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Abstract

In this paper we investigate the affect of various acceptance conditions on recog-
niser membrane systems without dissolution. We demonstrate that two par-
ticular acceptance conditions (one easier to program, the other easier to prove
correctness) both characterise the same complexity class, NL. We also find that
by restricting the acceptance conditions we obtain a characterisation of L. We
obtain these results by investigating the connectivity properties of dependency
graphs that model membrane system computations.
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1. Introduction

In the membrane systems (also known as P-systems [1]) computational com-
plexity community it is common practice to explore the power of systems by al-
lowing and prohibiting different developmental rules. This technique has yielded
several interesting results such as the role of membrane dissolution in recognising
PSPACE-complete problems [2] and the role of membrane division in recog-
nising problems outside of P [3].

In this paper we do not vary the rules permitted in membrane systems but
instead we vary the acceptance conditions and observe the change (or lack of
change) this makes to the computing power of the system. Our main technique
is to analyse the structure, and connectivity, of dependency graphs [2] that are
induced by acceptance conditions. Our approach builds on previous work on
dependency graphs [2, 4] to give a number of new techniques and results. Our
techniques and results should be of interest to those who wish to characterise
complexity classes, those studying acceptance conditions for membrane systems,
and those characterising the power of membrane systems.
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This research was motivated by the realisation that in prior work [5] we were
using a seemingly more general halting condition than is used by the membrane
community. Previously, we showed that AC0-uniform families3 of active mem-
brane systems without dissolution, and using the acceptance conditions specified
in Section 3.1, characterise NL [5]. However, most researchers use a more re-
stricted acceptance condition (see Section 3.2). We show here that this more
restricted definition also characterises NL. This means that the two definitions
are equivalent in terms of computing power for (AC0)–PMC∗AM0

−d
systems.

The choice of which definition to use is now mostly a matter of personal taste
as we have shown that the two are equivalent under AC0 reductions, i.e. there
is a (very efficient) compiler to translate one definition to another.

In Section 3.3 we show that active membrane systems without dissolution,
and using a restriction on the standard acceptance definition, characterise L.
This demonstrates that not all (minor) restrictions on halting definitions yield
systems that characterise NL.

We note here that the three definitions that we consider in Section 3 all
characterise P if they are generalised to use P-uniformity. The P lower bound
of this characterisation is a trivial corollary of the fact that such membrane
systems can easily embed polynomial time deterministic Turing machines, and
is not related to the differences in their definitions.

2. Preliminaries

In this section we define membrane systems and some complexity classes.
These definitions are based on those from Păun [1, 6], Sośık and Rodŕıguez-
Patón [7], Gutiérrez-Naranjo et al. [2], and Pérez-Jiménez et al. [8]. Previous
works on complexity and membrane systems spoke of solving a problem in a
“uniform way”, that is, in a manner reminiscent of how families of circuits
solve a problem. Sośık and Rodŕıguez-Patón defined uniformity for membrane
systems in a similar manner to circuit uniformity, this allows us to refer to
uniform families of membrane systems.

2.1. Active membrane systems
Active membrane systems are a class of membrane systems with membrane

division rules. Division rules can either only act on elementary membranes,
or else on both elementary and non-elementary membranes. An elementary
membrane is one which does not contain other membranes (a leaf node, in tree
terminology).

Definition 1. An active membrane system without charges is a tuple Π =
(O,H, µ,w1, . . . , wm, R) where,

1. m ≥ 1 is the initial number of membranes;

3All membrane systems in this paper are AC0-uniform and run for polynomial time.



2. O is the alphabet of objects;
3. H is the finite set of labels for the membranes;
4. µ is a membrane structure in the form of a tree, consisting of m membranes

(nodes), labelled with elements of H. The parent of all membranes (the
root node) is called the “environment” and has label env ∈ H;

5. w1, . . . , wm are strings over O, describing the multisets of objects placed
in the m regions of µ.

