A small fast universal Turing machine

Turlough Neary and Damien Woods

! Theoretical Aspects of Software Systems Research Group,
Department of Computer Science,
National University of Ireland Maynooth, Ireland.
tneary@s. may.ie
2 Department of Mathematics and Boole Centre for Researahfanrhatics,
University College Cork, Ireland.
d. woods@cri.ucc.ie

Communicated by: J. Paul Gibson

Technical report: NUIM-CS-2005-TR-12

Key words: small universal Turing machine, tag system, polynomiaktiomiversality.

Abstract. We present a small time-efficient universal Turing machiria W states and 6
symbols. This Turing machine simulates our new variant gfdgstem. It is the smallest
known universal Turing machine that simulates Turing maeltiomputations in polynomial
time.

1 Introduction

We present a new small deterministic polynomial time ursgéifuring machine (UTM). This
Turing machine (TM) simulates our new variant of tag system ia the smallest known UTM
that simulates TMs in polynomial time. This is an improvetr@mour previous results [11].

In the early literature small UTMs directly simulated TM$[8]. Subsequently the technique
of indirect simulation via other universal models was ses@dly used to construct small UTMs.
In the early 1960s Minsky used 2-tag systems to create a&-dtaymbol machine [9]. Minsky’s
technique was more recently used to create the smallestrkbidls.

Let UTM(m,n) be the class of deterministic universal TMs with states andh symbols.
Rogozhin [14] constructed UTMs in the classes UM 3), UTM(7,4), UTM(5, 5), UTM(4, 6)
and UTM(2, 18), Kudlek and Rogozhin [8] constructed a UTM in UTB9) and Baiocchi [1]
constructed UTMs in UTNIL9, 2) and UTM(7, 4). Baiocchi’s 4-symbol UTM uses only 25 tran-
sition rules (TRs) whereas Rogozhin’s uses 26. Due to the@ryuencoding of the TM tape
contents 2-tag systems are exponentially slow simulatbidvs [2]. Hence the simulations of
Minsky, Rogozhin, Kudlek and Baiocchi all suffer from an exgential time complexity over-
head. Fig. 1 is a state-symbol plot, here we see that thedeimegdnduce a curve that we call the
exponential time curvélreviously we have constructed polynomial time UTMs in UBM 1),
UTM(5,7), UTM(6,6), UTM(7,5) and UTM(8, 4) [11]. Fig. 1 illustrates thg@olynomial time
curvethat is induced by these results. The halting problem haa peeved decidable for all

________ ; 19 ,
Our polynomial curve 1s o
............. 17 !
Rogozhin et al's 16 i
exponential curve 12 :
_— 13 :
Non-universal curve 12 i
11 & -
° 10 . 1
Explicitly constructed 9 o - !
U‘IpMs 8 D
A 7 - &q
Our polynomial UTM 6 oA o
that simulates RJTSs 5 CERRL !
symbols * L
3 @ e :
.14 ..
1
0

0123456 7 8 91011121314151617181920
states

Fig. 1. State-symbol plot of small UTMs. The plot shows our new srpali/nomial time UTM, the poly-
nomial time curve induced by our previous UTMs, Rogozhinlstexponential time curve, and the non-
universal TM curve. A corollary from our new small polynofrtime UTM is that there are polynomial time
UTMs in UTM(m,n) forallm > 5,n > 6.

deterministic TMs in the classes T 2) [12, 7], TM(3, 2) [13], TM(2, 3) (Pavlotskaya, unpub-
lished), TM(1, m) [4] and TM(m, 1) (trivial) for m > 1. These results induce tlm®n-universal
curvein Fig 1.

Our main result states that there exist a deterministicraotyial time UTM in the class
UTM(5,6). In Fig. 1 this UTM is represented by a triangle. This UTM slaias a new vari-
ant on the tag system which we call the bi-tag system (BTSpH®8dimulate TMs in polynomial
time. Hence our UTM in UTN5, 6) avoids the exponential time overhead introduced by simu-
lating standard 2-tag systems. Our machine is smaller ttmmtichines in [11] and represents a
new algorithm for small UTMs.

2 Preliminaries

Some discusion and definitions relating to the concepsinofilationandsimulate in polynomial
timecan be found in [11, 14, 15].

We consider deterministic TMs with a single bi-infinite tagred a single tape head [5]. ATM
isatupleM = (Q, X, B, f,q1, H). HereQ and X’ are the finite sets of states and tape symbols
respectively. AlsoB € X is the blank symboly; € @ is the start state, anfl C @ is the set of
halt states. The transition functigh: Q x ¥ — X' x {L, R} x Q is defined forally € Q — H.

