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Abstract. We present a number of time-efficient small universal Turingma-
chines. We show that there exists deterministic polynomialtime universal Turing
machines with state-symbol products of(3, 11), (5, 7), (6, 6), (7, 5) and(8, 4).
These machines are the smallest known universal Turing machines that simulate
TMs in polynomial time.

1 Introduction

Shannon [1] first posed the question of finding the smallest possible universal Turing
machine (UTM). Initially small UTMs were constructed that directly simulated Turing
machines (TMs) [2, 3]. Subsequently the technique of indirect simulation via other uni-
versal models was successfully applied. In the early 1960s Minsky used 2-tag systems
to create a 7-state, 4-symbol machine [4]. Minsky’s technique was more recently used
by Rogozhin et al to create the smallest known UTMs.

Let UTM(m, n) be the class of deterministic UTMs withm states andn symbols.
Rogozhin [5] constructed UTMs in the classes UTM(24, 2) UTM(10, 3), UTM(7, 4),
UTM(5, 5), UTM(4, 6), UTM(3, 10) and UTM(2, 18), Kudlek and Rogozhin [6] con-
structed a machine in UTM(3, 9), and Baiocchi [7] constructed UTMs in UTM(19, 2)
and UTM(7, 4). In terms of the number of transition rules (TRs), Baiocchi’s 4-symbol
UTM is the smallest in the class UTM(7, 4). Due to a unary encoding of the TM tape
contents 2-tag systems are exponentially slow simulators of TMs. Hence the simula-
tions of Minsky, Rogozhin, Kudlek and Baiocchi all suffer from an exponential time
complexity overhead. Fig. 1 is a state-symbol plot, here we see that these machines in-
duce a curve which we call the exponential time curve. The halting problem has been
proved decidable for all deterministic TMs in the classes TM(2, 2) [8, 9], TM(3, 2) [10],
TM(2, 3) (Pavlotskaya unpublished), TM(1, n) [11] and TM(n, 1) (trivial) for n ≥ 1.
These results induce the non-universal curve in Fig. 1.

Our main result states that there exists deterministic polynomial time UTMs in the
classes UTM(3, 11), UTM(5, 7), UTM(6, 6), UTM(7, 5) and UTM(8, 4). Fig. 1 illus-
trates the polynomial time curve that is induced by our result. It follows immediately
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Fig. 1. State-symbol plot of small UTMs. The plot shows the polynomial curve induced by our
machines. Rogozhin et al’s exponential time curve, and the current non-universal TM curve. The
× symbols and the polynomial curve represent the main contribution of this paper; there are
polynomial time UTMs with these state-symbol values

that there are efficient polynomial time UTMs with state-symbol products indicated by
the crosses (×) in Fig. 1. It is interesting to note that in some places our polynomial
time curve actually intersects the exponential time curve.

Before our work the most recent small polynomial time UTM wasconstructed by
Watanabe [3] in 1961 and is in the class UTM(8, 5). Subsequent efforts to construct
smaller UTMs have used the (exponentially slow) technique of simulation via 2-tag
systems. Our results offer a significant improvement over Watanabe’s 1961 machine;
our machines are significantly smaller and represent a new algorithm for small UTMs.

In Section 2 we give an overview of our simulation algorithm and some defini-
tions used to encode input to our UTMs. In Section 3 we give a machine in the class
UTM(3, 11). We explain its input encoding and operation in some detail.Section 4 con-
tains a proof of correctness which proves that this UTM simulates TMs in polynomial
time. In the remaining sections our algorithm is extended toUTMs with a number of
other state-symbol products and finally a conclusion is given.

2 Preliminaries

Boas [12] discusses how difficult it is to definesimulationas a mathematical object and
still remain sufficiently general. Rogozhin [5] gives formal definitions of simulation
between TMs and of UTM. In both of these definitions the encoding and decoding
functions are recursive. Our UTMs satisfy Rogozhin’s definitions and also simulate
deterministic TMs in polynomial time. Rogozhin et al’s UTMssimulate deterministic
TMs in exponential time. It is not known if tag systems can simulate TMs without using
a unary encoding hence it is not known if Rogozhin et al’s UTMscan simulate TMs in
polynomial time.
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(a)

(b)

(cR) (cL)

Encoded current state Encoded read symbol

Encoded write symbol

Fig. 2. Right and left shifting transition rule simulations. The encoded current state marks the
location ofM ’s simulated tape head. (a) Encoded configurations before beginning each TR sim-
ulation. (b) Intermediate configurations immediately after the encoded read symbol and encoded
current state have been read. (cR) Configuration immediately after the simulated right shift. (cL)
Configuration immediately after the simulated left shift.

Before going into technical details we describe the main difference between our
UTMs and previous small polynomial time UTMs and why this difference is significant.
We then introduce some general encodings that each of our fivemachines adhere to. We
also give an overview of our simulation algorithm. Each UTM uses a variation on this
algorithm.

2.1 General form of our universal machines

In order to distinguish the current stateqx of a simulated TMM earlier small UTMs [2,
3] maintained a list of all states with a marker atqx. A change inM ’s current state
was simulated by moving the marker to another location in thelist of states. The most
significant difference between these earlier UTMs and our algorithm is that we store
the encoded current state ofM onM ’s simulated tape at the location ofM ’s tape head.
Thus the encoded current state also records the current location ofM ’s tape head during
the simulation. This point is illustrated in Fig. 2.

The problem of constructing a UTM can be broken into the following basic steps.
The UTM must (1) read the encoded current state and (2) read the encoded read symbol.
Next the UTM must (3) print the encoded write symbol, (4) movethe simulated tape
head and (5) establish the new encoded current state. Due to the location of the encoded
current state and the special encodings we use for our UTMs the sets{(1), (2)} and
{(3), (4), (5)} each become a single process. Steps (1) and (2) are combined such that
a single set of transition rules read both the encoded current state and the encoded read
symbol. Steps (3), (4) and (5) have been similarly combined.Combining these steps has
reduced the number of transition rules needed by our UTMs.

2.2 TMs

We consider deterministic TMs with a single one-way infinitetape and a single tape
head [13]. A TM is a tupleM = (Q, Σ, B, f, q1, H) (adapted from [13]).Q andΣ
are the finite sets of states and tape symbols respectively.B ∈ Σ is the blank symbol.
q1 ∈ Q is the start state andH ⊆ Q is the set of halt states. The transition function
f : Q×Σ → Q×Σ × {L, R} is total forq ∈ Q if q /∈ H . If q ∈ H the functionf is
partial, that isf is undefined on at least one element ofq × Σ. We writef as a list of
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TRs. Each TR is a quintuplet = (qx, σ1, σ2, D, qy), with initial stateqx, read symbol
σ1, write symbolσ2, shift directionD andnextstateqy.

Throughout the paperU denotes a UTM and for somem, n ∈ N, Um,n denotes our
UTM in class UTM(m, n). We letM always denote a TM that is to be simulated by
someU . The encoding ofM as a word is denoted̂M . Analogously the encodings of
stateq and tape symbolσ are denoted̂q andσ̂ respectively. For convenience we often
call the wordq̂ astateof M̂ . We letN denote the set of nonnegative integers. In regular
expressions∪, ∗, ǫ and parentheses have their usual meanings [13].

2.3 Input encodings for UTMs

Without loss of generality, any simulated TMM has the following restrictions: (i)M ’s
tape alphabet isΣ = {0, 1}, (ii) for all qi ∈ Q, i satisfies1 ≤ i ≤ |Q|, (iii) f is total,
(iv) M ’s start state isq1, (v) M has exactly one halt stateq|Q| and its transition rules are
of the form(q|Q|, 0, 0, L, q|Q|) and(q|Q|, 1, 1, L, q|Q|). Point (v) is a well-known halting
technique where the tape head is placed at the beginning of the output. The following
definitions encodeM .

Each of our five UTMs has the symbols←−a ,
←−
b andλ as part of its tape alphabet.

The symbolλ is typically used as a marker symbol while←−a and
←−
b are usually used to

encodeM ’s tape symbols as follows.

Definition 1 (Encoding ofM ’s tape symbols).The binary tape symbols 0 and 1 ofM

are encoded as the wordŝ0 =←−a←−a and 1̂ =
←−
b←−a .

Definition 2 (Encoding ofM ’s initial configuration). The encoding of an initial con-
figuration ofM is of the form

M̂ q̂1ŵ(←−a )ω

whereq̂1 is M̂ ’s start state,ŵ ∈ {←−a←−a ,
←−
b←−a }∗ is the encoding of input toM given by

Definition 1,(←−a )ω =←−a←−a←−a · · · andM̂ is the encoding ofM :

M̂ = λP(f, q|Q|)λP(f, q|Q|−1)λ · · ·λP(f, q2)λP(f, q1)λE (1)

where the functionP is defined below in Equation(2), and the wordE ∈ {ǫ, e,←−a ,

λ
←−
b λ←−a ,

←−
b
←−
b
←−
b λ←−a } specifies theending.

The initial position ofU ’s tape head is at the leftmost symbol ofq̂1.

In the previous definition the encoding ofM is placed to the left of its encoded input.
The initial position ofM ’s simulated tape head is indicated by the wordq̂1 and is
immediately to the left of the leftmost encoded input symbol. The remainder of the
infinite tape ofU contains the blank symbol←−a . The endingE varies over the five
UTMs that we present.

The encoding ofM ’s TRs is defined using the functionP that specifies the relative
positionsof encoded TRs for a given stateqi.

P(f, qi) = E(ti,1)λE(ti,0)λE(ti,0)λE(ti,1)λE
′(f, ti,0) (2)

The encoding functionsE andE ′ map TRs to words called ETRs. There is a specific
pair of E andE ′ functions for each of our five UTMs. Given what we have so far, we
need only to giveE andE ′ to completely define the input to our UTMs. These functions
are given before each UTM.
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2.4 UTM algorithm overview

Here we give a brief description of the simulation algorithm. The encoded current state
of M is positioned at the simulated tape head location ofM . Using a unary indexing
method,U locates the next ETR to execute. The next ETR is indexed (pointed to) by
the number of

←−
b symbols contained in the encoded current state and read symbol. If

the encoded current state and read symbol together containi of the
←−
b symbols then

there will bei − 1 of the λ markers between the encoded current state and the next
ETR to be executed. To locate the next ETR,U simply neutralises the rightmostλ (i.e.
changesλ to some other symbol) for each

←−
b in the encoded current state and encoded

read symbol, until there is only one
←−
b remaining. This indexed ETR is printed over the

previous encoded current state and read symbol. This printing completes the execution
of the new ETR and establishes the new encoded current state,encoded write symbol
and simulated tape head shift. Fig. 2(b) represents the tapecontents ofU after an ETR
of M̂ ’s has been indexed. Fig. 2(cR) and (cL) represent the two possibilities for U ’s
tape contents after an ETR has been printed. To give more details we decompose the
algorithm into four cycles.

Cycle 1 (Index next ETR)
In Cycle 1U reads the encoded current state and read symbol and neutralises markers
to index the next ETR. InitiallyU ’s tape head scans to the right and when it reads a

←−
b

it changes the
←−
b to some other symbol.U ’s tape head then scans left to neutralise aλ

marker. This process is repeated untilU reads the substring
←−
b←−a while scanning right.

This signals the end of Cycle 1 and the beginning of Cycle 2.

Cycle 2 (Print ETR)
Cycle 2 copies an ETR toM ’s simulated tape head location.U scans left and records
the next symbol of the ETR to be printed.U then scans right and prints the next symbol
of the ETR at a location specified by a marker. The location of this marker is initially set
at the end of Cycle 1 and its location is updated after the printing of each symbol of the
ETR. This process is repeated until the end of the ETR is detected causingU to enter
Cycle 3. The end of the ETR is detected byU encountering the marker or neutralised
marker that separates two ETRs.

Cycle 3 (Restore tape)
Cycle 3 restoresM ’s encoded table of behaviour after an ETR has been indexed and
printed over the old encoded current state and encoded read symbol. U scans right
restoringM̂ to its initial value. This Cycle ends whenU encounters the marker which
was used in Cycle 2 to specify the position of the next symbol of the ETR to be printed.
WhenU ’s tape head reads this symbolU enters Cycle 4.

