronous growth).
More than one tile type can go at a given position

- Finite set of square tiles, each side has a glue and strength
strength 1 • Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

Order of tile placement is nondeterminisitc
(asynchronous growth).
More than one tile type can go at a given position

- Finite set of square tiles, each side has a glue and strength
- Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

Order of tile placement is nondeterminisitc
(asynchronous growth).
More than one tile type can go at a given position

- Finite set of square tiles, each side has a glue and strength
strength 1 • Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Abstract tile assembly model

Order of tile placement is nondeterminisitc
(asynchronous growth).
More than one tile type can go at a given position

- Finite set of square tiles, each side has a glue and strength
strength 1 • Tile assembly system: (tile set, seed tile, temperature $\in\{1,2,3, \ldots\}$)
- Growth begins from the seed tile/assembly
- A tile sticks to an assembly if enough of its glues match so that the sum of the strengths of the matching glues is at least the temperature

Computation with tile assembly: theory

- Turing universality

Winfree, PhD Thesis. 1998

- Efficient assembly of simple shapes: $n \times n$ squares using $\Theta(\log n / \log \log n)$ tile types

Adleman, Cheng, Goel, Huang STOC 2001 Rothemund, Winfree. STOC 2000

Evans. PhD Thesis 2014

- Efficient assembly of scaled complicated connected shapes using a number of tile types roughly equal to the Kolmogorov complexity of the shape

Theory of algorithmic self-assembly

- Helps us understand the abilities and limitations of self-assembly
- Also, its fun!
- aTAM is Turing universal: can "run" any algorithm Winfree, PhD Thesis 1998.
- Efficiently assemble $n \times n$ squares and other simple shapes
- Using only $\Theta(\log n / l \log \log n)$ tile types

Rothemund, Winfree. STOC 2000

- Efficiently assemble arbitrary finite shapes
- Number of tile types is roughly the Kolmogorov complexity of the shape

Soloveichik, Winfree. SICOMP 2007

- aTAM is intrinsically universal: there is one tile set that can simulate any tile assembly system
- Shape complexity can be put into the seed

Doty, Lutz, Patitz, Schweller, Summers, Woods. FOCS 2012

- Thinking about these topics leads to a kind of "complexity theory" for self-assembly

Theory of algorithmic self-assembly

- Helps us understand the abilities and limitations of self-assembly
- Also, its fun!
- aTAM is Turing universal: can "run" any algorithm

Winfree, PhD Thesis 1998.

- Efficiently assemble $n \times n$ squares and other simple shapes
- Using only $\Theta(\log n / \log \log n)$ tile types

Rothemund, Winfree. STOC 2000

- Efficiently assemble arbitrary finite shapes
- Number of tile types is roughly the Kolmogorov complexity of the shape

Soloveichik, Winfree. SICOMP 2007

- aTAM is intrinsically universal: there is one tile set that can simulate any tile assembly system
- Shape complexity can be put into the seed

Doty, Lutz, Patitz, Schweller, Summers, Woods. FOCS 2012

- Thinking about these topics leads to a kind of "complexity theory" for self-assembly

Theory of algorithmic self-assembly

- Helps us understand the abilities and limitations of self-assembly
- Also, its fun!
- aTAM is Turing universal: can "run" any algorithm

Winfree, PhD Thesis 1998.

- Efficiently assemble $n \times n$ squares and other simple shapes
- Using only $\Theta(\log n / \log \log n)$ tile types

Rothemund, Winfree. STOC 2000

- Efficiently assemble arbitrary finite shapes
- Number of tile types is roughly the Kolmogorov complexity of the shape

Soloveichik, Winfree. SICOMP 2007

- aTAM is intrinsically universal: there is one tile set that can simulate any tile assembly system
- Shape complexity can be put into the seed

Doty, Lutz, Patitz, Schweller, Summers, Woods. FOCS 2012

- Thinking about these topics leads to a kind of "complexity theory" for self-assembly

Computation with tile assembly: theory

- Efficient assembly of scaled connected shapes using a number of tile types roughly equal to the Kolmogorov complexity of the shape Soloveichik, Winfree. SICOMP 2007_{8}

Computation with tile assembly: theory

- Efficient assembly of scaled connected shapes using a number of tile types roughly equal to the Kolmogorov complexity of the shape Soloveichik, Winfree. SICOMP 2007_{8}

Computation with tile assembly: theory

- Efficient assembly of scaled connected shapes using a number of tile types roughly equal to the Kolmogorov complexity of the shape Soloveichik, Winfree. SICOMP 2007_{8}

Computation with tile assembly: theory

- Many other theoretical questions have been asked
- What questions would you ask?
- The goal is to understand the capabilities of these systems!
- Another goal is to motivate what we should build in the lab!
- Next slide: Let's ask a question

Intrinsic universality

Is there a set of intrinsically universal tiles: a set of aTAM tiles U that can act like any other tile set?