If ¢ € H then the functiory is undefined on at least one elemengof Y. We write f as a list of
TRs. Each TR is a quintuple= (g, 01,02, D, ¢y), with initial stateg,, read symbob;, write
symbolos, tape head directio and next state,,.

Throughoutthe paper we I&f be a deterministic single tape TM witf)| states|X'| symbols,
and time complexity’(n) on input lengthn. Also Us ¢ denotes our UTM in class UTW, 6). In
regular expressions, * and parentheses have their usual meanings [5].

(a) (b)

Tape head»Q %‘% 7

: 01|U2|U3|02|03|U2|02|01 T

Fig. 2. (a) Example TM tape contents. The TM’s blank symbotis (b) CTM encoding of the TM tape
contents in (a), the symbolsand! encode the infinite sequence of blank symbols to the rightleftaf
M'’s encoded tape contents respectively.

3 Clockwise TM

Definition 1 (clockwise TM). A clockwise TM (CTM) is atuple = (Q, X, f, ¢q1,qg|). Qand X
are the finite sets of states and tape symbols respectiyety,Q is the start state ang|| € Q
is the halt state. The transition functigh: Q@ x X' — {¥'U Y X'} x Q is undefined on statg,
and is defined for alj € Q, ¢ # q¢-

We write f as a list of clockwise transition rules (CTRs). Each CTR isuadiuplet =
(¢z, 01, w, qy), With initial stateg,, read symbob, , write valuew € {¥'UX' X'} and next state,.
A CTM has a circular tape and its operation is similar to tHada @M. A CTR is executed as
follows: If the write valuew is from X' then the tape cell containing the read symbol is overwritten
by w, if w is from X' then the cell containing the read symbol becomes 2 cells efatich
contain one symbol frorw. The machine’s state becomgsand the tape head moves clockwise
by one tape cell. CTMs are deterministic.

Lemma 1. The computation of TM/ is simulated using spac@(7'(n)) and timeO(T?(n)) by
aCTMCyy.

Proof. Let N be a TM that has the following restrictions: (i) the blank $otv; does not appear
as input toN, (i) N may read the blank symbol but is not permitted to write it te tape, (iii)
N has exactly one final state. Due to the restrictions place ave know that whenV reads a
blank symbol it is either at the left or right end of its tapentamts. We wish to simulate a TM
M = ({aq1,---,qq/},{o1,-- - 013}, 01, f, a1, {910/ }) Without restrictionsM is converted to a
restricted TMN that requires one extra state and one extra symbol, and tessemoe extra com-
putation step. We defin& = ({q1,...,q01+1},{o1,-- -, 01241} 01, f, @1, {q0+1}). We con-
struct a CTMC)y that simulates\f via N. Cyr = (Qc, Yo, fc, a1, q1g|+1) WhereQc, Xe, fo
are defined below.

Yo = {027 e '7U\E|+17T7177}

The symboly is a special marker symbol and symbeland! encode the infinite sequence of
blank symbols to the right and left &f’s encoded tape contents respectively (see Fig. 2).

Qc = {a, q1,2,---,q1,|2|+1,491,r, 91,7, 41,1, 92,42,2, - - -, 42 | 5| +15 92,75 42,77, 42,15 - - - » Q\QH-I}

We can think of right moves aW'’s tape head as clockwise moves. Here we give right move
TRs followed by the CTRs that simulate them.

qmaakvajaR7Qy : 4z, 0k,04,0y (1)

szalvojaRv Qy : szlvlajaqz; (2)

whereoy,0; # o1. The CTR in Equation (2) simulate¥ printing the write symbob; over
the blank symbol immediately to the left of it's tape congerthe CTR’s write valués; also
preserves; the encoding of the infinite sequence of blank symbols tdafi®f the tape contents.

The final right moving case is whel's tape head is over the blank symbol immediately to
the right of its tape contents. Initiall/,,’s tape head is over and immediately after simulation
of the TR,C),’s tape head is again over Immediately below are the CTRs that simulate this
case.

Qs Ty 05T, Gy v (%)
401,05, R,qy - Gyt o oy Qoo (%)
wherex € X — {v,r}. CTR (*) printsN's encoded write symbat; and send€’,;’s control
into stateg, , . Stateq, ,, movesCy,’s tape head to the cell containing This completes the
simulation of the TR.