Cycle 4 (Choose read or write symbol)
This cycle either (i) begins the indexing of an ETR or (ii) completes the execution of
an ETR. More precisely: (i) ifU is immediately after simulating a left shift then this
cycle reads the encoded read symbol to the left of the encodedcurrent state, (ii) ifU is
simulating a right shift then this cycle prints the encoded write symbol to the left of the
encoded current state. On completion of either case Cycle 1 is entered.
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3 Construction of U3,11

Our first machine is in class UTM(3, 11) and is denotedU3,11. As usual letM be a TM
that is simulated byU3,11.

Definition 3 (M̂ ’s start state).The start state of̂M is encoded aŝq1 =←−a 5|Q|←−b 2.

Recall thatM̂ is the encoding ofM and is defined via the functionsE andE ′. The
functionsE andE ′ map to words over the alphabet ofU3,11. These functions encode
TRs and are given by Equations (3) and (4) respectively. We denote the words defined
by E andE ′ with the acronyms ETR and ETR′ respectively.

We use a shorthand notation for TRs. We letti,σ1
= (qi, σ1, σ2, D, qy), that is

ti,σ1
denotes the unique TR inM with initial stateqi and read symbolσ1. Also tR,i =

(qx, σ1, σ2, R, qi) andtL,i = (qx, σ1, σ2, L, qi); we write∃tR,i to mean that there exists
a TR which shifts right and hasqi as its next state (there may be zero or more such TRs).

Let t = (qx, σ1, σ2, D, qy) be a fixed TR inM , thent is encoded viaP using the
functionE on its own or in conjunction withE ′ where

E(t)=





ea(t)hb(t) if D = R, σ2 = 0,

hea(t)hb(t) if D = R, σ2 = 1,

ea(t)−1hb(t)eee if D = L, σ2 = 0,

ea(t)−1hb(t)ehe if D = L, σ2 = 1,

(3)

and

E ′(f, t) =





ea(tR,x)−3hb(tR,x)+2 if ∃tR,x, qx 6= q1,

e5|Q|−3h4 if qx = q1,

ǫ if ¬∃tR,x, qx 6= q1,

(4)

where as beforetR,x is any right shifting TR such thattR,x ⊢ t, the functionsa(·) and
b(·) are defined by Equations (5) and (6),e andh are tape symbols andǫ is the empty word.

a(t) = 5|Q|+ 2− b(t), (5)

b(t) = 2 +

y∑

j=1

g(t, j), (6)

whereg(·) is given by

g(t, j) =





5 if j < y,

3 if D = L, j = y,

0 if D = R, j = y.

(7)

Definition 4 (Encoding of M ’s current state). The encoding ofM ’s current state is
of the form←−a ∗←−b 2←−b ∗{←−a ∪ ǫ} and is of length5|Q|+ 2.

The value ofE from Definition 2 forU3,11 is E = e.
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ETR Transition Rule tR,x for E′ b(t) a(, t)
E′(f, t1,0)
E(t1,1) q1, 1, 0, R, q1 2 + 0 = 2 15
E(t1,0) q1, 0, 1, R, q2 2 + 5 + 0 = 7 10
E(t1,0) q1, 0, 1, R, q2 2 + 5 + 0 = 7 10
E(t1,1) q1, 1, 0, R, q1 2 + 0 = 2 15

E′(f, t2,0) q2, 0, 0, L, q2 q1, 0, 1, R, q2 2 + 5 + 0 = 7 10
E(t2,1) q2, 1, 1, L, q3 2 + 5 + 5 + 3 = 15 2
E(t2,0) q2, 0, 0, L, q2 2 + 5 + 3 = 10 7
E(t2,0) q2, 0, 0, L, q2 2 + 5 + 3 = 10 7
E(t2,1) q2, 1, 1, L, q3 2 + 5 + 5 + 3 = 15 2

E′(f, t3,0) q3, 0, 0, L, q3 null null null
E(t3,1) q3, 1, 1, L, q3 2 + 5 + 5 + 3 = 15 2
E(t3,0) q3, 0, 0, L, q3 2 + 5 + 5 + 3 = 15 2
E(t3,0) q3, 0, 0, L, q3 2 + 5 + 5 + 3 = 15 2
E(t3,1) q3, 1, 1, L, q3 2 + 5 + 5 + 3 = 15 2

Table 1.Values for thea(·) andb(·) functions for each ETR ofcM1.

Example 1 (Encoding ofM1). Let TM M1 = ({q1, q2, q3}, {0, 1}, 0, f, q1, {q3}) where
f is defined by(q1, 0, 1, R, q2), (q1, 1, 0, R, q1), (q2, 0, 0, L, q2), (q2, 1, 1, L, q3),
(q3, 0, 0, L, q3) and(q3, 1, 1, L, q3). From Equation (1)M1 is encoded as:

M̂1 = λP(f, q3)λP(f, q2)λP(f, q1)λe

M̂1’s start state is←−a 15←−b 2. Substituting the appropriate values from Equation (2) gives

M̂1 =λE(t3,1)λE(t3,0)λE(t3,0)λE(t3,1)λE
′(f, t3,0)

λE(t2,1)λE(t2,0)λE(t2,0)λE(t2,1)λE
′(f, t2,0)

λE(t1,1)λE(t1,0)λE(t1,0)λE(t1,1)λE
′(f, t1,0)λe

Rewriting this using Equations (3) and (4) and the values given in Table 1 gives the
word

M̂1 =λeh15eheλeh15eeeλeh15eeeλeh15eheλǫλeh15eheλe6h10eeeλ

e6h10eeeλeh15eheλe7h9λe15h2λhe10h7λhe10h7λe15h2λe12h4λe
(8)

To aid understanding, note that a key property ofP from Equation (2) is that it
creates five ETRs in̂M for each state inM . Hence five ETRs encode two TRs. Our
reason for this is because of the algorithm used by our UTMs. When executing an
ETR, the algorithm makes use of thedirectionof theprevioustape head movement of
M . The leftmost ETR given by Equation (2) simulates executionof TR ti,1 following
a simulated left shift. The second ETR from the left simulates execution of TRti,0
following a simulated left shift. The rightmost ETR and the middle ETR are both used
to simulate execution of TRti,0 following a simulated right shift. Finally the second
ETR from the right simulates execution of TRti,1 following a simulated right shift. For
a given stateqi and a giventL,i, the functionP places the encoding for the TR with
read symbol0 to the right of the encoding of the TR with read symbol1. For a given
tR,i, P places the encoding ofti,1 betweenthe ETR and ETR′ that encodeti,0.

In our simulation, the number of
←−
b symbols in the encoded current state is used as

a unary index to locate thenextETR to be executed. The functionsa(·) andb(·) defined
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by Equations (5) and (6) give the ratio ofe to h symbols in an ETR. The number of
h symbols in the ETR being executed defines the number of

←−
b symbols in thenext

encoded current state (q̂y). The wordP(f, qy) gives the ETRs that encoded the TRs
for stateqy. Hence the next ETR to be indexed is a subword ofP(f, qy) andb(·) is a
summation dependant on all encoded statesq̂j such thatj ≤ y. The functiong defined
by Equation (7) is used byb(·) to calculate the number of ETRs in eachq̂j . The first
value ofg corresponds exactly to the number of ETRs given inP (Equation (2)). The
final two values ofg define whether the encoded current state the ETR establishespoints
to the rightmost ETR (g = 0) in the list of ETRs for a state, or to the fourth from the
right (g = 3).

3.1 U3,11 and its computation

Definition 5 (U3,11). The TMU3,11 is defined asU3,11 = ({u1, u2, u3}, {
←−a ,
←−
b , e, h,−→e ,

−→
h ,←−e ,

←−
h , λ, δ, γ},←−a , f, u1, {u3}) wheref is given by the following transition rules.

u1,
←−a ,←−e , R, u1 u2,

←−a , γ, L, u2 u3,
←−a ,←−a , L, u3

u1,
←−
b ,←−e , R, u2 u2,

←−
b ,
←−
b , L, u1 u3,

←−
b , e, R, u1

u1, e,
−→e , L, u1 u2, e,

←−e , R, u1 u3, e, e, R, u1

u1, h,
−→
h , L, u1 u2, h,

←−
h , R, u3 u3, h,←−a , L, u1

u1,
−→e ,←−e , R, u1 u2,

−→e , e, R, u2 u3,
−→e ,←−e , R, u3

u1,
−→
h ,
←−
h , R, u1 u2,

−→
h , h, R, u2 u3,

−→
h ,
←−
h , R, u3

u1,
←−e ,−→e , L, u1 u2,

←−e ,−→e , L, u2 u3,
←−e , γ, L, u2

u1,
←−
h ,
−→
h , L, u1 u2,

←−
h ,
−→
h , L, u2 u3,

←−
h ,←−a , L, u3

u1, λ, δ, R, u1 u2, λ, λ, R, u2 u3, λ, δ, R, u3

u1, δ, λ, L, u1 u2, δ, λ, L, u2 u3, δ,

u1, γ,←−a , L, u3 u2, γ,
←−
h , R, u3 u3, γ,

←−
b , L, u3

We give an example ofU3,11 simulating a TR ofM1 from Example 1. This simula-
tion is of the first step inM1’s computation for a specific input. The example is broken
down into the 4 cycles given in Section 2.4. The current stateof U3,11 is highlighted in
bold font, to the left ofU3,11’s tape contents.M1’s encoded read and write symbols are
also highlighted in bold font. The position ofU3,11’s tape head is given by an underline.
In the sequel we use the termoverlined region.

Definition 6 (Overlined region). The overlined region exactly spans the encoded cur-
rent state (has length5|Q|+2) except on completion of reading an encoded read symbol
(has length5|Q|+ 4). In the latter case the overlined region exactly spans the encoded
current state and read symbol, until the next encoded current state is established.

Example 2 (U3,11’s simulation of TRt1,1 = (q1, 1, 0, R, q1) from TM M1). The start
state ofU3,11 is u1 andU3,11’s tape head is over the symbol directly to the right of

M̂1 (as in Definition 2). In this exampleM1’s input is101 (encoded viâ0 = ←−a←−a and
1̂ =
←−
b←−a ). M̂1 is in start statêq1 with encoded read symbol1̂. Thus the initial config-

uration ofU is:
u1u1u1(λEλEλEλEλE

′)3λe←−a←−a 14
←−
b
←−
b
←−
b←−a
←−
b←−a
←−
b←−a←−a←−a

←−
b←−a←−a ω
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Cycle 1 (Index next ETR)

u1,
←−a ,←−e , R, u1 u2,

←−a , γ, L, u2 u1, e,
−→e , L, u1

u1,
←−
b ,←−e , R, u2 u2,

←−
b ,
←−
b , L, u1 u1, h,

−→
h , L, u1

u1,
−→e ,←−e , R, u1 u1,

←−e ,−→e , L, u1

u1,
−→
h ,
←−
h , R, u1 u1,

←−
h ,
−→
h , L, u1

u1, λ, δ, R, u1 u1, λ, δ, R, u1

u1, δ, λ, L, u1

In Cycle 1 the leftmost block of TRs (above) reads the encodedcurrent state. The right-
most block scans left and neutralises markers to index the next ETR. The middle block
decides when the cycle is complete. In stateu1 U3,11 scans the encoded current state

from left to right; each
←−
b is changed to←−e andU3,11 then enters stateu2 to see if it is

finished reading the encoded current state and encoded read symbol.U3,11 is simulating
TR t1,1 which is encoded byE(t1,1). Hence we have replaced the shorthand notationE
with the worde15h2 defined byE(t1,1). The worde15h2 appears in the location defined
by Equation (8). After the initial configuration we have:

u1u1u1(λEλEλEλEλE
′)2(λE)3λe15h2λE ′λe←−e←−a 14

←−
b
←−
b
←−
b←−a
←−
b←−a
←−
b←−a←−a←−a

←−
b←−a←−a ω

u1u1u1(λEλEλEλEλE
′)2(λE)3λe15h2λE ′λe←−e←−e 14

←−
b
←−
b
←−
b←−a
←−
b←−a
←−
b←−a←−a←−a

←−
b←−a←−a ω

u2u2u2(λEλEλEλEλE
′)2(λE)3λe15h2λE ′λe←−e 15←−e

←−
b
←−
b←−a
←−
b←−a
←−
b←−a←−a←−a

←−
b←−a←−a ω

The leftmost
←−
b is changed to an←−e . U3,11 then moves right to test if it is finished read-

ing the encoded current state. If not,U3,11 reads another
←−
b , then scans left in stateu1

and neutralises the rightmostλ marker:

u1u1u1(λEλEλEλEλE
′)2(λE)3λe15h2λE ′λ−→e −→e 15−→e

←−
b
←−
b←−a
←−
b←−a
←−
b←−a←−a←−a

←−
b←−a←−a ω

u1u1u1(λEλEλEλEλE
′)2(λE)3λe15h2λE ′δ−→e −→e 15−→e

←−
b
←−
b←−a
←−
b←−a
←−
b←−a←−a←−a

←−
b←−a←−a ω

Having neutralised aλ, U3,11 scans right in stateu1 searching for the next
←−
b .