One universal tile set to do everything

Intrinsic universality

Is there a set of intrinsically universal tiles: a set of aTAM tiles U that can act like any other tile set?

One universal tile set to do everything

What does "act like" mean?

- Conway’s Game of Life is an intrinsically universal cellular automaton

Comparing tile assembly models

Is there a set of intrinsically universal tiles that can simulate any tile set?

-What is it that tile assembly systems do?

- Make shapes and patterns
- Carry out a crystal-like growth process (dynamics)
- Let define simulate using these criteria that are intrinsic to the model

Comparing tile assembly models

Is there a set of intrinsically universal tiles that can simulate any tile set?

What does "act like" mean?

- What is it that tile assembly systems do?
- Make shapes and patterns
- Carry out a crystal-like growth process (dynamics)
- Let define simulate using these criteria that are intrinsic to the model

Simulation

- For (any) simulated tile assembly system T
- T = (tileset T, seed assembly σ, temperature T)
- Tile assembly system \mathcal{U} simulates T if:
- Tiles from T are represented by $\boldsymbol{m} \mathbf{x} \boldsymbol{m}$ supertiles in \mathcal{U}
- Assemblies produced by \mathcal{U} represent exactly assemblies produced by T (via a representation function R : Blocks of tiles from U-> tiles from T)
- Dynamics are equivalent in U and T, ignoring $m \times m$ scaling

Simulated system

Simulator system
$\bigcup \quad \begin{gathered}m \times m \text { seed } \\ \text { assembly }\end{gathered}$

Simulation

- For (any) simulated tile assembly system T
- T = (tileset T, seed assembly σ, temperature T)
- Tile assembly system \mathcal{U} simulates T if:
- Tiles from T are represented by $\boldsymbol{m} \mathbf{x} \boldsymbol{m}$ supertiles in \mathcal{U}
- Assemblies produced by U represent exactly assemblies produced by T (via a representation function R : Blocks of tiles from U-> tiles from T)
- Dynamics are equivalent in U and T, ignoring $m \times m$ scaling

Simulated system

Simulator system

Simulation

- For (any) simulated tile assembly system T
- T = (tileset T, seed assembly σ, temperature T)
- Tile assembly system \mathcal{U} simulates T if:
- Tiles from T are represented by $\boldsymbol{m} \mathbf{x} \boldsymbol{m}$ supertiles in \mathcal{U}
- Assemblies produced by U represent exactly assemblies produced by T (via a representation function R : Blocks of tiles from U-> tiles from T)
- Dynamics are equivalent in U and T, ignoring $m \times m$ scaling

Simulated system

Simulator system
$\cup \quad m \times m$ seed

Simulation

- For (any) simulated tile assembly system T
- T = (tileset T, seed assembly σ, temperature T)
- Tile assembly system U simulates T if:
- Tiles from T are represented by $\boldsymbol{m} \mathbf{x} \boldsymbol{m}$ supertiles in U
- Assemblies produced by U represent exactly assemblies produced by T (via a representation function R : Blocks of tiles from U-> tiles from T)
- Dynamics are equivalent in U and T, ignoring $m \times m$ scaling

Simulated system

Simulator system

Simulation

- For (any) simulated tile assembly system T
- T = (tileset T, seed assembly σ, temperature T)
- Tile assembly system U simulates T if:
- Tiles from T are represented by $\boldsymbol{m} \mathbf{x} \boldsymbol{m}$ supertiles in U
- Assemblies produced by U represent exactly assemblies produced by T (via a representation function R : Blocks of tiles from U-> tiles from T)
- Dynamics are equivalent in \mathcal{U} and T, ignoring $m \times m$ scaling