Left moving TRs are more difficult to simulate &5,'s tape head moves only clockwisgy,
begins by marking the current location of the tape head wighsiymboly. C,; now moves each
symbol clockwise by one cell. Whefi,'s tape head reads the left move is complete. This
process moves the tape head anti-clockwise relative toaghe ¢ontents. Immediately below is
given the CTRs that mark the tape head’s location with thebs}m.

QIvalvojaLaqy : qmalalpyaqy,j
szalvajaLaqy PGz YO05, Ay
qwaokaojaLaqy ©qx, 0k, 7Y, Qy,j

The CTRs that move each symbol clockwise by one cell are dittme:

Qy.,va pa v, Qy.,p

wherev, p € Yo — {~}. WhenC),'s tape head readsthenCy, is in a state of the form, , and
the unique CTR defined by the state-symbol pajr(v) will begin simulation of the next TR.
This TR is of the form ¢y, o1, 0k, D, ¢.) if p = r, 1 and of the form ¢, p, 0%, D, ¢.) if p # r, 1.
Input to N is encoded foiCy; by a finite state transducer. Given this encoded in@ut
simulates the sequenceBfn) TRs in N’s computation and halts in stagg,|;, the encoding of
N’s halt stateg)|+1. Car uses space ad(7'(n)). A single computation step ¥ is simulated
in O(T'(n)) steps ofC,,. Thus the computation time @&fy; is O(T?(n)). O

4 BTS

In this section we present the BTS, our new variant on theytatgm, and prove that it simulates
TMs. The operation of a BTS is similar to that of a standardsiggfem [10]. The application of
each production in a tag system is dependent on exactly 1@yBbSs use productions whose
application is dependent on either 1 or 2 symbols. Also BT8slaterministic.

Definition 2 (BTS). ABTS is defined by the tupld, E, ¢;,, P). Here A and E are disjoint finite
sets of symbols and, € F is called halt symbolP is the finite set of productions where each
production is of one of the following three forms:

A— A
ExA— AxE
ExA—-AxAxE

whereP is defined on all elements ¢ U ((E — {ep}) x A)} and undefined on all elements of
{eh} x A.

Definition 3 (BTS configuration). A configuration of a BTS is a word of the form
s=A*(AEU FEA)A*.

We may think ofs as the data word of a BTS. The computation of a BTS proceedslietitlgy
symbols from the left end of and appending new symbols to the right end.df a configuration
s is obtained froms; via the application of a single production we writeF ss. In the sequel
P(a) denotes the value mapped to by the symbel A and P(ea) denotes the value mapped to
by the pair of symbols € FE anda. In the following definition letz € A, e € E.

Definition 4 (BTS computation step).A P production is applied in one of two ways:

(i) If s =as’ thenas' F s'P(a).
(i) If s =eas’ theneas’ F s'P(ea).

A BTS computation is a finite sequence of computation stegisatre consecutively applied
to an initial data word. It} is the leftmost symbol in the data word then the computatadtsh

Example 1. (BTS computatioh@t BTSR; = ({ao, a1}, {eo, €1, e2}, €2, P) whereP = {ag —
ag, a1 — a1, €0Gp — A1€p, €od1 — aies, €1ag — g€y, €141 — a1es}. Given the wordz; egag,
the computation oR?; proceeds as follows:

ajepao H epapay - ajaieg H aiepay - cpai1a1 H ajaie - ajeaa H €2a1a7

The computation halts as the halt symbglis the leftmost symbol. a

Lemma 2. LetC be a CTM that runs in tim&(n) on input lengthn. The computation of' is
simulated using spad@(7'(n)) and timeO(T?(n)) by a BTSR.

Before giving the proof of Lemma 2 we explain the proof ideaclkA symbol of R encodes
a symbol ofC’s tape alphabet. Eachi symbol of R encodes a state 6f. The location of the?
symbol in the data word represents the locatiod'sftape head, as illustrated in Fig. 3.

Each CTR ofC' is simulated in the following way. The change of state, syhaind tape head
position is simulated by executingfa production over theZ x A pair that encodes the current
state and read symbol (see Fig. 3(c)). A production is therieghto each symbol in the data
word. This moves the neWf x A pair to the left of the data word, in order to prepare for the
simulation of the next CTR.