u1u1u1(λEλEλEλEλE
′)2(λE)3λe15h2λE ′δ←−e←−e 15←−e

←−
b
←−
b←−a
←−
b←−a
←−
b←−a←−a←−a

←−
b←−a←−a ω

The neutralisation process is repeated until the end of thiscycle. Thus the number of
←−
b

symbols index the next ETR to be executed.U3,11 will know it has finished reading the

encoded current state and read symbol whenU3,11 reads a
←−
b in stateu1, rights shifts

to test for the end of the encoded current state, and reads an←−a in stateu2.
u1u1u1(λEλEλEλEλE

′)2(λE)3λe15h2δ
←−
E ′δ←−e←−e 15←−e←−e

←−
b
←−
b
←−
b←−a←−a←−a←−a←−a

←−
b←−a←−a ω

u2u2u2(λEλEλEλEλE
′)2(λE)3λe15h2δ

←−
E ′δ←−e←−e 15←−e←−e←−e←−e←−e←−a←−a←−a←−a←−a

←−
b←−a←−a ω

u2u2u2(λEλEλEλEλE
′)2(λE)3λe15h2δ

←−
E ′δ←−e←−e 15←−e←−e←−e γ←−a←−a

←−
b←−a←−a ω (I)

In configuration (I) aboveU3,11 has entered Cycle 2. Also, the overlined region is now
extended to include the encoded read symbol as this has been read and thus recorded in
the same manner as the encoded current state.
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Cycle 2 (Print ETR)

u2,
←−a , γ, L, u2 u1,

−→e ,←−e , R, u1 u3,
−→e ,←−e , R, u3

u2, e,
←−e , R, u1 u1,

−→
h ,
←−
h , R, u1 u3,

−→
h ,
←−
h , R, u3

u2, h,
←−
h , R, u3 u1, λ, δ, R, u1 u3,

←−e , γ, L, u2

u2,
←−e ,−→e , L, u2 u1, γ,←−a , L, u3 u3, λ, δ, R, u3

u2,
←−
h ,
−→
h , L, u2 u3, γ,

←−
b , L, u3

u2, λ, λ, R, u2

u2, δ, λ, L, u2

This cycle copies an ETR tôM ’s tape head position. The leftmost block scans left and
records the next symbol of the ETR to be printed. The two rightblocks scan right and
print the appropriate symbol. In the configurations below,U3,11 scans left until ah is
read. ThenU3,11 right shifts and records thish by enteringu3.

u2u2u2(λEλEλEλEλE
′)2(λE)3λe15hhδ

←−
E ′δ←−e←−e 17←−e γ←−a←−a

←−
b←−a←−a ω

u2u2u2(λEλEλEλEλE
′)2(λE)3λe15hhλ

−→
E ′λ−→e −→e 17−→e γ←−a←−a

←−
b←−a←−a ω

u3u3u3(λEλEλEλEλE
′)2(λE)3λe15h

←−
h λ
−→
E ′λ−→e −→e 17−→e γ←−a←−a

←−
b←−a←−a ω

U3,11 now scans right until it reads aγ and prints the recorded symbol.

u3u3u3(λEλEλEλEλE
′)2(λE)3λe15h

←−
h δ
←−
E ′δ←−e←−e 17←−e γ←−a←−a

←−
b←−a←−a ω

u3u3u3(λEλEλEλEλE
′)2(λE)3λe15h

←−
h δ
←−
E ′δ←−e←−e 17←−e

←−
b←−a←−a

←−
b←−a←−a ω

u2u2u2(λEλEλEλEλE
′)2(λE)3λe15h

←−
h δ
←−
E ′δ←−e←−e 17γ

←−
b←−a←−a

←−
b←−a←−a ω

This printing process is iterated untilU3,11 is finished printing the ETR. The completion
of this process occurs on reading aλ in stateu2:

u2u2u2(λEλEλEλEλE
′)2(λE)3λ−→e 15−→h 2λ

−→
E ′λ−→e −→e γ←−a 15

←−
b 2←−a←−a

←−
b←−a←−a ω

u2u2u2(λEλEλEλEλE
′)2(λE)3λ−→e

15−→
h 2λ
−→
E ′λ−→e −→e γ←−a 15

←−
b 2←−a←−a

←−
b←−a←−a ω

Cycle 3 (Restore tape)

u2,
−→e , e, R, u2

u2,
−→
h , h, R, u2

u2, λ, λ, R, u2

u2, γ,
←−
h , R, u3

These TRs restoreM ’s simulated tape and encoded table of behaviour. This cycleis
entered from Cycle 2 (Print ETR). In Cycle 3,U3,11 moves right restoring each−→e to

ane and each
−→
h to ah. This continues untilU3,11 reads aγ, switchingU3,11’s control

to u3. Thus the configuration:

u2u2u2(λEλEλEλEλE
′)2(λE)3λe15h2λE ′λeeγ←−a←−a 14

←−
b 2←−a←−a

←−
b←−a←−a ω

becomes:
u3u3u3(λEλEλEλEλE

′)2(λE)3λe15h2λE ′λee
←−
h←−a←−a 14

←−
b 2←−a←−a

←−
b←−a←−a ω
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Cycle 4 (Choose read or write symbol)

u3,
←−a ,←−a , L, u3

u3,
←−
b , e, R, u1

u3, e, e, R, u1

u3, h,←−a , L, u1

u3,
←−
h ,←−a , L, u3

u3, λ, δ, R, u3

u3, δ,

This cycle either (i) begins the indexing of an ETR or (ii) completes the execution of
an ETR. More precisely: (i) ifU3,11 is immediately after simulating a left shift then this
cycle reads the encoded read symbol to the left of the encodedcurrent state, (ii) ifU3,11

is simulating a right shift then this cycle prints the encoded write symbol to the left of
the encoded current state. Case (ii) follows:

u3u3u3(λEλEλEλEλE
′)2(λE)3λe15h2λE ′λee

←−
h←−a←−a 14

←−
b 2←−a←−a

←−
b←−a←−a ω

u3u3u3(λEλEλEλEλE
′)2(λE)3λe15h2λE ′λee←−a←−a←−a 14

←−
b 2←−a←−a

←−
b←−a←−a ω

u1u1u1(λEλEλEλEλE
′)2(λE)3λe15h2λE ′λee←−a←−a←−a 14

←−
b 2←−a←−a

←−
b←−a←−a ω

u1u1u1(λEλEλEλEλE
′)2(λE)3λe15h2λE ′λee←−ee←−ee←−e←−a←−a 14

←−
b 2←−a←−a

←−
b←−a←−a ω (II)

In configuration (II) above we have shortened the overlined region; the two symbols
e←−e to the left ofM1’s encoded current state encode the write symbol0.

The example simulation of TRt1,1 = (q1, 1, 0, R, q1) is now complete. AsU3,11

simulatesM1 the encoded tape contents to the left of the simulated tape head is encoded
ase andh symbols (i.e.̂0 = ee and1̂ = he). The contents to the right is encoded as
←−a symbols and

←−
b symbols (as in Definition 1). This is not a problemma asU3,11

simulates halting by moving the simulated tape head to the left end of the tape. As a
result the entire encoded tape contents of the TM are to the right of the tape head and
so are represented by←−a and

←−
b symbols.

In configuration (II) above the encoded write symbol0̂ has been written as the string
e←−e and will becomeee after the next ETR has executed. The new encoded current
state satisfies Definition 4. The new encoded current state (M1’s simulated tape head)
is configured soU3,11 reads the next encoded read symbol to the right when searching
for the next ETR. The←−a that signals the end of the encoded current state is provided
by the next encoded read symbol0̂.

Remark 1.If the first read symbol of Example 2 is changed from a1̂ to a 0̂, then one
less
←−
b is read when indexing the next ETR. This indexes the rightmost (rather than the

second from the right) ETR.

4 Proof of Correctness ofU3,11

In this section we prove thatU3,11 correctly simulates a number of the possible types
of TRs. We then extend these cases to all cases thus proving the correctness ofU3,11’s
computation.
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Lemma 1. Given a valid initial configuration ofU3,11, the encoded start state indexes
the ETR defined byE(t1,1) if M ’s read symbol is1 andE ′(f, t1,0) if M ’s read symbol
is 0.

Proof. The encoded start state contains exactly 2
←−
b symbols. ¿From Example 2 when

U3,11 reads â1 in stateq̂1 it neutralises twoλ markers thus locating the second ETR
from the right. By Definition 2 and Equation (2) this ETR is defined byE(t1,1). From
Remark 1 and Example 2 whenU3,11 reads â0 in stateq̂1 it neutralises oneλ, thus
indexing the rightmost ETR defined byE ′(f, t1,0). ⊓⊔

Example 3 (U3,11’s simulation of TRt1,0 = (q1, 0, 1, R, q2) in M1). In this example
U3,11 is reading â0 after a right shift. The right shift was given by the simulation of
t1,1 = (q1, 1, 0, R, q1) in Example 2. This unique case involves two steps, executingan
ETR′ and then an ETR. The execution of an ETR′ is represented by parts (a) and (b) of
Fig. 3 and the execution of the subsequent ETR is representedby parts (c) and (d) of
Fig. 3.