Simulated system

Simulator system

$U \quad$| $m \times m$ seed |
| :---: |
| assembly |

Simulation definition

Universal
 (simulator) tile set

Simulator supertile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa

Simulation definition

Universal
 (simulator) tile set

Simulator supertile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa

Simulation definition

Universal
 (simulator) tile set

Temperature $=2$

Simulator supertile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa

Simulation definition

Universal
 (simulator) tile set

Simulator supertile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa

Simulation definition

Universal
 (simulator) tile set

Simulator supertile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa

Simulation definition

Universal
 (simulator) tile set

Simulator supertile

Simulated tile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa

Simulation definition

Universal
 (simulator) tile set

Simulator supertile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa

Simulation definition

Universal
 (simulator) tile set

Simulator supertile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa

Simulation definition

Universal
 (simulator) tile set

Simulator supertile

Simulated tile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa

Simulation definition

Universal
 (simulator) tile set

Simulator supertile

Simulated tile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa

Simulation definition

Universal
 (simulator) tile set

Simulator supertile

Simulated tile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa

Simulation definition

Universal
 (simulator) tile set

Simulator supertile

Simulated tile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa

Simulation definition

Universal
 (simulator) tile set

Simulator supertile

Simulation definition

Universal
 (simulator) tile set

Simulator supertile

Simulated tile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa

Simulation definition

Universal
 (simulator) tile set

Temperature $=2$

Simulator supertile

Simulated tile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa

Simulation definition

Universal
 (simulator) tile set

Simulated tile

Simulator supertile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa

Simulation definition

Universal
 (simulator) tile set

Damien Woods

Simulator supertile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa

TAS)

Simulation definition

Universal
 (simulator) tile set

Simulator supertile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa

Simulation definition

Universal (simulator) tile set

Simulator supertile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa

Simulation definition

Universal (simulator) tile set

Simulator supertile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa

Simulation definition

Universal
 (simulator) tile set

Preassembled seed structure

Simulator supertile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa

Simulation definition

Universal
 (simulator) tile set

Preassembled seed structure

Simulation definition

Universal
 (simulator) tile set

Preassembled seed structure

Simulation definition

Universal
 (simulator) tile set

Preassembled seed structure

Simulation definition

Universal
 (simulator) tile set

Preassembled seed structure

Simulation definition

Universal
 (simulator) tile set

Damien Woods

Simulator supertile

Simulated tile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa etc.

Simulation definition

Ignoring $m \times m$ scaling, production \& dynamics are equivalent in the simulated system and simulator

Universal

 (simulator) tile set

Damien Woods

TAS)

Simulated tile

Simulator supertile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa etc.

Simulation definition

Universal
 (simulator) tile set

Simulator supertile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa

Simulation definition

Universal
 (simulator) tile set

Simulator supertile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa

Simulation definition

Universal
 (simulator) tile set

Temperature $=2$

Simulator

 supertile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa

Simulation definition

Universal
 (simulator) tile set

Simulated tile

Simulator supertile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa

Simulation definition

Universal
 (simulator) tile set

Simulator supertile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa

Simulation definition

Universal
 (simulator) tile set

Simulator supertile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa

Simulation definition

Universal
 (simulator) tile set

Simulator supertile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa

Simulation definition

Universal
 (simulator) tile set

 seed structure

Simulator supertile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa

Simulation definition

Universal
 (simulator) tile set

Simulator supertile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa

Simulation definition

Universal
 (simulator) tile set

Simulator supertile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa

Simulation definition

Universal
 (simulator) tile set

Simulator supertile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa

Simulation definition

Universal
 (simulator) tile set

Preassembled seed structure

Simulator supertile

Simulated tile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa

Simulation definition

Universal
 (simulator) tile set

Preassembled seed structure

Simulator supertile

Simulated tile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa

Simulation definition

Universal
 (simulator) tile set

Simulator supertile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa

Simulation definition

Universal
 (simulator) tile set

Preassembled seed structure

Simulator supertile

Simulated tile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa

Simulation definition

Universal
 (simulator) tile set

Simulator supertile

Simulated tile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa

Simulation definition

Universal
 (simulator) tile set

Simulator supertile

Simulated tile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa

Simulation definition

Universal
 (simulator) tile set

Preassembled seed structure

Simulation definition

Universal
 (simulator) tile set

Simulator supertile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa

Simulation definition

Universal
 (simulator) tile set

Simulator supertile

tile
 Simulated

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa

Simulation definition

Universal
 (simulator) tile set

Damien Woods

Simulation definition

Universal
 (simulator) tile set

Preassembled seed structure

Simulation definition

Universal
 (simulator) tile set

Preassembled seed structure

Simulation definition

Universal
 (simulator) tile set

Preassembled seed structure

Simulation definition

Universal
 (simulator) tile set

Preassembled seed structure

Simulation definition

Universal
 (simulator) tile set

Simulator supertile

Simulated tile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa etc.