6. R is a finite set of developmental rules, of the following forms:
(a) [ a → u ]h, for h ∈ H, a ∈ O, u ∈ O∗
(b) a[ ]h → [ b ]h, for h ∈ H, a, b ∈ O
(c) [ a ]h → [ ]h b, for h ∈ H, a, b ∈ O
(d) [ a ]h → b, for h ∈ H, a, b ∈ O
(e) [ a ]h → [ b ]h [ c ]h, for h ∈ H, a, b, c ∈ O.
(f) [ a [ ]h1 [ ]h2 [ ]h3 ]h0 → [ b [ ]h1 [ ]h3 ]h0 [ c [ ]h2 [ ]h3 ]h0 ,

for h0, h1, h2, h3 ∈ H, a, b, c ∈ O.

These rules are applied according to the following principles:

• All the rules are applied in a maximally parallel manner. That is, in one
step, one object of a membrane is used by at most one rule (chosen in a
non-deterministic way), but any object which can evolve by one rule of
any form, must evolve.

• If at the same time a membrane labelled with h is divided by a rule of
type (e) or (f) and there are objects in this membrane which evolve by
means of rules of type (a), then we suppose that first the evolution rules
of type (a) are used, and then the division is produced. This process takes
only one step.

• The rules associated with membranes labelled with h are used for mem-
branes with that label. At one step, a membrane can be the subject of
only one rule of types (b)–(f).

• Rules of type (f) are division rules for non-elementary membranes. These
rules allow us duplicate an entire branch of the membrane structure in the
following manner. If the membrane (label h0) to which the non-elementary
division rule is applied contains objects and child membranes then copies
of those membranes and all of their contents (including their own child
membranes) are found in both resulting copies of h0.

2.2. Recogniser membrane systems
In this paper one of our goals is to unify and clarify definitions for language

recognising variants of membrane systems. To achieve this, we consider three
different notions of acceptance for recogniser systems, one in each of Sections 3.1
to 3.3. Each of these three definitions is a restriction on the general (and
purposely vague) Definition 2 below.



We recall from [2] that a computation of the system is a sequence of config-
urations such that each configuration (except the initial one) is obtained from
the previous one by a transition. A computation that reaches a configuration
where no more rules can be applied to the existing objects and membranes is
called a halting computation.

Definition 2. A recognizer membrane system is a membrane system with ex-
ternal output (that is, the results of halting computations are encoded in the
environment) such that:

1. the working alphabet contains two distinguished elements yes and no;
2. if C is a computation of the system, then it is either an accepting or a

rejecting computation.

This definition is vague since we have not defined accepting and rejecting
computations. In Section 3 we show the set of problems that a membrane system
accepts when using various notions of accepting (or rejecting) computations.

2.3. Complexity classes
Consider a decision problem X, i.e. a set of instances X = {x1, x2, . . .} over

some finite alphabet such that to each xi there is an unique answer “yes” or
“no”. We say that a family of membrane systems solves a decision problem if
each instance of the problem is solved by some family member. We denote by
|x| = n the length of any instance x ∈ X. Throughout this paper, AC0 cir-
cuits are DLOGTIME-uniform, polynomial sized (in input length n), constant
depth, circuits with AND, OR and NOT gates, and unbounded fanin [9]. The
complexity class L (NL) is the set of problems solved by (non-)deterministic
Turing machines using only O(log n) space, where n is the length of the input
instance.

Definition 3. Let D be a class of membrane systems and let f : N → N
be a total function. The class of problems solved by AC0-uniform families of
membrane systems of type D in time f , denoted (AC0)–MCD(f), contains all
problems X such that:

• There exists an AC0-uniform family of membrane systems,
ΠX = (ΠX(1),ΠX(2), . . .) of type D: that is, there exists an AC0 cir-
cuit family such that on unary input 1n the nth member of the circuit
family constructs ΠX(n).

• There exists an AC0 circuit family such that on input x ∈ X, of length
|x| = n, the nth member of the family encodes x as a multiset of input
objects placed in the distinct input membrane of ΠX(n).

• ΠX is sound and complete with respect to problem X: ΠX(n) starting
with an encoding of input x ∈ X of length n accepts iff the answer to x is
“yes”.



• ΠX is f -efficient: ΠX(n) always halts in at most f(n) steps.