We take the last configuration of Example 2, with the encoded read symbol̂0 =
←−a←−a to the right of the encoded current state. Substituting the appropriate ETR′ e12h4

from Equation (8) gives:

u1u1u1(λEλEλEλEλE
′)2(λE)4λe12h4λee←−e←−a 15

←−
b
←−
b←−a←−a←−a←−a←−a←−a

←−
b←−a←−a ω

u2u2u2(λEλEλEλEλE
′)2(λE)4λe12h4δ←−e←−e←−e←−e 15←−e←−e γ←−a←−a←−a

←−
b←−a←−a ω

In the configuration immediately above we have reached the end of Cycle 1 (Index next
ETR). Oneλ has been changed to aδ indexing the ETR′ e12h4. The

←−
b←−a that signaled

the end of Cycle 1 was provided by the rightmost
←−
b of the encoded current state and

the leftmost←−a of the encoded read symbol. Thus, only the leftmost←−a of 0̂ = ←−a←−a←−a←−a←−a←−a

was read and this is sufficient to distinguish0̂ from 1̂ =
←−
b←−a . However the overlined

region does not cover the entire encoded read symbol which iswhy an ETR′ executes
before an ETR in this unique case. Skipping to the end of Cycle2 (Print ETR) gives:

u2u2u2(λEλEλEλEλE
′)2(λE)4λ−→e 12−→h 4λ−→e −→e −→e −→e γ←−a←−a 11

←−
b 4←−a←−a←−a

←−
b←−a←−a ω

u2u2u2(λEλEλEλEλE
′)2(λE)4λe12h4λeeeeγ←−a←−a 11

←−
b 4←−a←−a←−a

←−
b←−a←−a ω

u3u3u3(λEλEλEλEλE
′)2(λE)4λe12h4λeeee

←−
h←−a←−a 11

←−
b 4←−a←−a←−a

←−
b←−a←−a ω

u3u3u3(λEλEλEλEλE
′)2(λE)4λe12h4λeeee

←−
h←−a←−a 11

←−
b 4←−a←−a←−a

←−
b←−a←−a ω

u3u3u3(λEλEλEλEλE
′)2(λE)4λe12h4λeeee←−a←−a←−a 11

←−
b 4←−a←−a←−a

←−
b←−a←−a ω

u1u1u1(λEλEλEλEλE
′)2(λE)4λe12h4λeeee←−a←−a←−a 11

←−
b 4←−a←−a←−a

←−
b←−a←−a ω

At this pointU3,11 has executed the ETR′. U3,11 now executes the ETR that represents
the second step of the simulation of TRt1,0. This ETR is defined byE(t1,0). Substitut-
ing the ETRhe10h7 from Equation (8) into the configuration immediately above gives:

u1u1u1(λEλEλEλEλE
′)2(λE)2λhe10h7λEλE ′λeeee←−a←−a←−a 11

←−
b 4←−a←−a←−a

←−
b←−a←−a ω

We now skip to the end of Cycle 1 (Index next ETR) giving:

u2u2u2(λEλEλEλEλE
′)2(λE)2λhe10h7δ

←−
E δ
←−
E ′δ←−e←−e←−e←−e 18←−a←−a←−a

←−
b←−a←−a ω

u2u2u2(λEλEλEλEλE
′)2(λE)2λhe10h7δ

←−
E δ
←−
E ′δ←−e←−e←−e←−e

18
γ
←−
b←−a←−a ω (III)
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(a)

(b)

(c)

(d)

Encoded current stateEncoded read symbol

Encoded write symbol

Fig. 3. Right shift simulation (special case). The Encoded currentstate marks the location of
M ’s simulated tape head. The configurations given in (a), (b) and (c) represent the reading of
the encoded current state and an encoded0 following a right shift. (a) Encoded configuration
before beginning the TR simulation. (b) Intermediate configuration after the encoded current
state and first symbol of the encoded read symbol have been read. (c) Intermediate configuration
immediately after the remainder of the encoded read symbol has been read. (d) Configuration
immediately after the simulated right shift.

Notice that the ETR is indexed by neutralising 3λ markers and the second part of the
0̂ has been consumed in this process. We now skip to the end of Cycle 3 (Restore tape)
and illustrate â1 being written to the left of the encoded current state:

u2u2u2(λEλEλEλEλE
′)2(λE)2λ

−→
h−→e 10−→h 7λ

−→
E λ
−→
E ′λ−→e −→e −→e γ

←−
b←−a 10

←−
b 7
←−
b←−a←−a ω

u2u2u2(λEλEλEλEλE
′)2(λE)2λhe10h7λEλE ′λeeeγ

←−
b←−a 10

←−
b 7
←−
b←−a←−a ω

u3u3u3(λEλEλEλEλE
′)2(λE)2λhe10h7λEλE ′λeee

←−
h
←−
b←−a 10

←−
b 7
←−
b←−a←−a ω

u1u1u1(λEλEλEλEλE
′)2(λE)2λhe10h7λEλE ′λeee

←−
h e
←−
h e
←−
h e←−a

10←−
b 7
←−
b←−a←−a ω

In the configuration immediately above the write symbol is positioned to the left of
the new encoded current state. Recall that to the left of the simulated tape head the
symbol1 is encoded ashe. The

←−
h will become ah after execution of the next ETR.

The new encoded current state satisfies Definition 4 and the simulation of TRt1,0 =
(q1, 0, 1, R, q2) is complete.

Lemma 2. Given a valid configuration ofU3,11, the encoded current statêqx and en-
coded read symbol̂σ1 index the ETRE(tx,σ1

).

Proof. M̂ is a list of ETRs, five ETRs for each state (pair of TRs) inM . The number of
←−
b symbols, in the encoded current stateq̂x, index the next ETR to be executed. In the

encoding, the functionb(·) determines the number of
←−
b symbols in the next encoded

current state. The functionb(·) is defined as a summation overg(·) for j, 1 ≤ j ≤ x.
For eachj < x, the functiong(·) always has value 5, hence there are at least

(x− 1)5(x− 1)5(x− 1)5 juxtaposed
←−
b symbols inq̂x. The stateqx is encoded using five ETRs. When

j = x, theng = 0 or g = 3; giving a total number of
←−
b symbols that point to the first

or fourth of these five ETRs.
Any encoded current statêqx, was established by execution of an ETRr. The ETRr

encodes shift directionDr and next stateqx. The location of the ETR that is indexed by
q̂x is dependant on the shift directionDr of r. WhenDr = L andj = x theng(·) = 3;
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when this3 is added to(x− 1)5(x− 1)5(x− 1)5 this indexes the4th ETR (from right) of the ETRs for
qx. Using this value ((x− 1)5 + 3) we get Case A and Case B below. For clarity at this
point note thatDr is the shift direction of the ETRr thatestablishedq̂x andσ̂1 is the
read symbol that is read witĥqx to index thenextETRE(tx,σ1

).

Case A: (Dr = L, σ1 = 0). 0̂ = ←−a←−a adds no extra
←−
b symbols to the list of

←−
b

symbols inq̂x, thus the number of
←−
b symbols is given byg(·) alone and indexes the4th

ETR (from right). By Equation (2) this isE(tx,0).

Case B:(Dr = L, σ1 = 1). 1̂ =
←−
b←−a adds one extra

←−
b to the list of

←−
b symbols inq̂x,

thus indexing the5th ETR (from right). By Equation (2) this isE(tx,1).
WhenDr = R andj = x theng(·) = 0. Adding this0 to (x− 1)5(x− 1)5(x− 1)5 we get Case C

and Case D.
Case C:(Dr = R, σ1 = 1). 1̂ =

←−
b←−a adds one extra

←−
b to the list of

←−
b symbols inq̂x,

thus indexing the2th ETR (from right). By Equation (2) this isE(tx,1).
Case D:(Dr = R, σ1 = 0). Case D is a unique case in whichU3,11 simulates a TRt
with read symbol0, immediately after a right shifting TRtR,x (i.e. tR,x ⊢ t). In such
a caset is encoded as 2 ETRs usingE andE ′. The encoded read symbol0̂ = ←−a←−a

adds no extra
←−
b symbols thus indexing the rightmost ETR, denoted ETR′. This ETR′

is given by the functionE ′ and establishes anintermediateencoded current statêqx
′

that indexes another ETR that in turn completes the simulation of t. This other ETR is
positioned 2 ETRs to the left of the ETR′. Hence in Equation (4),tR,x is passed tob(·)

as a parameter (instead oft) andE ′ adds 2
←−
b symbols to index the ETR 2 places to the

left of ETR′. By Equation (2) this isE(tx,0). ⊓⊔

Examples 2 and 3 give simulations of right shifting TRs with the later case covering
the special case of reading a0 after a right shift. Example 4 gives the simulation of a
left shifting TR.

Example 4 (U3,11’s simulation of TRt2,1 = (q2, 1, 1, L, q3) in M1). We take the last

configuration of Example 3, witĥ1 =
←−
b←−a to the right of the encoded current state.

Substituting the appropriate ETR from Equation (8) gives:

u1u1u1(λE)
4λE ′(λE)3λeh15eheλE ′(λE)4λE ′λeee

←−
h e←−a

10←−
b 7
←−
b←−a
←−
b←−a
←−
b←−a←−a ω

We now skip to the end of Cycle 1 (Index next ETR) giving:

u2u2u2(λE)
4λE ′(λE)3λeh15eheδ

←−
E ′(δ
←−
E )4δ

←−
E ′δ←−e←−e←−e

←−
h←−e←−e

18
γ←−a ω (IV)

Notice that the ETR is indexed by neutralising 7λ markers reading thê1 in this process.
Next the ETReh15ehe is printed and we skip to the end of Cycle 2 (Print ETR):

u2u2u2(λE)
4λE ′(λE)3λ−→e

−→
h 15−→e

−→
h−→e δ

−→
E ′(δ
−→
E )4δ

−→
E ′δ−→e −→e −→e

−→
h γ←−a

←−
b 15←−a

←−
b←−a←−a ω

Skipping to the end of Cycle 3 (Restore tape) gives:

u2u2u2(λE)
4λE ′(λE)3λeh15eheλE ′(λE)4λE ′λeeehγ←−a

←−
b 15←−a

←−
b←−a
←−
b←−a
←−
b←−a←−a ω (V)

In configuration (V) above the correct write symbol (1̂ =
←−
b←−a ) has been placed to the

right of the encoded current state. The new encoded current state satisfies Definition 4
and the simulation of TRt1,1 = (q2, 1, 1, L, q3) is complete.

Remark 2.We show howU3,11 reads an encoded read symbolfollowing a left shift. In
this case the encoded read symbol is to the left of the encodedcurrent state. Immedi-
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ately after configuration (V) of Example 4 we would get:

u3u3u3(λE)
4λE ′(λE)3λeh15eheλE ′(λE)4λE ′λeeeh

←−
hh
←−
hh
←−
h←−a
←−
b 15←−a

←−
b←−a←−a ω

u3u3u3(λE)
4λE ′(λE)3λeh15eheλE ′(λE)4λE ′λeeehhh

←−
h
←−
h
←−
h←−a
←−
b 15←−a

←−
b←−a←−a ω

u3u3u3(λE)
4λE ′(λE)3λeh15eheλE ′(λE)4λE ′λeeehhh←−a←−a←−a←−a

←−
b 15←−a

←−
b←−a←−a ω (VI)

u1u1u1(λE)
4λE ′(λE)3λeh15eheλE ′(λE)4λE ′λeee←−a←−a←−a

←−
b 15←−a

←−
b←−a←−a ω (VII)

In configuration (VII) above the overlined region is extended as the encoded read sym-
bol has been read.U3,11 has begun to index the next ETR and is moving to the left to
neutralise aλ. The rightmost symbol of the encoded read symbol (which for left shifts
is alwayse) was previously overwritten with aγ and this was eventually changed to
a
←−
h . Only the leftmost symbol of the encoded read symbol must be recorded. If the

read symbol was â0 = ee thenU3,11’s tape head would have read ane instead of ah
in configuration (VI) above, sendingU3,11’s tape head right instead of left. This would
result in one lessλ being neutralised. This process records the difference in the encoded
read symbolsee andhe.

Continuing from configuration (VII) immediately after the next ETR has been in-
dexed, we have the following configuration:

u2u2u2λeh15ehe(δ
←−
E )3δ

←−
E ′((δ

←−
E )4δ

←−
E ′)2δ←−e←−e←−e←−e

18
γ
←−
b←−a←−a ω (VIII)

Lemma 3. Given a valid configuration with the encoded current statêq|Q| thenU3,11

halts.

Proof. Recall from Section 2.3 that for allM the TRs for the halt stateq|Q| are left

shifting and haveq|Q| as the next state. Thus when̂M entersq̂|Q| U3,11 then simulates
repeated left shifts. These left shifts continue until the left end ofM ’s simulated tape is
reached. When the simulated tape head is attempting to left shift at the left end of the
simulated tape thenU3,11’s always has the following configuration:

u2u2u2(λEλEλEλEλE
′)3λγ←−a←−a ∗

←−
b 2
←−
b ∗←−a (

←−
b←−a ∪←−a←−a )∗←−a ω

u3u3u3(λEλEλEλEλE
′)3λ
←−
h←−a←−a ∗

←−
b 2
←−
b ∗←−a (

←−
b←−a ∪←−a←−a )∗←−a ω

u3u3u3(λEλEλEλEλE
′)3λ
←−
h←−a←−a ∗

←−
b 2
←−
b ∗←−a (

←−
b←−a ∪←−a←−a )∗←−a ω

u3u3u3(λEλEλEλEλE
′)3λ←−a←−a←−a ∗

←−
b 2
←−
b ∗←−a (

←−
b←−a ∪←−a←−a )∗←−a ω

u3u3u3(λEλEλEλEλE
′)3δ←−a←−a←−a ∗

←−
b 2
←−
b ∗←−a (

←−
b←−a ∪←−a←−a )∗←−a ω

u3u3u3(λEλEλEλEλE
′)3δ←−a←−a←−a ∗

←−
b 2
←−
b ∗←−a (

←−
b←−a ∪←−a←−a )∗←−a ω

There is no TR for ’when in stateu3 read aδ’ in U3,11 so the simulation halts. ⊓⊔

Lemma 4. Given a valid initial configuration ofU3,11, immediately after the first ETR
of a computation is indexed, the overlined region is of the form←−e 5|Q|+3γ.