Simulation definition

Ignoring $m \times m$ scaling, production \& dynamics are equivalent in the simulated system and simulator

Universal

 (simulator) tile set

Damien Woods

TAS)

Simulated tile

Simulator supertile

- Green tiles are simulated by supertiles
- For each assembly sequence in the simulated tile system, there is an assembly sequence in the simulator, and vice-versa etc.

Is the abstract tile assembly model intrinsically universal?

Is the abstract tile assembly model intrinsically universal? Yes!

Theorem: There is a single intrinsically universal tile set U that simulates any tile assembly system

Doty, Lutz, Patitz, Schweller, Summers, Woods. FOCS 2012

Simulation

- For (any) simulated tile assembly system T
- T = (tileset T, seed assembly σ, temperature T)
- Tile assembly system U simulates T if:

Tiles from T are represented by $\boldsymbol{m} \times \boldsymbol{m}$ supertiles in U

- Assemblies produced by U represent exactly assemblies produced by T (via a representation function R : Blocks of tiles from $U \rightarrow$ tiles from T)
- Dynamics are equivalent in \mathcal{U} and T, ignoring $m \times m$ scaling

Simulated system

Simulator system

Superside

$|T|$ is number of tiles in the simulated tileset T.

Superside

Encoded glue of this superside
(e.g. "a")

One-sided binding with a single strength-т south superside

One-sided binding with a single strength-т south superside

One-sided binding with a single strength-т south superside

One-sided binding with a single strength-т south superside

One-sided binding with a single strength-т south superside

One-sided binding with a single strength-т south superside

One-sided binding with a single strength-т south superside

One-sided binding with a single strength-т south superside

One-sided binding with a single strength-т south superside

Crawler doing a tile lookup

Two-sided binding with adjacent cooperating supersides

A key problem

Better luck next time!

Uh oh!

Two-sided binding with opposite cooperating supersides

3-sided "uh-oh" example: probes miss each other

3-sided "uh-oh" example: probes miss each other

3-sided "uh-oh" example: probes miss each other

3-sided "uh-oh" example: probes miss each other

$===-$| | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

3-sided "uh-oh" example: probes miss each other

- Variety of cases for different orders of superside arrival
- Superside win/lose configurations and crawler initiation locations (green)
- Proof analogy:
- Distributed game
- Computation \& geometry
- Key challenge: make all the tricks work together

Is the abstract tile assembly model intrinsically universal?

Is the abstract tile assembly model intrinsically universal? Yes!

Theorem: There is a single intrinsically universal tile set U that simulates any tile assembly system

Doty, Lutz, Patitz, Schweller, Summers, Woods. FOCS 2012

A zoo of self-assembly models

How to compare these models?
abstract tile
assembly model

A zoo of self-assembly models

How to compare these models?

A zoo of self-assembly models

How to compare these models?
abstract tile assembly model
temperature 2

hierarchical

temperature 1

A zoo of self-assembly models

How to compare these models?
abstract tile assembly model
temperature 2

hierarchical
polyomino
temperature 1
dupled (domino)

polygonal free-body
geometric

A zoo of self-assembly models
 How to compare these models?

dupled \& restricted glue

A complexity theory for self-assembly

Intrinsic universality...requires cooperation. Meunier, Patitz, Summers, Theyssier, Winslow, Woods. SODA 2014

A complexity theory for self-assembly

A complexity theory for self-assembly

Gives a structure to the field of self-assembly - a way to compare models

One Tile to Rule Them All. Demaine, Demaine, Fekete, Patitz, Schweller, Winslow, Woods. ICALP 2014.

Intrinsic universality...requires cooperation. Meunier, Patitz, Summers, Theyssier, Winslow, Woods. SODA 2014

Magic dust

Result 1: There is a single rotatable polygon that simulates all tile assembly systems

Result 2: For each (e.g. Wang) plane tile system there is one rotatable polygon that simulates it
Theorem 7.1 Each colored square and hexagon plane tiling system in the families $\left(\left\}, c_{m}\right),\left(\left\{t_{r}, t_{f}\right\}\right.\right.$, $\left.c_{m}\right),\left(\{ \}, c_{c}\right)$ and $\left(\left\{t_{r}, t_{f}\right\}, c_{c}\right)$ is simulated by an n-gon nearly-plane tiling system.