Definition 3 describes AC0-uniform families and we generalise this to define
AC0-semi-uniform families of membrane systems ΠX = (ΠX(x1); ΠX(x2); . . .)
where there exists an AC0 circuit family which, on an input x ∈ X, constructs
membrane system ΠX(x). Here a single circuit family (rather than two) is used
to construct the semi-uniform membrane family, and so the problem instance is
encoded using objects, membranes, and rules. In this case, for each instance of
x ∈ X we have a special membrane system which does not need a separately con-
structed input. The resulting class of problems is denoted by (AC0)–MC∗D(f).
Obviously, (AC0)–MCD(f) ⊆ (AC0)–MC∗D(f) for any given class D and a
valid [10] complexity function f .

We define (AC0)–PMCD and (AC0)–PMC∗D as

(AC0)–PMCD =
⋃
k∈N

(AC0)–MCD(nk),

and
(AC0)–PMC∗D =

⋃
k∈N

(AC0)–MC∗D(nk).

In other words, (AC0)–PMCD (and (AC0)–PMC∗D) is the class of problems
solvable by uniform (respectively semi-uniform) families of membrane systems
in polynomial time. We let AM0 denote the class of membrane systems with
active membranes and no charges. We let (AC0)–PMC∗AM0

−d
denote the class

of problems solvable by AC0-semi-uniform families of membrane systems in
polynomial time with no dissolution rules. In an abuse of notation, we often let
(AC0)–PMC∗AM0

−d
refer to the class of such membrane systems (rather than

problems). For brevity we often write ΠX instead of ΠX(n) or ΠX(x).

Remark 4. A membrane system is confluent if it is both sound and complete.
That is a ΠX is confluent if all computations of ΠX with the same input give
the same result; either always accepting or else always rejecting.

In a confluent membrane system, given a fixed initial configuration, the sys-
tem non-deterministically chooses one from a number of valid configuration
sequences, but all of the reachable configuration sequences must lead to the
same result, either all accepting or all rejecting.

2.4. Dependency graphs and normal forms
The dependency graph (first introduced by Gutiérrez-Naranjo et al. [2]) is

an indispensable tool for characterising the computational complexity of mem-
brane systems without dissolution. This technique is reminiscent of configura-
tion graphs for Turing Machines. Similarly to a configuration graph, a depen-
dency graph helps visualise a computation. However, it differs in its approach
by representing a membrane system configuration as a set of nodes rather than
as a single node in configuration space.



Looking at membrane systems without dissolution as dependency graphs
allows us to employ the existing, mature corpse of techniques and complexity
results for graph problems. As we show in this paper, this greatly simplifies the
process of proving upper and lower bounds for such systems. A key technique
we use in this paper is to transfer from a dependency graph to a new membrane
system, Π → GΠ → ΠGΠ . This new system accepts iff the original membrane
system accepts, since their dependency graphs are isomorphic. Also, the new
system is considerably simplified as it uses only one membrane (the environ-
ment) and all rules are of type (a). This is used as a normal form for membrane
systems without dissolution.

In Sections 3.1 to 3.3 we define reachability problems for dependency graphs
such that if the answer to the graph reachability problem is yes, then the mem-
brane system it represents is an accepting system. This is because the nodes of
a dependency graph represent an object being in a certain membrane, and an
edge between two nodes represents a developmental rule that causes that object
to be in that membrane. Thus if the object yes arrives in the environment (the
acceptance signal) of the membrane system, then there is a directed path lead-
ing from one special node (in) to another special node (yes) in the dependency
graph. For more details about how a dependency graph is constructed and its
proof of correctness see Gutiérrez-Naranjo et al. [2, 4].

The dependency graph for a membrane system Π is a directed graph G =
(VG , EG , in, yes, no) where in ⊆ VG represents the input multiset, and yes, no ∈
VG , represent the accepting and rejecting signals respectively. Each vertex a ∈
VG is a pair a = (o, h) ∈ O×H, where O is the set of objects in Π and H is the set
of membrane labels in Π. An edge (a, b) exists iff there is a developmental rule in
Π such that the left hand side of the rule has the same object-membrane pair as a
and the right hand side has an object-membrane pair matching b. Since there is
no membrane dissolution allowed, the parent/child relationships of membranes
does not change during the computation. This allows us to determine the correct
parent and child membranes for type (b) and type (c) rules.