Proof. The encoded start statêq1 in an initial configuration is of the form←−a 5|Q|←−b 2.
Example 2 gives the case of reading a1̂ in the encoded start statêq1. In this casêq1 and
1̂ have both been read, that is the

←−
b and←−a symbols ofq̂1 and 1̂ have been changed
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to←−e symbols and the rightmost←−a is replace byγ. This gives and overlined region of
←−e 5|Q|+3γ.

The other case is reading a0̂ in stateq̂1. By definition thê0 is located immediately to
the right ofq̂1. When reading â0 on the right there are two steps; executing an ETR′ and
then an ETR. From Lemma 1 we know thatE ′(f, t1,0) is indexed. From Example 3 we
know that the entirê0 is read after a subsequent ETR is indexed immediately following
execution of anE ′. Thus the

←−
b and←−a symbols ofq̂1 and 0̂ have been changed to

←−e symbols and the rightmost←−a is replace byγ. This gives and overlined region of
←−e 5|Q|+3γ. ⊓⊔

Lemma 5. U3,11 simulates any TR of any deterministic TMM .

Proof. The proof is by induction on the form of the overlined region.The base case is
given by Lemma 4; after the first ETR is indexed then the overlined region is←−e 5|Q|+3γ.

We will show that immediately after any ETR is indexed, the overlined region is
←−e 5|Q|+3γ.

Assume that the overlined region is←−e 5|Q|+3γ immediately after indexing an ETR
ξ1 in the simulation of timestepi of M ’s computation. Letξ2 be the ETR that is executed
immediately afterξ1. We now show that the overlined region is←−e 5|Q|+3γ immediately
after indexingξ2 in the simulation of timestepi + 1.

The four cases of ETRs are defined by Equation (3). In Examples2, 3 and 4, three of
these cases are shown to execute correctly on an overlined region of the form←−e 5|Q|+3γ.
We use Example 4 to verify the remaining case (left shift write a0) by substitution of
the ETR defined by case 4 of Equation (3) with the ETR defined by case 3.

We show that the four cases given above forξ1 executing on an overlined region
of←−e 5|Q|+3γ, will result in the overlined region being←−e 5|Q|+3γ immediately afterξ2

is indexed. Whenξ2 is indexed simulation of timestepi will have been completed and
simulation of timestepi + 1 will have begun.
Case 1 of Equation(3): Examples 2 and 3 verify Case 1. In configuration (I) above (in
simulation of timestepi) the overlined region is←−e 5|Q|+3γ and the ETRξ1 indexed is
defined by Case 1 of Equation (3). In configuration (III) above(in simulation of timestep
i + 1) the next ETRξ2 has been indexed and the overlined region is←−e 5|Q|+3γ.
Case 2 of Equation(3): Examples 3 and 4 verify Case 2. In configuration (III) above
(in simulation of timestepi) the overlined region is←−e 5|Q|+3γ and the ETRξ1 indexed
is defined by Case 2 of Equation (3). In configuration (IV) above (in simulation of
timestepi+1) the next ETRξ2 has been indexed and the overlined region is←−e 5|Q|+3γ.
Cases 4 of Equation(3): Example 4 and configuration (VIII) verify Case 4. In config-
uration (IV) above (in simulation of timestepi) the overlined region is←−e 5|Q|+3γ and
the ETRξ1 indexed is defined by Case 4 of Equation (3). In configuration (VIII) above
(in simulation of timestepi + 1) the next ETRξ2 has been indexed and the overlined
region is←−e 5|Q|+3γ.
Cases 3 of Equation(3): Case 4 also verifies Case 3 by substitution of the ETR defined
by Case 4 of Equation (3) with the ETR defined by Case 3.

We have shown that the overlined region is←−e 5|Q|+3γ immediately after any ETR
is indexed. ¿From Examples 2, 3 and 4, each ETR executes correctly on an overlined
region of←−e 5|Q|+3γ. This establishes the correct simulated tape head location, encoded
write symbol and an encoded current state that satisfies Definition 4. By Lemmas 1
and 2 the encoded current state indexes the correct ETR. Due to the relative lengths of
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the encoded current state and overlined region the above mention examples generalise
to any TR of any TMM . ⊓⊔

Let M be a deterministic TM with|Q| states and time complexityT (n) on input
lengthn.

Theorem 1. U3,11 simulates any TMM in spaceO(|Q|2 + T (n)) and time
O(|Q|3T (n) + |Q|T 2(n)).

Proof. By the previous lemmaU3,11 simulates any TR. Thus given a valid encoding of
M ’s initial configuration (Definition 2),U3,11 simulates the sequence of TRs inM ’s
computation. From Lemma 3 whenU3,11 simulates the halting state ofM , U3,11’s tape
head returns to the left end ofM ’s encoded output and halts. The encoded output is
easily decoded via Definition 1.

(Space). At time T (n) the space used byM is bounded byT (n). SimulatorU3,11

requires spaceO(|Q|2+T (n)), whereO(|Q|2) space is required to storeM as the word
M̂ andO(T (n)) space is required to storeM ’s encoded tape afterT (n) simulated steps.

(Time). Simulating a TR involves 4 cycles. (1) Index an ETR by neutralisingO(|Q|)
of theλ markers:O(|Q|3 + |Q|T (n)) steps. (2) Copy an ETR of lengthO(|Q|) from
M̂ to the encoded current state location:O(|Q|3 + |Q|T (n)) steps. (3) RestoreU3,11’s
tape contents:O(|Q|2 + T (n)) steps. (4) Complete execution of ETR: a small constant
number of steps. ThusU3,11 requiresO(|Q|3 + |Q|T (n)) time to simulate a single step
of M , and worst caseO(|Q|3T (n)+ |Q|T 2(n)) time to simulate the entire computation
of M . ⊓⊔

This result holds for more general definitions of TMs. For example, letM ′ be a deter-
ministic multitape TM with bi-infinite tapes and greater than two symbols.M ′ would
be converted to a two symbol, one-way-infinite single tape TMM . The number of
states inM would be only a constant times greater than the state-symbolproduct of
M ′, alsoM would be at worst polynomially slower thanM ′. Thus,U3,11 simulatesM ′

in polynomial time. We get the following immediate corollary.

Corollary 1. There are polynomial time UTMs in UTM(m, n) for all m ≥ 3, n ≥ 11.

5 Polynomial time Curve

In the section we further extend our result from the previoussection by finding small
polynomial time UTMs in other classes. Thus we establish a polynomial time curve
of small UTMs similar to what Rogozhin [5] has done with Minsky’s [4] exponential
UTM in UTM(7,4).

All UTMs in this paper use the same basic algorithm asU3,11. The proof of correct-
ness given forU3,11 can be applied to the remaining machines in a straightforward way,
so we do not restate them. The encoding of the input and operation of these UTMs is
the same asU3,11 unless noted otherwise. Each UTM makes use of specially tailoredE
andE ′ functions.
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5.1 Construction ofU6,6

ForU6,6 the start state of̂M is encoded aŝq1 =←−a 5|Q|←−b 2. The encoding of the current

state is of the form←−a ∗←−b 2←−b ∗{←−a ∪ ǫ} and is of length5|Q|+ 2.
Let t = (qx, σ1, σ2, D, qy) be a fixed TR inM , thent is encoded viaP using the

functionE on its own or in conjunction withE ′ where

E(t)=





←−
b b(t)←−a a(,t)−3←−b if D = R, σ2 = 0,
←−
b b(t)←−a a(,t)+1 if D = R, σ2 = 1,
←−a←−a←−a

←−
b b(t)←−a a(,t)−2←−b if D = L, σ2 = 0,

←−a
←−
b←−a
←−
b b(t)←−a a(,t)−2←−b if D = L, σ2 = 1,

(9)

and

E ′(f, t) =





←−
b b(tR,x)+2←−a a(,tR,x)−5←−b if ∃tR,x, qx 6= q1,
←−
b 4←−a 5|Q|−5←−b if qx = q1,

ǫ if ¬∃tR,x, qx 6= q1,

(10)

where as beforetR,x is any right shifting TR such thattR,x ⊢ t.
The value ofE from Definition 2 forU6,6 is E =←−a .

Example 5 (Encoding of TMM2). Let TM M2 = ({q1, q2}, {0, 1}, 0, f, q1, {q2}) where
f is defined by(q1, 0, 0, R, q1), (q1, 1, 1, R, q2), (q2, 0, 0, L, q2) and (q2, 1, 1, L, q2).
M2 is encoded as:̂M2 = λP(f, q2)λP(f, q1)λE. Substituting the appropriate values
from Equation (2) gives

M̂2 =λE(t2,1)λE(t2,0)λE(t2,0)λE(t2,1)λE
′(f, t2,0)

λE(t1,1)λE(t1,0)λE(t1,0)λE(t1,1)λE
′(f, t1,0)λE

Rewriting this using Equations (9) and (10) gives

M̂2 =λ←−a
←−
b←−a
←−
b 11λ←−a←−a←−a

←−
b 11λ←−a←−a←−a

←−
b 11λ←−a

←−
b←−a
←−
b 11

λ
←−
b 10λ

←−
b 7←−a 6λ

←−
b 2←−a 7←−b λ

←−
b 2←−a 7←−b λ

←−
b 7←−a 6λ

←−
b 4←−a 5←−b λ←−a

(11)

Definition 7 (U6,6). The TMU6,6 is defined asU6,6 = ({u1, u2, u3, u4, u5, u6}, {
←−a ,
←−
b ,

−→a ,
−→
b , λ, δ},←−a , f, u1, {u3, u5, u6}) wheref is given by the following transition rules.

u1,
←−a ,←−a , R, u1 u2,

←−a , λ, L, u4 u3,
←−a ,−→a , L, u3

u1,
←−
b ,←−a , R, u2 u2,

←−
b ,
←−
b , L, u3 u3,

←−
b ,
−→
b , L, u3

u1,
−→a ,←−a , R, u1 u2,

−→a ,←−a , R, u2 u3,
−→a

u1,
−→
b ,
←−
b , R, u1 u2,

−→
b ,
←−
b , R, u2 u3,

−→
b ,←−a , L, u5

u1, λ,
←−
b , L, u2 u2, λ,←−a , L, u2 u3, λ, δ, R, u1

u1, δ, δ, R, u1 u2, δ, δ, R, u2 u3, δ, δ, L, u3

u4,
←−a ,−→a , L, u4 u5,

←−a ,←−a , L, u1 u6,
←−a

u4,
←−
b ,
−→
b , L, u4 u5,

←−
b ,←−a , L, u3 u6,

←−
b

u4,
−→a ,←−a , R, u5 u5,

−→a ,−→a , R, u2 u6,
−→a ,←−a , R, u6

u4,
−→
b ,
←−
b , R, u5 u5,

−→
b ,
−→
b , R, u1 u6,

−→
b ,
←−
b , R, u6

u4, λ, λ, R, u5 u5, λ u6, λ,
−→
b , R, u5

u4, δ, δ, L, u4 u5, δ, λ, R, u6 u6, δ, λ, R, u6
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Remark 3.There are some minor differences between the operation ofU6,6 andU3,11.
The order of symbols in ETRs ofU6,6 is reversed when compared with ETRs ofU3,11,

assuming←−a = e and
←−
b = h. To see this note the difference between Equations (3)

and (9). When printing an ETR,U6,6 reverses the order so that encoded current states
are of the same form as those inU3,11. Also M ’s encoded tape symbols to the left and

right of the encoded current state use thesameencodings (̂0 = ←−a←−a and1̂ =
←−
b←−a ).