Robinson's 10-tile aperiodic tile set

Theorem: For each (Wang) plane tiling system there is one rotatable polygon that simulates it

Robinson's 10-tile aperiodic tile set

Portion of a tiling of Robinson's 10-tile aperiodic square tile set (with rotations)

- Wang plane tiling system:
- Try to fill the plane with tiles.
- All sides must match.
- We care about the existence of tilings, but not how we made the tiling

A rotatable polygon that simulates a tile set

- For each set of (possibly rotatable, flipable) Wang square/hexagon tiles there is a single rotatable tile that simulates it

A rotatable polygon that simulates a tile set

- For each set of (possibly rotatable, flipable) Wang square/hexagon tiles there is a single rotatable tile that simulates it

Robinson's 10-tile aperiodic tile set (complimentary matching constraint)

A rotatable polygon that simulates a tile set

- For each set of (possibly rotatable, and/or flipable) square or hexagon tiles there is a single (rotatable, flipable) tile that simulates it

- An aperiodic tile set with 1 tile!
- Small gaps (<1 tile in size) in the tilings
- We have given a general method (a compiler) to convert any square/hexagon plane tiling tile set to a single tile that simulates it

1 aperiodic tile

- An aperiodic tile set with 1 tile!
- Small gaps in the tilings
- We have given a general method (a compiler) to convert any square/hexagon plane tiling tile set to a single tile that simulates it

1 aperiodic tile

- Socolar-Taylor disconnected tile. 2012
- Aperiodic
- Rotations + flips

- Open question: Is there a single aperiodic connected 2D tile that makes gap-free tilings of the plane?

But this is not (yet) magic dust

A harder challenge: one tile for all of tile self-assembly

- Simulating tile assembly systems is significantly trickier than plane (Wang) tiling systems
- We want to design a single rotatable, flipable tile that simulates any tile assembly system (Note that as a corollary this gives a single tile that simulates any algorithm)
- Problem 1:
- Strength tau glues on rotatable tiles => Argh! There's pumpable junk everywhere!
- Maybe we could find an intrinsically universal square tile set with strength < τ glues? No! Any such tile set with a finite seed can not leave the seed's bounding box
- Lets try hexagons!

Low strength hexes simulate high-strength squares

- Strength 1 or 0 hexagon glues, simulating strength 2,1 or 0 square glues

- Then we can simulate a set of low-strength hexagons with a single rotatable polygon
- Bumps and dents to stop incorrect orientations and incorrect bindings
- Glues are carefully rearranged on the polygon to allow "self seeding"
- ...
- Many details omitted!

Construction overview

Tile assembly system T

Hexagonal tile assembly system that simulates T (using low-strength glues)
\longrightarrow One polygon that simulates T

Tile set

The one

To use The One, simply apply a sequence of tile assembly system simulations:

Intrinsically
universal tile set
Intrinsically
universal tile set

The one

To use The One, simply apply a sequence of tile assembly system simulations:

$$
\begin{gathered}
\text { Tile assembly } \\
\text { system } T
\end{gathered} \longrightarrow \begin{gathered}
\text { Tile assembly } \\
\text { system UT over the } \\
\text { intrinsically } \\
\text { universal tile set } U
\end{gathered} \longrightarrow \begin{gathered}
\text { Hexagonal tile } \\
\text { assembly system } \\
\text { (with low strength } \\
\text { glues) }
\end{gathered} \longrightarrow \begin{gathered}
\text { A tile assembly } \\
\text { system that simulates } \\
T \text { using the single } \\
\text { rotatable flipable } \\
\text { polygonal tile }
\end{gathered}
$$

Intrinsically universal tile set

The one

One tile to simulate them all

Intrinsically universal tile set

The one

One tile to simulate them all

Intrinsically universal tile set

The one

Magic dust

http://nighthawk101stock.deviantart.com/

A complexity theory for self-assembly

Intrinsic universality...requires cooperation. Meunier, Patitz, Summers, Theyssier, Winslow, Woods. SODA 2014

A complexity theory for self-assembly

A complexity theory for self-assembly

Gives a structure to the field of self-assembly - a way to compare models

One Tile to Rule Them All. Demaine, Demaine, Fekete, Patitz, Schweller, Winslow, Woods. ICALP 2014.