Previously [2], the graph G was constructed from Π in polynomial time. We
make the observation that the graph G can be constructed in AC0. We use a
common circuit technique known as “masking” whereby using AND gates and
a desired pattern we filter out the bits of the input string that we are interested
in. We take as input a binary string x that encodes a membrane system, Π. To
make a dependency graph from a membrane system requires a constant number
of parallel steps that are as follows. First, a row of circuits identifies all type
(b) and (c) rules and uses the membrane structure to determine the correct
parent membranes, then writes out (a binary encoding of) edges representing
these rules. Next, a row of circuits writes out all edges representing type (e)
and (f) rules (see [2] for more details about the representation of these rules
in dependency graphs). For (a) rules it is possible to have polynomially many
copies of polynomially many distinct objects on the right hand side of a rule.
To write out edges for these rules in constant time we take advantage of the
fact that we require at most one edge for each object-membrane pair in O×H.
We have a circuit for each element of {oh | o ∈ O, h ∈ H}. The circuit for oh



takes as input (an encoding of) all rules in R whose left hand side is of the form
[o]h. The circuit then, in a parallel manner, masks (an encoding of) the right
hand side of the rule (for example [bbcdc]h) with the encoding of each object in
O, (in the example, masking for (encoded) b would produce (encoded) bb000).
All encoded objects in the string are then ORed together so that if there was
at least one copy of that object in the system we obtain a single instance of
it. The circuit being unique for a specific left hand side [o]h now writes out an
encoding of the edge (oh, bh) and an encoding of all other edges for objects that
existed on the right hand side of this rule in parallel.

Remark 5. Of course one can take the opposite view. We observe that to con-
vert a dependency graph G = (VG , EG , in, yes, no) into a new membrane system,
ΠG , we simply convert the edges of the graph into object evolution rules. The
set of objects of ΠG is OG = VG . The rules of ΠG are {[ v → S(v)]env | ∀ v ∈ VG}
where S(v) = {s ∈ VG |(v, s) ∈ EG}. The nodes in, yes, no become the input
multiset, yes object, and no object respectively. We compute this in AC0.

This new membrane system, ΠG , highlights some points about active mem-
brane systems without dissolution. These give rise to significant simplifications
and normal forms.

Lemma 6. Any (AC0)–PMC∗AM0
−d

, Π, with m membranes can be simulated

by a (AC0)–PMC∗AM0
−d

system, Π′, that (1) has no membranes other than the
environment and (2) uses only rules of type (a).

By simulate we mean that the latter system accepts on input in iff the former
does. To see that Lemma 6 holds, first notice how the dependency graph repre-
sents an (object, label) pair as a single node. Also if we convert the dependency
graph G into a membrane system ΠG , (1) it uses a single membrane with label
env, and each node is modelled by a single object. (2) Each edge in G becomes a
rule of type (a). Notice that the dependency graphs of Π and ΠG are isomorphic.

Lemma 7. Any (AC0)–PMC∗AM0
−d

system, Π, which has, as usual, multisets

of objects in each membrane can be simulated by another (AC0)–PMC∗AM0
−d

system, Π′, which has sets of objects in each membrane.

We verify Lemma 7 by observing that in a dependency graph, G, the multiset
of objects is encoded as a set of vertices, no information is kept regarding object
multiplicities. Thus when G is converted into a new membrane system, ΠG ,
there are no rules with a right hand side with more than one instance of each
object. The resulting system ΠG accepts iff Π accepts since the dependency
graphs of both systems are isomorphic. Thus object multiplicities do not affect
whether the system accepts or rejects.



3. Three different acceptance conditions

Here we present three different acceptance conditions for membrane systems
with active membranes and show what complexity class they characterise. We
define each acceptance condition; define a graph reachability problem that mod-
els the computation of such a system; then prove both upper and lower bounds
on the computational power of the system. Each of Definitions 8, 13, 19, is
a more concrete replacement for Definition 2. Most results in this section use
reductions to and from reachability problems on membrane dependency graphs.
Solving these reachability problems is equivalent to simulating such a membrane
system since we translate (via AC0 reductions) from a membrane system to a
corresponding reachability problem, and vice-versa.