This is not the case forU3,11.
We give an example ofU6,6 simulating a TR ofM2 from Example 5. As usual the

example is broken down into 4 cycles.

Example 6 (U6,6’s simulation of TRt1,1 = (q1, 1, 1, R, q2) from TM M2). The start
state ofU6,6 is u1. U6,6’s tape head is over the symbol directly to the right of̂M2 (as in

Equation (11)). The input toM2 is 11 (1̂ =
←−
b←−a ). Thus the initial configuration is:

u1u1u1, (λ
←−
E λ
←−
E λ
←−
E λ
←−
E λ
←−
E ′)2λ←−a←−a

10←−
b 2
←−
b←−a
←−
b←−a←−a ω

Cycle 1 (Choose read or write symbol)

u1,
←−a ,←−a , R, u1 u2,

←−a , λ, L, u4 u3,
←−a ,−→a , L, u3

u1,
←−
b ,←−a , R, u2 u2,

←−
b ,
←−
b , L, u3 u3,

←−
b ,
−→
b , L, u3

u1,
−→a ,←−a , R, u1 u3, λ, δ, R, u1

u1,
−→
b ,
←−
b , R, u1 u3, δ, δ, L, u3

u1, δ, δ, R, u1

In Cycle 1 the left block of TRs (above) reads the encoded current state. The right block
neutralisesλ markers to index the next ETR. The neutralisation is done in the usual way
each

←−
b in the encoded current state causes aλ to be changed to aδ. The middle block

decides when the cycle is complete. In stateu1 U6,6 scans the encoded current state

from left to right; each
←−
b is changed to an←−a andU6,6 then enters stateu3 via u2.

We have replaced the shorthand notation
←−
E with the word

←−
b 7←−a 6 defined byE(t1,1).

The word
←−
b 7←−a 6 appears in the location defined by Equation (11). After the initial con-

figuration we have:

u1u1u1, (λ
←−
E )4λ

←−
E ′(λ
←−
E )3λ

←−
b 7←−a 6λ

←−
E ′λ←−a←−a 10

←−
b
←−
b
←−
b←−a
←−
b←−a
←−
b←−a
←−
b←−a←−a ω

u2u2u2, (λ
←−
E )4λ

←−
E ′(λ
←−
E )3λ

←−
b 7←−a 6λ

←−
E ′λ←−a←−a 10←−a

←−
b
←−
b←−a
←−
b←−a
←−
b←−a
←−
b←−a←−a ω

u3u3u3, (λ
←−
E )4λ

←−
E ′(λ
←−
E )3λ

←−
b 7←−a 6λ

←−
E ′λ←−a←−a 10←−a

←−
b
←−
b←−a
←−
b←−a
←−
b←−a
←−
b←−a←−a ω

u3u3u3, (λ
←−
E )4λ

←−
E ′(λ
←−
E )3λ

←−
b 7←−a 6λ

←−
E ′λ−→a −→a 10−→a

←−
b
←−
b←−a
←−
b←−a
←−
b←−a
←−
b←−a←−a ω

u1u1u1, (λ
←−
E )4λ

←−
E ′(λ
←−
E )3λ

←−
b 7←−a 6λ

←−
E ′δ−→a−→a 10−→a

←−
b
←−
b←−a
←−
b←−a
←−
b←−a
←−
b←−a←−a ω

The neutralisation process continues untilU6,6 reads the final
←−
b , rights shifts to test for

the end of the encoded current state inu2, and then reads an←−a . U6,6 then knows it has
finished reading the encoded current state and read symbol. Skipping to the end of this
cycle gives:

u4u4u4, (λ
←−
E )4λ

←−
E ′(λ
←−
E )3λ

←−
b 7←−a 6δ

←−
E ′δ←−a←−a 10←−a←−a←−a λ

←−
b←−a←−a ω

U6,6 has neutralised twoλ markers to index the next ETR.
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Cycle 2 (Print ETR)

u4,
←−a ,−→a , L, u4 u5,

−→a ,−→a , R, u2 u1,
−→a ,←−a , R, u1 u2,

←−a , λ, L, u4

u4,
←−
b ,
−→
b , L, u4 u5,

−→
b ,
−→
b , R, u1 u1,

−→
b ,
←−
b , R, u1 u2,

−→a ,←−a , R, u2

u4,
−→a ,←−a , R, u5 u5, δ, λ, R, u6 u1, λ,

←−
b , L, u2 u2,

−→
b ,
←−
b , R, u2

u4,
−→
b ,
←−
b , R, u5 u1, δ, δ, R, u1 u2, λ,←−a , L, u2

u4, λ, λ, R, u5 u2, δ, δ, R, u2

u4, δ, δ, L, u4

This cycle copies an ETR toM ’s simulated tape head position. The leftmost block
scans left and locates the next symbol of the ETR to be printed. The second block from
the left records the symbol to be printed or ends the cycle. The rightmost two blocks
scan right and print the appropriate symbol. In the configurations below,U6,6 scans left
until aλ is read. ThenU6,6 right shifts and records the symbol read by entering stateu1

or u2.
u4u4u4, (λ

←−
E )4λ

←−
E ′(λ
←−
E )3λ

−→
b
−→
b
−→
b 5−→a 6δ

−→
E ′δ−→a −→a 12−→a λ

←−
b←−a←−a ω

u5u5u5, (λ
←−
E )4λ

←−
E ′(λ
←−
E )3λ

−→
b
−→
b
−→
b 5−→a 6δ

−→
E ′δ−→a −→a 12−→a λ

←−
b←−a←−a ω

u1u1u1, (λ
←−
E )4λ

←−
E ′(λ
←−
E )3λ

−→
b
←−
b
←−
b 5←−a 6δ

←−
E ′δ←−a←−a 12←−a λ

←−
b←−a←−a ω

u2u2u2, (λ
←−
E )4λ

←−
E ′(λ
←−
E )3λ

−→
b
←−
b
←−
b 5←−a 6δ

←−
E ′δ←−a←−a 12←−a

←−
b
←−
b←−a←−a ω

u4u4u4, (λ
←−
E )4λ

←−
E ′(λ
←−
E )3λ

−→
b
−→
b
−→
b 5−→a 6δ

−→
E ′δ−→a −→a 12λ

←−
b
←−
b←−a←−a ω

u5u5u5, (λ
←−
E )4λ

←−
E ′(λ
←−
E )3λ

←−
b
−→
b
−→
b 5−→a 6δ

−→
E ′δ−→a −→a 12λ

←−
b
←−
b←−a←−a ω

On the first passU6,6 located the symbol to be printed by usingλ as a marker. On

subsequent passesU6,6 locates the symbol to be printed by locating an−→a or
−→
b . This

printing process is iterated untilU6,6 is finished printing the ETR. The completion of
this process occurs on reading aδ in stateu5 which switchesU6,6’s control tou6:

u4u4u4, (λ
←−
E )4λ

←−
E ′(λ
←−
E )3λ

←−
b 7←−a 5−→a δ

−→
E ′δ−→a λ←−a 6

←−
b 7
←−
b←−a←−a ω

u5u5u5, (λ
←−
E )4λ

←−
E ′(λ
←−
E )3λ

←−
b 7←−a 5←−a δ

−→
E ′δ−→a λ←−a 6

←−
b 7
←−
b←−a←−a ω

u6u6u6, (λ
←−
E )4λ

←−
E ′(λ
←−
E )3λ

←−
b 7←−a 5←−a λ

−→
E ′δ−→a λ←−a 6

←−
b 7
←−
b←−a←−a ω

Cycle 3 (Restore tape)

u6,
−→a ,←−a , R, u6

u6,
−→
b ,
←−
b , R, u6

u6, λ,
−→
b , R, u5

u6, δ, λ, R, u6

These TRs restoreM ’s simulated tape and encoded table of behaviour.U6,6 moves right

restoring each−→a to an←−a , each
−→
b to a

←−
b , and eachδ to aλ. This continues untilU6,6

reads aλ, switchingU6,6’s control tou5.

u6u6u6, (λ
←−
E )4λ

←−
E ′(λ
←−
E )3λ

←−
b 7←−a 6λ

←−
E ′λ←−a λ←−a←−a 5

←−
b 7
←−
b←−a←−a ω

u5u5u5, (λ
←−
E )4λ

←−
E ′(λ
←−
E )3λ

←−
b 7←−a 6λ

←−
E ′λ←−a

−→
b←−a←−a 5

←−
b 7
←−
b←−a←−a ω
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Cycle 4 (Choose read or write symbol)

u5,
←−a ,←−a , L, u1 u3,

−→
b ,←−a , L, u5 u1,

←−a ,←−a , R, u1

u5,
←−
b ,←−a , L, u3 u1,

−→
b ,
←−
b , R, u1

u5, λ

This cycle either (i) begins the indexing of an ETR or (ii) completes the execution of
an ETR. More precisely: (i) ifU6,6 is immediately after simulating a left shift then this
cycle reads the encoded read symbol to the left of the encodedcurrent state, (ii) ifU6,6

is simulating a right shift then this cycle prints the encoded write symbol to the left of
the encoded current state. Case (ii) follows:

u1u1u1, (λ
←−
E )4λ

←−
E ′(λ
←−
E )3λ

←−
b 7←−a 6λ

←−
E ′λ←−a

−→
b←−a←−a 5

←−
b 7
←−
b←−a←−a ω

u1u1u1, (λ
←−
E )4λ

←−
E ′(λ
←−
E )3λ

←−
b 7←−a 6λ

←−
E ′λ←−a

←−
b
←−
b
←−
b←−a←−a←−a←−a 5

←−
b 7
←−
b←−a←−a ω

In the configuration immediately above we have shortened theoverlined section; the
two symbols to the left of̂M2’s encoded current state encode the write symbol1.

The example simulation of TRt1,1 = (q1, 1, 1, R, q2) is now complete. The correct

encoded write symbol̂1 =
←−
b←−a has been written and the new encoded current state

is of the correct form. The new encoded current state (M2’s simulated tape head) is
configured soU6,6 reads the next encoded read symbol to the right when searching for
the next ETR.

Left shifting TRs are simulated in a similar fashion to the right shifting TR given above,
except in this case the write symbol is written on the right hand side of the encoded
current state as shown in Fig. 2 (cL). After the left shift thenew current state (M2’s
simulated tape head) is configured to read the next symbol to its left when searching for
the next ETR.

5.2 Construction ofU5,7

For U5,7 the start state of̂M is encoded aŝq1 = ←−a 5|Q|←−b 4. The encoding ofM ’s

current state is of the form←−a ∗←−b 4←−b ∗{←−a ∪ ǫ} and is of length5|Q|+ 4.
Let t = (qx, σ1, σ2, D, qy) be a fixed TR inM , thent is encoded viaP using the

functionE on its own or in conjunction withE ′ where

E(t)=





←−
b b(t)+2←−a a(,t)+1 if D = R, σ2 = 0,
←−
b b(t)+2←−a a(,t)←−b if D = R, σ2 = 1,
←−a←−a←−a

←−
b b(t)+2←−a a(,t)−1 if D = L, σ2 = 0,

←−a
←−
b←−a
←−
b b(t)+2←−a a(,t)−1 if D = L, σ2 = 1,

(12)

and

E ′(f, t) =





←−
b b(tR,x)+4←−a a(,tR,x)−2 if ∃tR,x, qx 6= q1,
←−
b 6←−a 5|Q|−2 if qx = q1,

ǫ if ¬∃tR,x, qx 6= q1,

(13)

where as beforetR,x is any right shifting TR such thattR,x ⊢ t.
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The value ofE from Definition 2 forU5,7 is E = λ
←−
b λ←−a .