Intrinsic universality...requires cooperation. Meunier, Patitz, Summers, Theyssier, Winslow, Woods. SODA 2014

Acknowledgements

Erik
Demaine

Martin
Demaine

Sándor Fekete

Pierre-Etienne
Meunier

Guillaume Theyssier

Andrew Winslow
And many others

Open question: Probabilistically fair intrinsically universal tile set?

Structure

- Monday (lecture 1). Some high-level motivations, basic algorithmic selfassembly models (definitions) and very recent results on implementing algorithmic DNA nanotube circuits, a self-assembly model, in the wet-lab
- Tuesday (lecture 2): DNA sequence design and results on the DNA nanotube circuit model
- Wednesday (lecture 3). Complexity theory for self assembly.
- Theorem: The (cooperative, temperature >= 2) abstract tile assembly model is intrinsic universal
- Thursday (lecture 4). Complexity theory for self assembly.
- Theorem: The noncooperative (temperature 1) abstract tile assembly model does not simulate the cooperative model

Temperature 1 tile assembly

- Temperature 1 tile assembly systems:
- Tile binds to an assembly if ≥ 1 side match
- Snakes on a plane

Temperature 1 tile assembly

- Temperature 1 tile assembly systems:
- Tile binds to an assembly if ≥ 1 side match
- Snakes on a plane

Temperature 1 tile assembly

- Temperature 1 tile assembly systems:
- Tile binds to an assembly if ≥ 1 side match
- Snakes on a plane

Temperature 1 tile assembly

- Temperature 1 tile assembly systems:
- Tile binds to an assembly if ≥ 1 side match
- Snakes on a plane

Temperature 1 tile assembly

- Temperature 1 tile assembly systems:
- Tile binds to an assembly if ≥ 1 side match
- Snakes on a plane

Temperature 1 tile assembly

- Temperature 1 tile assembly systems:
- Tile binds to an assembly if ≥ 1 side match
- Snakes on a plane

Is temperature 1 computationally weak?

Binding on 1 side seems much weaker than binding on 2 sides ... right?

- It has been conjectured (since 2000) that temperature 1 systems are computationally "weak"

Rothemund, Winfree. STOC 2000

- Some partial negative results:
- Temperature 1 systems that build fully connected $n \times n$ squares require at least n^{2} tile types

Rothemund, Winfree. STOC 2000

- Pumpable temperature 1 systems produce periodic structures Doty, Patitz, Summers. TCS 2011
- Temperature 1 with no mismatches require $2 n-1$ tile types to assemble an $n \times n$ square Manuch, Stacho, Stoll. J Comp. Bio. 2010
- Positive results:
- 3D deterministic temperature 1 simulates Turing machines

Cook, Fu Schweller. SODA 2011

- 2D temperature 1 simulates Turing machine, but with some error

Adleman et al FOCS 2002

- 2D temperature 1 can grow large(r than tile set size) structures

Meunier. In submission. 2015

On the blackboard: fully-connected square result

Is temperature 1 computationally weak?

Binding on 1 side seems much weaker than binding on 2 sides ... right?

- It has been conjectured (since 2000) that temperature 1 systems are computationally "weak"

Rothemund, Winfree. STOC 2000

- Some partial negative results:
- Temperature 1 systems that build fully connected $n \times n$ squares require at least n^{2} tile types

Rothemund, Winfree. STOC 2000

- Pumpable temperature 1 systems produce periodic structures Doty, Patitz, Summers. TCS 2011
- Temperature 1 with no mismatches require $2 n-1$ tile types to assemble an $n \times n$ square Manuch, Stacho, Stoll. J Comp. Bio. 2010
- Positive results:
- 3D deterministic temperature 1 simulates Turing machines

Cook, Fu Schweller. SODA 2011

- 2D temperature 1 simulates Turing machine, but with some error Adleman et al FOCS 2002
- 2D temperature 1 can grow large(r than tile set size) structures

Meunier. In submission. 2015

- But can temperature 1 aTAM systems simulate cooperative tile assembly?
- Answer: No!