3.1. General recogniser systems characterise NL

In previous works [5, 11] we used a definition of recogniser membrane systems
that is more general than is typical of other work in the area (i.e. Section 3.2).
In this more general definition it is possible for the membrane system to output
both yes and no symbols. However, when the first of these symbols is produced
we call it the accepting/rejecting step of the computation. (Note that it is for-
bidden for both yes and no to be produced in the same timestep.) We now de-
fine this acceptance condition and then go on to show that (AC0)–PMC∗AM0

−d

systems with this acceptance condition characterise NL.

Definition 8. A general recognizer membrane system, Π, is a membrane system
with external output (that is, the results of halting computations are encoded
in the environment) such that:

1. the working alphabet contains two distinguished elements yes and no;
2. if C is a computation of the system, (i) then a yes or no object is released

into the environment, (ii) but not in the same timestep. If yes is released
before no then the computation is accepting, otherwise the computation
is rejecting.

We now define the reachability problem for (AC0)–PMC∗AM0
−d

systems
whose acceptance conditions are as in Definition 8. Solving this problem is
equivalent (via a reduction) to simulating such a system.

Problem 9 (GENREC).
Instance: A dependency graph G = (VG , EG , in, yes, no) where {in, yes, no} ⊆
VG , representing the rules of a general recogniser membrane system Π as defined
in Definition 8.
Problem: Is the shortest directed path from in to yes of length less than the
shortest directed path from in to no?

We also define the problem STCON, the canonical NL-complete problem [12].
This problem is also known as PATH, REACHABILITY, and GAP.



in yes

no

Figure 1: An example dependency graph G for some unspecified general recogniser membrane
system (Definition 8). Note that this represents a rejecting computation since the minimum
directed path from in to no is of length 6, while the minimum directed path from in to yes

is of length 7.

Problem 10 (STCON).
Instance: A directed acyclic graph G = (V,E, s, t) where {s, t} ⊆ V .
Problem: Is there a directed path in G from s to t?

We now provide a result which is used to show that (AC0)–PMC∗AM0
−d

systems whose acceptance conditions are as in Definition 8 characterise NL
(this characterisation has been published elsewhere [5], we present a shorter
proof here).

Theorem 11. GENREC is NL-complete

Proof. First we show STCON ≤AC0 GENREC. Given an instanceG = (V,E, s, t)
of STCON, we construct a dependency graph G = (VG , EG , in, yes, no) such that
VG = V ∪ {no} and EG = E. We replace all instances of s with in, and t with
yes, in G. Clearly there is a path from in to yes iff there is a path from s to t
in G. We also add a directed path of length |V | + 1 from in to no in G. This
ensures that if there is not a path from s to t in G, than no is reached after all
other paths have terminated. This reduction is computed in AC0.

We now prove the correctness of the above reduction. Since GENREC is
defined in terms of the general recogniser membrane systems (Definition 8), we
often appeal to Definition 8 in the proof. Recall that, via Remark 5, we can
translate G to a membrane system ΠG in AC0.

• By adding a path of length |V |+1 from in to no we are guaranteeing that
object no is not produced by the membrane system ΠG at the same time
as any other object, this satisfies point 2(ii) of Definition 8.

• If there is a path from s to t in G (and yes is evolved in ΠG) the reduction
ensures that a path from in to yes exists in G. Also in either case a path
from in to no is created by the reduction that ensures the correct output
from ΠG . Thus we satisfy point 2(i) of Definition 8.



We now show that GENREC ∈ NL. Let M be a non-deterministic Turing
machine with two variables x and y. Finding the shortest path between two
nodes is well known to be computable in NL via ≤ n iterations of a STCON
algorithm. Set x to be the shortest path from in to yes. Set y to be the shortest
path from in to no. If x < y, M accepts, otherwise M rejects. Thus M uses a
non-deterministic algorithm and two binary counters to solve GENREC and so
the problem is in NL. �

Theorem 12. NL is characterised by (AC0)–PMC∗AM0
−d

using the general
acceptance conditions from Definition 8.

The proof is omitted, but can be obtained by using standard techniques along
with Remark 5, Theorem 11, and Definition 8.