Definition 8 (U5,7). The TMU5,7 is defined asU5,7 = ({u1, u2, u3, u4, u5}, {
←−a ,

←−
b ,−→a ,

−→
b , λ,

←−
λ ,
−→
λ },←−a , f, u1, {u4, u5}) wheref is given by the following transition

rules.

u1,
←−a ,←−a , R, u1 u2,

←−a , λ, L, u4 u3,
←−a ,−→a , L, u3

u1,
←−
b ,←−a , R, u2 u2,

←−
b ,
←−
b , L, u3 u3,

←−
b ,
−→
b , L, u3

u1,
−→a ,←−a , R, u1 u2,

−→a ,←−a , R, u2 u3,
−→a ,−→a , R, u1

u1,
−→
b ,
←−
b , R, u1 u2,

−→
b ,
←−
b , R, u2 u3,

−→
b ,
−→
b , R, u2

u1, λ,←−a , L, u2 u2, λ,
←−
b , L, u2 u3, λ,

←−
λ , R, u1

u1,
←−
λ ,
←−
b , R, u5 u2,

←−
λ ,←−a , L, u3 u3,

←−
λ ,
−→
λ , L, u3

u1,
−→
λ ,
←−
λ , R, u1 u2,

−→
λ ,
←−
λ , R, u2 u3,

−→
λ , λ, R, u5

u4,
←−a ,−→a , L, u4 u5,

←−a ,←−a , L, u5

u4,
←−
b ,
−→
b , L, u4 u5,

←−
b ,←−a , R, u1

u4,
−→a ,←−a , R, u3 u5,

−→a ,←−a , R, u5

u4,
−→
b ,
←−
b , R, u3 u5,

−→
b ,
←−
b , R, u5

u4, λ, λ, R, u3 u5, λ,
←−
λ , L, u1

u4,
←−
λ ,
−→
λ , L, u4 u5,

←−
λ ,

u4,
−→
λ , u5,

−→
λ , λ, R, u5

Remark 4.There are some minor differences between the operation ofU5,7 andU3,11.
The order of symbols in ETRs ofU5,7 is reversed when compared with ETRs ofU3,11,

assuming←−a = e and
←−
b = h. To see this note the difference between Equations (3)

and (12). When printing an ETR,U5,7 reverses the order so that encoded current states
are of the same form as those inU3,11. Also M ’s encoded tape symbols to the left and

right of the encoded current state use thesameencodings (̂0 = ←−a←−a and1̂ =
←−
b←−a ).

This is not the case forU3,11.
We give a brief overview ofU5,7 computation

Cycle 1 (Index next ETR)

u1,
←−a ,←−a , R, u1 u2,

←−a , λ, L, u4 u3,
←−a ,−→a , L, u3

u1,
←−
b ,←−a , R, u2 u2,

←−
b ,
←−
b , L, u3 u3,

←−
b ,
−→
b , L, u3

u1,
−→a ,←−a , R, u1 u3, λ,

←−
λ , R, u1

u1,
−→
b ,
←−
b , R, u1 u3,

←−
λ ,
−→
λ , L, u3

u1,
−→
λ ,
←−
λ , R, u1

In Cycle 1 the leftmost block of TRs (above) reads the encodedcurrent state. The right-
most block neutralisesλ markers by changing them to

←−
λ or

−→
λ to index the next ETR.

The middle block decides when the cycle is complete. Each
←−
b in the encoded current

state is changed to an←−a and thenU5,7 enters stateu3 via u2.
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Cycle 2 (Print ETR)

u4,
←−a ,−→a , L, u4 u3,

−→a ,−→a , R, u1 u2,
←−a , λ, L, u4 u1,

−→a ,←−a , R, u1

u4,
←−
b ,
−→
b , L, u4 u3,

−→
b ,
−→
b , R, u2 u2,

−→a ,←−a , R, u2 u1,
−→
b ,
←−
b , R, u1

u4,
−→a ,←−a , R, u3 u3,

−→
λ , λ, R, u5 u2,

−→
b ,
←−
b , R, u2 u1, λ,←−a , L, u2

u4,
−→
b ,
←−
b , R, u3 u2, λ,

←−
b , L, u2 u1,

−→
λ ,
←−
λ , R, u1

u4, λ, λ, R, u3 u2,
−→
λ ,
←−
λ , R, u2

u4,
←−
λ ,
−→
λ , L, u4

This cycle copies an ETR toM ’s simulated tape head position. The leftmost block scans
left and locates the next symbol of the ETR to be printed. The second block from the
left records the symbol to be printed or ends the cycle. The rightmost two blocks scan
right and print the appropriate symbol.
Cycle 3 (Restore tape)

u5,
−→a ,←−a , R, u5

u5,
−→
b ,
←−
b , R, u5

u5, λ,
←−
λ , L, u1

u5,
−→
λ , λ, R, u5

These TRs restoreM ’s simulated tape and encoded table of behaviour.U5,7 moves right

restoring each−→a to an←−a , each
−→
b to a

←−
b , and each

−→
λ to aλ. This continues untilU5,7

reads aλ, switchingU5,7’s control tou1.
Cycle 4 (Choose read or write symbol)

u1,
←−a ,←−a , R, u1 u2,

←−
λ ,←−a , L, u3 u5,

←−a ,←−a , L, u5

u1,
←−
b ,←−a , R, u2 u5,

←−
b ,←−a , R, u1

u1,
←−
λ ,
←−
b , R, u5

This Cycle either (i) begins the indexing of an ETR or (ii) completes the execution of
an ETR. More precisely: (i) ifU5,7 is immediately after simulating a left shift then this
cycle reads the encoded read symbol to the left of the encodedcurrent state, (ii) ifU5,7

is simulating a right shift then this cycle prints the encoded write symbol to the left of
the encoded current state.

The halting case forU5,7 is more complex than the previous UTMs. If the simulated
tape head is attempting to left shift at the left end of the simulated tape thenU5,7 has
the following configuration:

u5u5u5, (λ
←−
E λ
←−
E λ
←−
E λ
←−
E λ
←−
E ′)2λλ

←−
b λλ−→a −→a ∗

−→
b 4
−→
b ∗(
−→
b −→a ∪ −→a −→a )∗←−a ω

U5,7 goes through 13 configurations before the halting configuration given below is
reached.
u5u5u5, (λ

←−
E λ
←−
E λ
←−
E λ
←−
E λ
←−
E ′)2λλ←−a

←−
b
←−
λ−→a −→a ∗

−→
b 4
−→
b ∗(
−→
b −→a ∪ −→a−→a )∗←−a ω

There is no TR for ’when in stateu5 read a
←−
λ ’ in U5,7 so the simulation halts.

5.3 Construction ofU7,5

For U7,5 the start state of̂M is encoded aŝq1 = ←−a 5|Q|+1←−b 3. The encoding ofM ’s

current state is of the form←−a ∗−→b 3←−b ∗{←−a ∪ ǫ} and is of length5|Q|+ 4.
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Let t = (qx, σ1, σ2, D, qy) be a fixed TR inM , thent is encoded viaP using the
functionE on its own or in conjunction withE ′ where

E(t)=





←−
b b(t)+1(←−a

←−
b )a(,t)+1←−b if D = R, σ2 = 0,

←−
b b(t)+1(←−a

←−
b )a(,t)−1←−b

←−
b←−a
←−
b if D = R, σ2 = 1,

(←−a
←−
b )3
←−
b b(t)+1(←−a

←−
b )a(,t)−1←−b if D = L, σ2 = 0,

←−a
←−
b
←−
b←−a
←−
b
←−
b b(t)+1(←−a

←−
b )a(,t)−1←−b if D = L, σ2 = 1,

(14)

and

E ′(f, t) =





←−
b b(tR,x)+3(←−a

←−
b )a(,tR,x)−2←−b if ∃tR,x, qx 6= q1,

←−
b 5(←−a

←−
b )5|Q|−2←−b if qx = q1,

ǫ if ¬∃tR,x, qx 6= q1,

(15)

where as beforetR,x is any right shifting TR such thattR,x ⊢ t.
The value ofE from Definition 2 forU7,5 is E =

←−
b
←−
b
←−
b λ←−a .

Definition 9 (U7,5). The TMU7,5 is defined asU7,5 = ({u1, u2, u3, u4, u5, u6, u7}, {
←−a ,

←−
b , λ, δ, γ},←−a , f, u1, {u2, u5}) wheref is given by the following transition rules.

u1,
←−a ,←−a , R, u1 u2,

←−a , γ, L, u4 u3,
←−a ,←−a , L, u3

u1,
←−
b ,←−a , R, u2 u2,

←−
b ,
←−
b , L, u3 u3,

←−
b , λ, L, u3

u1, λ,
←−
b , R, u1 u2, λ, γ, R, u1 u3, λ, δ, R, u1

u1, δ, δ, R, u1 u2, δ, u3, δ, δ, L, u3

u1, γ,←−a , L, u2 u2, γ,
←−
b , R, u6 u3, γ,←−a , R, u5

u4,
←−a ,←−a , L, u4 u5,

←−a ,←−a , R, u2 u6,
←−a ,←−a , R, u6

u4,
←−
b , λ, L, u4 u5,

←−
b ,←−a , R, u3 u6,

←−
b ,←−a , L, u7

u4, λ, λ, R, u5 u5, λ, γ, R, u6 u6, λ,
←−
b , R, u6

u4, δ, δ, L, u4 u5, δ, λ, R, u7 u6, δ, δ, R, u6

u4, γ,
←−
b , R, u5 u5, γ, u6, γ,

←−
b , L, u2

u7,
←−a ,←−a , R, u7

u7,
←−
b ,←−a , R, u1

u7, λ,
←−
b , R, u7

u7, δ, λ, R, u7

u7, γ, γ, L, u5

Remark 5.There are some minor differences between the operation ofU7,5 andU3,11.
The order of symbols in ETRs ofU7,5 is reversed when compared with ETRs ofU3,11,

assuming←−a
←−
b = e and

←−
b = h. To see this note the difference between Equations (3)

and (14). When printing an ETR,U7,5 reverses the order so that encoded current states
are of the same form asU3,11. Also M ’s encoded tape symbols to the left and right of

the encoded current state use thesameencodings (̂0 =←−a←−a and1̂ =
←−
b←−a ). This is not

the case forU3,11.
We give a brief overview ofU7,5’s computation.
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Cycle 1 (Index next ETR)

u1,
←−a ,←−a , R, u1 u2,

←−a , γ, L, u4 u3,
←−a ,←−a , L, u3

u1,
←−
b ,←−a , R, u2 u2,

←−
b ,
←−
b , L, u3 u3,

←−
b , λ, L, u3

u1, λ,
←−
b , R, u1 u3, λ, δ, R, u1

u1, δ, δ, R, u1 u3, δ, δ, L, u3

In Cycle 1 the leftmost block of TRs (above) reads the encodedcurrent state. The right-
most block neutralisesλ markers by changing them toδ symbols to index the next ETR.
The middle block decides when the cycle is complete. Each

←−
b in the encoded current

state is changed to an←−a andU7,5 then enters stateu3 via u2.
Cycle 2 (Print ETR)

u2,
←−a , γ, L, u4 u5,

←−a ,←−a , R, u2 u6,
←−a ,←−a , R, u6 u2, λ, γ, R, u1

u4,
←−a ,←−a , L, u4 u5, λ, γ, R, u6 u6, λ,

←−
b , R, u6 u1,

←−a ,←−a , R, u1

u4,
←−
b , λ, L, u4 u5, δ, λ, R, u7 u6, δ, δ, R, u6 u1, λ,

←−
b , R, u1

u4, λ, λ, R, u5 u6, γ,
←−
b , L, u2 u1, δ, δ, R, u1

u4, δ, δ, L, u4 u1, γ,←−a , L, u2

u4, γ,
←−
b , R, u5

This cycle copies an ETR toM ’s simulated tape head position. The leftmost block scans
left and locates the next symbol of the ETR to be printed. The second block from the
left records the symbol to be printed or ends the cycle. The rightmost two blocks scan
right and print the appropriate symbol.
Cycle 3 (Restore tape)

u7,
←−a ,←−a , R, u7

u7, λ,
←−
b , R, u7

u7, δ, λ, R, u7

u7, γ, γ, L, u5

These TRs restoreM ’s simulated tape and encoded table of behaviour.U7,5 moves right

restoring eachλ to a
←−
b , and eachδ to aλ. This continues untilU7,5 reads aγ, switching

U7,5’s control tou5.
Cycle 4 (Choose read or write symbol)

u5,
←−a ,←−a , R, u2 u2, γ,

←−
b , R, u6 u6,

←−a ,←−a , R, u6 u7,
←−a ,←−a , R, u7

u5,
←−
b ,←−a , R, u3 u3, γ,←−a , R, u5 u6,

←−
b ,←−a , L, u7 u7,

←−
b ,←−a , R, u1

This Cycle either (i) begins the indexing of an ETR or (ii) completes the execution of
an ETR. More precisely: (i) ifU7,5 is immediately after simulating a left shift then this
cycle reads the encoded read symbol to the left of the encodedcurrent state, (ii) ifU7,5

is simulating a right shift then this cycle prints the encoded write symbol to the left of
the encoded current state.