On the blackboard: fully-connected square result

Result

- Theorem 1. There is no tile set U, such that at temperature $1, U$ simulates all tile assembly systems.
- Theorem 2. There is a 2D temperature 2 tile assembly system T that can not be simulated by any 2D, nor any 3D, temperature 1 tile assembly system.

bottom arm
(a)

Damien Woods
(c)

(b)

(d)

Temperature 1 can not simulate temperature 2

- We will show that no temperature 1 system simulates the following simple temperature 2 system

bottom arm
(a)

(c)

Equal arm lengths

(b)

(d)

Unequal arm lengths

Warm-up: two-seeded system

On the blackboard: a much easier warm-up result

Simulation definitions

Follows:

Definition $3.1(\mathcal{T}$ follows $\mathcal{U})$. We say that \mathcal{T} follows \mathcal{U} (under R) if for all $\alpha^{\prime}, \beta^{\prime} \in \mathcal{A}[\mathcal{U}]$ where $\alpha^{\prime} \rightarrow^{\mathcal{U}} \beta^{\prime}$, it is the case that $R^{*}\left(\alpha^{\prime}\right) \rightarrow^{\mathcal{T}} R^{*}\left(\beta^{\prime}\right)$, and $\alpha^{\prime} \in \mathcal{A}_{\square}[\mathcal{U}] \Longrightarrow R^{*}\left(\alpha^{\prime}\right) \in \mathcal{A}_{\square}[\mathcal{T}]$.

Models:

Definition 3.2 (nicely fuzzy). We say that \mathcal{U} is nicely fuzzy with respect to T if for all $\alpha^{\prime \prime} \in \mathcal{A}[\mathcal{U}]$ there exists $\alpha^{\prime} \in \mathcal{A}[\mathcal{U}]_{\text {fuzz-free }}$ such that $\alpha^{\prime} \rightarrow^{\mathcal{U}} \alpha^{\prime \prime}$, where $R^{*}\left(\alpha^{\prime \prime}\right)=R^{*}\left(\alpha^{\prime}\right)=\alpha \in \mathcal{A}^{T}$.

Definition $3.4(\mathcal{U}$ models $\mathcal{T})$. We say that $\mathcal{U}=\left(U, \sigma_{\mathcal{U}}, \tau_{\mathcal{U}}\right)$ models $\mathcal{T}=\left(T, \sigma_{\mathcal{T}}, \tau_{\mathcal{T}}\right)$ (under $\left.R\right)$ if:
(1) \mathcal{U} is nicely fuzzy with respect to T, and
(2) $R^{*}\left(\sigma_{\mathcal{U}}\right)=\sigma_{\mathcal{T}}$, and
(3) for all $\alpha, \beta \in \mathcal{A}[\mathcal{T}]$ such that $\alpha \rightarrow^{\mathcal{T}} \beta$ it is the case that for all $\alpha^{\prime} \in \mathcal{A}[\mathcal{U}]_{\text {fuzz-free }}$ where $R^{*}\left(\alpha^{\prime}\right)=\alpha$, there exists $\beta^{\prime} \in \mathcal{A}[\mathcal{U}]_{\text {fuzz-free }}$ such that $\alpha^{\prime} \rightarrow^{\mathcal{U}} \beta^{\prime}$ and $R^{*}\left(\beta^{\prime}\right)=\beta$.

Simulates:

Definition 3.5. We say that \mathcal{U} simulates \mathcal{T} (under R) if \mathcal{T} follows \mathcal{U} (under R) and \mathcal{U} models \mathcal{T} (under R).

Temperature 1 is not IU for the aTAM

- First we prove a simple and general pumping lemma for tile assembly at any temperature (the window movie lemma)

- We then use this pumping lemma to "fool" any claimed temperature 1 simulator into exposing its inability to simulate cooperation

58

Temperature 1 is not IU for the aTAM

- There are simple temperature 2 systems that can not be simulated by any temperature 1 system
- First fully-general negative result on temperature 1 (i.e. no restrictions on the model)
- This negative result holds in 2D and 3D
- Recall: Deterministic 3D temperature 1 systems can simulate Turing machines!
- So these Turing-universal (powerful!) tile assembly systems can not simulate tile assembly
- Turing universal algorithmic behaviour in self-assembly provably does not imply the ability to simulate arbitrary algorithmic self-assembly processes. Temp 1 3D can compute, but can't handle geometry
- The proof had almost zero "temperature 1 craziness"
- Ongoing work: with Pierre-Étienne Meunier, \& by Damien Regnault and PierreÉtienne Meunier towards showing other negative results on temperature 1

Acknowledgements

Pierre-Étienne Meunier

Matthew
Patitz

Scott Summers

Andrew Winslow

Guillaume
Theyssier

Meunier, Patitz, Summers, Theyssier, Winslow, Woods. SODA 2014