3.2. Standard recogniser membrane systems characterise NL

In this section we discuss the “standard” definition for recogniser membrane
systems, i.e. the definition that most researchers use when proving results about
recogniser membrane systems. On a given input, these systems produce either
a yes object or a no object, but not both. Also it is assumed that this occurs
in the last timestep of the computation where no other rules are applicable.

By showing an NL characterisation for such systems, we are showing that
this definition has equal power to the more general definition discussed above
in Section 3.1. Furthermore, we have provided a “compiler,” via reductions,
to translate a system that uses the general definition into a system that uses
the standard definition. This is significant since the general definition is often
easier to program, while it is often easier to prove certain properties (such as
correctness) for the standard definition. We begin with a definition of standard
recogniser membrane systems from Gutiérrez-Naranjo et al. [2].

Definition 13 ([2]). A recognizer membrane system, Π, is a membrane system
with external output (that is, the results of halting computations are encoded
in the environment) such that:

1. the working alphabet contains two distinguished elements yes and no;
2. all computations halt; and
3. if C is a computation of the system, then (i) either object yes or object

no (but not both) must have been released into the environment, and
(ii) only in the last step of the computation. If yes is released then the
computation is accepting, otherwise the computation is rejecting.

Remark 14. Definition 13 affects the dependency graph of such systems so
that we can define the following subsets of the objects O.
Oyes = {o | o ∈ O and o eventually evolves yes},
Ono = {o | o ∈ O and o eventually evolves no}, and Oother = O\(Oyes ∪Ono).

Lemma 15. Oyes ∩Ono = ∅.



Proof. Assume that object o ∈ Oyes∩Ono, this implies that both a yes and a no
object are produced by the confluent system on a given input which contradicts
point 3(i) of Definition 13. �

These observations are illustrated in Figure 2.

in yes

no

Figure 2: An example dependency graph G for some unspecified standard recogniser membrane
system (Definition 13). Note that via Lemma 15 there are no directed paths from Oyes to
Ono, they are weakly connected.

We now define the reachability problem for (AC0)–PMC∗AM0
−d

systems
whose acceptance conditions are as in Definition 13. We remind the reader
that these systems are confluent via Definition 3 and Remark 4.

Problem 16 (STDREC).
Instance: A dependency graph G = (VG , EG , in, yes, no) where {in, yes, no} ⊆
VG , representing the rules of a (AC0)–PMC∗AM0

−d
recogniser membrane system

Π as defined in Definition 13.
Problem: Is there a directed path from in to yes?

We now provide the main result needed to show that standard (AC0)–PMC∗AM0
−d

characterises NL.

Theorem 17. STDREC is NL-complete.

Proof. First we show STCON ≤AC0 STDREC. Given an instanceG = (V,E, s, t)
of STCON, we construct a dependency graph G = (VG , EG , in, yes, no) such that
VG = V ∪{yes, no} and EG = E. We replace s with in in G. We add a directed
path of |V |+1 edges leading from t to yes to ensure that all other computations
have halted before yes is evolved. Clearly there is a path from in to yes in G
iff there is a path from s to t in graph G.

So far, G we have shown that (AC0)–PMC∗AM0
−d

recogniser membrane sys-
tems, as in Definition 13, accept words in STCON. However, the construction
does not explicitly say how to reject words that are not in the language, which
is a requirement of Definition 13. We extend the proof as follows. Let STCON
be the complementary problem to STCON, i.e. given an acyclic graph G′ is



there no directed path from s′ to t′? STCON is coNL-complete (via the same
reduction that is used to show the NL-completeness of STCON), and so is also
NL-complete (since NL = coNL [13, 14]). Now we define a third NL-complete
problem STCON–STCON; the set of graphs with two disjoint components G,G′

that are related in the following sense: s eventually yields t in G iff s′ does not
eventually yield t′ in G′. Now we reduce this graph to a dependency graph G
in a similar manner as the above reduction. That is, we place an edge from
in to s and from in to s′. We add a directed path of |V | + 1 edges leading
from t to yes, and another directed path of |V | + 1 edges leading from t′ to
no. Then the induced membrane system ΠG correctly decides STCON–STCON
since it answers yes iff s leads to t, otherwise it answers no. This reduction is
computed in AC0.