The halting case forU7,5 is more complex than the first two UTMs in this paper.
When the simulated tape head is attempting to left shift at the left end of the simulated
tape thenU5,7 has the following configuration:
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u7u7u7, (λ
←−
E λ
←−
E λ
←−
E λ
←−
E λ
←−
E ′)2λ

←−
b
←−
b
←−
b λγ
←−
b←−a←−a ∗

←−
b 3
←−
b ∗(
−→
b −→a ∪ −→a −→a )∗←−a ω

U5,7 goes through 42 configurations before the halting configuration given below is
reached.
u5u5u5, (λ

←−
E λ
←−
E λ
←−
E λ
←−
E λ
←−
E ′)2λ

←−
b
←−
b
←−
b γ
←−
b
←−
b
←−
b←−a ∗

←−
b 3
←−
b ∗(
−→
b −→a ∪ −→a−→a )∗←−a ω

There is no TR for ’when in stateu5 read aγ’ in U7,5 so the simulation halts.

5.4 Construction ofU8,4

For U8,4 the start state of̂M is encoded aŝq1 = ←−a 5|Q|←−b 2. The encoding ofM ’s

current state is of the form←−a ∗←−b 2←−b ∗{←−a ∪ ǫ} and is of length5|Q|+ 2.
Let t = (qx, σ1, σ2, D, qy) be a fixed TR inM , thent is encoded viaP using the

functionE on its own or in conjunction withE ′ where

E(t)=





←−
b
←−
b←−a (←−a

←−
b )a(,t)←−b 2(b(t))←−a←−a if D = R, σ2 = 0,

←−a←−a
←−
b
←−
b
←−
b (←−a

←−
b )a(,t)−1←−b 2(b(t))←−a←−a if D = R, σ2 = 1,

←−a (←−a
←−
b )a(,t)−1←−b 2(b(t))(←−a

←−
b )3←−a←−a if D = L, σ2 = 0,

←−a (←−a
←−
b )a(,t)−1←−b 2(b(t))←−a

←−
b
←−
b
←−
b←−a
←−
b←−a←−a if D = L, σ2 = 1,

(16)

and

E ′(f, t) =





←−
b
←−
b←−a (←−a

←−
b )a(,tR,x)−3←−b 2(b(tR,x)+2)←−a←−a if ∃tR,x, qx 6= q1,

←−
b
←−
b←−a (←−a

←−
b )5|Q|−3←−b 8←−a←−a if qx = q1,

←−a if ¬∃tR,x, qx 6= q1,

(17)

where as beforetR,x is any right shifting TR such thattR,x ⊢ t.
The value ofE from Definition 2 forU8,4 is E = ǫ.

Definition 10 (U8,4). The TMU8,4 is defined asU8,4 = ({u1, u2, u3, u4, u5, u6, u7, u8},

{←−a ,
←−
b , λ, δ},←−a , f, u1, {u2}) wheref is given by the following transition rules.

u1,
←−a ,←−a , R, u1 u2,

←−a , λ, L, u4 u3,
←−a ,←−a , L, u3

u1,
←−
b ,←−a , R, u2 u2,

←−
b ,
←−
b , L, u3 u3,

←−
b , δ, L, u3

u1, λ,
←−
b , L, u2 u2, λ, u3, λ, δ, R, u1

u1, δ, δ, R, u1 u2, δ, u3, δ, δ, L, u3

u4,
←−a ,←−a , L, u4 u5,

←−a ,←−a , R, u5 u6,
←−a ,←−a , R, u7

u4,
←−
b , δ, L, u5 u5,

←−
b , δ, R, u1 u6,

←−
b ,←−a , L, u7

u4, λ, λ, R, u6 u5, λ,←−a , L, u2 u6, λ,
←−
b , R, u6

u4, δ, δ, L, u4 u5, δ, δ, R, u5 u6, δ,
←−
b , R, u8

u7,
←−a ,←−a , R, u6 u8,

←−a ,←−a , R, u6

u7,
←−
b ,←−a , R, u1 u8,

←−
b ,←−a , L, u3

u7, λ,←−a , R, u1 u8, λ,←−a , L, u8

u7, δ, λ, R, u6 u8, δ,
←−
b , R, u6
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We give a brief overview ofU8,4’s computation. The tape contents is given by the

same symbols (̂1 =
←−
b←−a and0̂ =←−a←−a ) to the left and right of the simulated TMs tape

head.
Cycle 1 (Index next ETR)

u1,
←−a ,←−a , R, u1 u2,

←−a , λ, L, u4 u3,
←−a ,←−a , L, u3

u1,
←−
b ,←−a , R, u2 u2,

←−
b ,
←−
b , L, u3 u3,

←−
b , δ, L, u3

u1, δ, δ, R, u1 u3, λ, δ, R, u1

u3, δ, δ, L, u3

In Cycle 1 the leftmost block of TRs (above) reads the encodedcurrent state. The right-
most block neutralises markers to index the next ETR. The middle block decides when
the cycle is complete. Inu1 U8,4 scans the encoded current state from left to right; each
←−
b is changed to an←−a andU8,4 then enters stateu3 via u2.

Cycle 2 (Print ETR)

u2,
←−a , λ, L, u4 u5,

←−a ,←−a , R, u5 u1,
←−a ,←−a , R, u1

u4,
←−a ,←−a , L, u4 u5,

←−
b , δ, R, u1 u1, λ,

←−
b , L, u2

u4,
←−
b , δ, L, u5 u5, λ,←−a , L, u2 u1, δ, δ, R, u1

u4, λ, λ, R, u6 u5, δ, δ, R, u5

u4, δ, δ, L, u4

Before we explain this cycle we mention why ETRs forU8,4 are longer than ETRs for
the other UTMs (e.g. compare Equations (16) and (3)). InU8,4’s ETRs there are mul-

tiple copies of the subwords←−a
←−
b and

←−
b
←−
b . During the Print ETR cycle, the subword

←−a
←−
b will cause an←−a to be printed and the subword

←−
b
←−
b will cause a

←−
b to be printed.

During this cycle the next symbol to be printed is the symbol to the left of the rightmost
←−
b in the ETR. The rightmost

←−
b of the subwords←−a

←−
b and

←−
b
←−
b is simply a marker and

the symbol directly to its left is the symbol that is to be printed. Extra←−a symbols appear
in U8,4’s ETRs that do not result in symbols being printed during theprint ETR cycle.
These extra←−a symbols are added to allow the restore tape cycle to execute correctly.

This cycle copies an ETR toM ’s simulated tape head position. The leftmost block
scans left and locates the next symbol of the ETR to be printedor ends the cycle. The
middle block records the symbol to be printed. If an←−a is to be printed the middle block
also scans right and prints an←−a . If a

←−
b is to be printed the rightmost block scan right

and prints a
←−
b .

Cycle 3 (Restore tape)

u6,
←−a ,←−a , R, u7 u7,

←−a ,←−a , R, u6 u8,
←−a ,←−a , R, u6

u6, λ,
←−
b , R, u6 u7, λ,←−a , R, u1 u8, λ,←−a , L, u8

u6, δ,
←−
b , R, u8 u7, δ, λ, R, u6 u8, δ,

←−
b , R, u6

These TRs restoreM ’s simulated tape and encoded table of behaviour.U8,4’s tape head

scans right restoringδ symbols to
←−
b andλ symbols. Recall that in the Index next ETR

cycleλ symbols were change toδ symbols in order to index the next ETR. Note also
that during the Index next ETR cycle asU8,4 scans left it also changes

←−
b symbols to
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δ symbols. As mentioned earlier there are extra←−a symbols in each ETR that do not
effect what is printed to the overlined region. The reason for these extra←−a symbols is
to ensure thatU8,4 can distinguish whichδ symbols to restore toλ symbols and which

δ symbols to restore to
←−
b symbols. The extra←−a symbols ensure thatU8,4 will be in

stateu7 if a δ should be restored to aλ and inu6 or u8 if a δ should be restored to a
←−
b .

This cycle ends whenU8,4 reads aλ.
Cycle 4 (Choose read or write symbol)

u6,
←−a ,←−a , R, u7 u7,

←−
b ,←−a , R, u1 u8,

←−
b ,←−a , L, u3

u6,
←−
b ,←−a , L, u7

This cycle either (i) begins the indexing of an ETR or (ii) completes the execution of
an ETR. More precisely: (i) ifU8,4 is immediately after simulating a left shift then this
cycle reads the encoded read symbol to the left of the encodedcurrent state, (ii) ifU8,4

is simulating a right shift then this cycle prints the encoded write symbol to the left of
the encoded current state.

Remark 6.Halting caseU8,4. Recall that all our UTMs simulate halting by attempting
to simulate a left shift at the left end of the simulated tape.This is also true forU8,4.
However the halting case forU8,4 differs slightly from the halting case forU3,11. U3,11

halts during theChoose read or write symbol cycle. U8,4 halts in the configuration
immediately after printing the last symbol of the left shifting ETR at the end of the
Print ETR cycle.

6 Conclusion and future work

We have improved the state of the art in small efficient UTMs. Fig. 1 summarises our re-
sults. Our UTMs infer a polynomial time curve that in some places matches the already
known (from Rogozhin et al) exponential time curve.

The decrease in the state-symbol product was found, in part through direct simula-
tion of TMs. This is rather suprising given the trend over thelast forty years of indirect
simulation through other universal models. The most recentsmall UTMs simulate TMs
via 2-tag systems, with an exponential time overhead [7, 14,6, 4, 5]. Before the advent
of Minsky’s UTM in UTM(7, 4), the smallest UTMs directly simulated TMs [2, 3]. One
problemma in the construction of these UTMs was the addressing of states, that is lo-
cating the next encoded state during TR simulation. Some approaches to solving this
problemma are discussed in brief in Section 3.1 of Minsky’s paper [4]. A major advan-
tage of our algorithm is the fact that the encoded current state is located at the simulated
tape head position. This technique simplifies the addressing of states.

What about small UTMs with less than polynomial time complexity? For example,
consider the construction of a linear time UTM. Our UTM stores the encoded current
state at the simulated tape head location. Suppose theentireencoded table of behaviour
is stored at this location. Simulating a TR involves scanning through the encoded table
of behaviour, it is not necessary to scan the entire simulated tape contents. The idea is
straightforward, however trying to constructsmall linear time UTMs could be difficult.

Cook [14, 15] has recently published UTMs in UTM(2, 5), UTM(3, 4), UTM(4, 3)
and UTM(7, 2) that are smaller than Rogozhin et al’s. However, Cook’s UTMsdiffer
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from the classical Turing machine definition [13]. Instead of having a blank symbol
these machines have two blank words. Cook’s UTMs require theblank tape to have an
infinitely repeating word to the left and another different infinitely repeating word to the
right. Cooks machines also suffer from an exponential slowdown through simulation of
2-tag systems. As future work it would be interesting to find polynomial time UTMs as
small as Cook’s. At present it seems technically challenging to further reduce the size
of our machines so we suspect that a radically different approach is required.
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