We now prove the correctness of the above reduction. Recall that, via Re-
mark 5, we translate G to a membrane system ΠG in AC0.

• Since an instance of STCON–STCON is an acyclic graph we trivially satisfy
point 2 of Definition 13.

• In the induced membrane system ΠG the node in can only lead to one of
yes or no, but not both, since the embedded STCON and STCON problems
are complementary. This satisfies point 3(i) of Definition 13.

• ΠG outputs (either yes or no) in the last step because we add |V |+1 extra
edges from t and t′ so that the accepting or rejecting path is the longest
in the dependency graph, satisfying point 3(ii) of Definition 13.

Now we show that (AC0)–PMC∗AM0
−d

, as in Definition 13, can recognise no
more than NL by showing that STDREC ≤AC0 STCON. We observe that an
instance of STDREC is a directed acyclic graph (via point 2 of Definition 13).
Given an instance G = (VG , EG , in, yes, no) of STDREC, we construct G =
(V,E, s, t) such that V = VG and E = EG and replace all instances of in with
s and yes with t in G. Clearly there is a path from s to t in G iff there is a
path from in to yes in the dependency graph G. This reduction is computed
in AC0. �

Theorem 18. NL is characterised by (AC0)–PMC∗AM0
−d

using the standard
acceptance conditions from Definition 13.

The proof is omitted, but can be obtained by using standard techniques along
with Remark 5, Theorem 17, and Definition 13.

3.3. Restricted recogniser membrane systems characterise L

We now consider a restriction on the standard definition of recogniser mem-
brane systems. Above in Section 3.2, we forbid an object that eventually yielded
a yes from also yielding a no (and vice versa). Now we further restrict the sys-
tem and require that all descendent nodes of in must eventually yield yes, or
all must eventually yield no. Notice that this restriction forbids objects that



in yes

no

Figure 3: An example dependency graph G for some unspecified restricted recogniser mem-
brane system (Definition 19).

do not contribute to the final answer (accept or reject) and forbids rules of the
form [a→ λ] where λ is the empty word.

Definition 19. A restricted recogniser membrane system, Π, is a membrane
system with external output (that is, the results of halting computations are
encoded in the environment) such that:

1. the working alphabet contains two distinguished elements yes and no;
2. all computations halt;
3. if C is a computation of the system, then (i) either object yes or object

no (but not both) must have been released into the environment, and
(ii) only in the last step of the computation. If yes is released then the
computation is accepting, otherwise the computation is rejecting.

4. each object o ∈ O must, via a sequence of zero or more developmental
rules, lead to yes, or else lead to no, but not both.

The definition has the following effect on the dependency graph.

Remark 20. Since every object eventually yields exactly one yes, or exactly
one no, the graph G consists of exactly two disjoint components.

We now define a graph reachability problem for (AC0)–PMC∗AM0
−d

systems
whose acceptance conditions are as in Definition 19.

Problem 21 (RSTREC).
Instance: A dependency graph G = (VG , EG , in, yes, no) where {in, yes, no} ⊆
VG , representing the rules of an (AC0)–PMC∗AM0

−d
recogniser membrane sys-

tem Π as defined in Definition 19.
Problem: Is there a directed path from in to yes?

We define the L-complete problem Directed Forest Accessibility (DFA) [15].



Problem 22 (DFA [15]).
Instance: An acyclic directed graph G = (V,E, s, t) where {s, t} ⊆ V and
each node is of out-degree 0 or 1.
Property: Is there a directed path from s to t?

Theorem 23. RSTREC is L-complete

Proof. First we show DFA ≤AC0 RSTREC. Given an instance G = (V,E, s, t)
of DFA, we construct a dependency graph G = (VG , EG , in, yes, no) such that
VG = V ∪ {no} and EG = E\{(t, v)|v ∈ V }. We also replace s with in, and
add a directed path of length |V | + 1 from t to yes in G. Clearly there is a
path from in to yes in G iff there is a path from s to t in graph G. Note that
since we removed the edge (if it exists) leaving t, every computation halts (in
the induced membrane system ΠG) upon evolving yes. We also add an edge
from all nodes, except yes, of out-degree 0 to no. There is now a path from in
to no iff there is no path from s to t in G because all paths that do not lead to
yes now lead to no. This reduction is computed in AC0.

We now prove the correctness of the above reduction. Recall that, via Re-
mark 5, we translate G to a membrane system ΠG in AC0.

• Since G (as a forest) is acyclic, our reduction ensures G, and hence any
computation of ΠG , is acyclic also, satisfying point 2 of Definition 19.

• Our reduction ensures that exactly 2 nodes in G have out-degree 0, the
(sink) nodes yes and no, this implies that the only objects that have no
applicable rules in ΠG are yes and no. This satisfies points 1 and 3(ii) of
Definition 19.

• Since every node in G has out-degree 0 or 1, then every node in G has out-
degree 0 or 1 (and every object in ΠG has 0 or 1 applicable developmental
rules). Combined with the previous point, this implies that all nodes in
G are on a path to either yes or no, and that all objects in ΠG eventually
yield either yes or no, satisfying points 4 and 3(i) of Definition 19.

Now we show RSTREC is contained in L by outlining a deterministic logspace
Turing machine M that decides RSTREC. The input tape of M encodes an
instance G = (VG , EG , in, yes, no) of RSTREC. Starting with the input node in,
M stores this node in a variable called x on its work tape. If x is neither yes
nor no then M searches the set of edges EG on its input tape, upon finding an
edge (x, v), the machine sets x to be v (overwriting the previous value). The
computation carries on in this fashion until either x equals no causing M to
reject, or yes, in which case M accepts.

The algorithm correctly decides RSTREC because each node in the data-
structure has out-degree 0 or 1 and we simply trace along a path until we reach
a sink. If the sink is yes, we accept, otherwise we reject. Since only one node
is stored on M ’s work tape at any time, M uses O(log n) space (where n is the
input length). Thus RSTREC ∈ L. �



Theorem 24. L is characterised by (AC0)–PMC∗AM0
−d

using the restricted
acceptance conditions from Definition 19.

The proof is omitted, but can be obtained by using standard techniques along
with Remark 5, Theorem 23, and Definition 19.

4. Conclusions

In this paper we have shown how the acceptance conditions of membrane
systems affect the computational complexity of the system. We have presented
an analysis of three different acceptance conditions and proved that they each
characterise one of two logspace complexity classes, NL or L.

In our previous work [5] we used Definition 8 as our acceptance condition.
Systems using this definition are relatively easy to program (construct a mem-
brane system to solve a problem) because one is not concerned with ensuring
the system halts or that only yes or only no is output. However Definition 13
is the more common definition that is used when discussing active membrane
systems as it is easier to prove correctness for these systems. The results in Sec-
tions 3.1 and 3.2 reveal that when working with (AC0)–PMC∗AM0

−d
systems,

both of Definitions 8 and 13 characterise NL. Our result gives an AC0 com-
putable compiler to turn a system obeying one definition into a system obeying
the other definition. This makes the choice of either definition a matter of taste
and convenience.

We also have given the first complexity class defined by membrane systems
that characterises L.

It is interesting to note that the rules of (AC0)–PMC∗AM0
−d

systems allow
for the generation of an exponential amount of objects and membranes. However
these systems decide only those problems that a (non-)deterministic Turing
machine uses logarithmic space to decide.

Here we looked at a number of acceptance conditions for active membrane
systems and then characterised the computational complexity classes of the
systems. However, it is also possible to go in the other direction, that is, to
choose a complexity class and then try to engineer an acceptance condition in
order to characterise the class. This technique may give rise to interesting new
characterisations. Furthermore, we would hope that it may even be useful to
help solve some open questions on the power of certain classes of membrane
systems.

We intend to extend this research to see what effect, if any, acceptance
conditions have on the complexity of uniform active membrane systems. The
techniques may also prove useful for exploring other classes of membrane systems
such as tissue P-systems.

Acknowledgements

We would like to thank Mario J. Pérez-Jiménez and Agust́ın Riscos-Núñez
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[7] P. Sośık, A. Rodŕıguez-Patón, Membrane computing and complexity the-
ory: A characterization of PSPACE, Journal of Computer and System
Sciences 73 (1) (2007) 137–152.
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