Proof. Let CTM C=({q1,...,qq(}, {o1,.-- 0151}, f, @1, qq|)- We construct a BTS¢ that
simulatesC’s computation.
Rc = (Ac, Ec, eq|, Pc)

(c) e0 0 0 1 applye20 — les
(@) 92 (b) 0 01 1es apply0o—0
0 1 1e0 apply0 — 0

0 o 1 1600 applyl — 1
e.e e.e 1 e300 1 applyl — 1
0 0 (d es0 011 TR simulation complete

Fig. 3. BTS simulating the CTRg2, 0, 1, g3). CTM states;, andgs are encoded as andes respectively.
The e symbols also mark the location of the simulated tape hegdCéafiguration of the CTM before
execution of the CTR. (b) Configuration of the CTM after exemu of the CTR. (c) BTS encoding of
configuration in (a). (d) BTS encoding of configuration in.(b)

whereAc, Ec, P are defined below.
AC = {al,...,aw‘}
C’s tape symbols, ..., 05| are encoded ag, . . ., a 5| respectively.

B ={e1,...,e10)

C’s statesqs, - .., | of R are encoded asy, . . ., ¢|| respectively and the encoded halt state
e|q| is the halt symbol of2..

’
Pc:{al —ai,..., 0|5 —>a|2‘}UPC

PY, is the productions defined dii? — {¢||}) x A. There is one production iR, for each CTR
in C. CTRs fall in two categories, those that write a single syhfilmon X' and those that write
a pair of symbols fron¥’ Y. The two possible CTRs, and their encodings as productaesas
follows

(qmaaiaajv(Iy) : €zl — a’jey
(Qz,Uz‘,Uijk,fIy) L €gQy — QjAKEy

We have constructed a BTB¢ that simulates”. Rc usesO(T'(n)) space. To simulate a
computation step of’, a production is applied to each symbol in the data word thebdes the
current configuration of’. This takesD(T'(n)) steps and yields a new data word that encodes the
next configuration of’s computation. In this wayR simulatesr’(n) steps ofC’s computation
in time O(T(n)). The simulation halts when the halt symhg}, that encodes the halt state
becomes the leftmost symbol in the data word. a

Given a single tape TM/ that runs in timé"(n), we conclude from the previous two lemmata
that M is simulated by a BTS in timé&(T*(n)). However this overhead is easily improved to
O(T3(n)) as the next theorem shows.

Theorem 1. The computation of TM/ is simulated using spad@(7'(n)) and timeO(T?(n))
by aBTSR,,.

Proof. From Lemmata 1 and 2 a BTS simulates the computatioh/ofia a CTM C);. From
Lemma 1C), simulatesM in time O(T?(n)). HoweverC), usesO(T'(n)) space, henc,,
usesO(T'(n)) space.Ry, appliesO(T(n)) productions to simulate a CTR @f;. Thus Ry,
execute$)(T?(n)) CTRs to simulated/ via Cj, in time O(T3(n)). O

5 Usg

In this section we givé/; ¢ our UTM which simulates BTSs. We begin by giving the input en-
coding toUs ¢ followed by the definition ol/5 ¢. We let R denote a BTS that is to be simulated
by Us ¢. The encoding of? as a word is denote¢lR). Analogously the encodings af € A
ande € E are denoteda) and(e) respectively. The encodings of productiafi&:) and P(ea)
are denoted agP(a)) and(P(ea)) respectively. Lel? be a BTSR = (A, E, ex, P) where

A= {al,...,ag}
E= {ela"'aeh}
Definition 5 (encoding of R’s input symbols). The input symbols; € A ande; € E are
— . — .
encoded as followé:;) = b 43 and(e;) = b 49,

Definition 6 (encoding of a configuration ofR). The encoding of a configuration &fis of the
form

“A(R)d" ((A)e)" ({A)(E) U (E)(4)) ((A)e)*d* ®)

where((A)c)* ((A) (EYU(E) <A>) ({(A)c)* encodedR’s data word via Definition 5¢* = ddd. . .,
“d = ...ddd, and(R) is the encoding oR:
(R) :?c)ﬁ<P(eh,1ag)>)\2(P(eh,lag,1)> A {(P(ep_1a1))
N (P(en—_2ay)) N2 (P(en—2ag-1)) ... N> (P(en—2a1))

: (4)
N (P(e1ay))N*(P(erag—1)) ... N2 (P(e1a1))
X3 (P(ag))X*(P(ag-1)) ... A’ (P(a1))A
where
dAdAi—3 if ¢ — a;
(P(g)) = Ad*™9d\d**—3 if p =eja;, eja; — arenm (5)

drmIgAd*3dAd?v 3 if ¢ = €50, €j0; — GyQkEm

wherea;, ai, a, € Aande;j, e, € E.
Finally, the position olJ; ¢'s tape head is over the symbol immediately to the rightrtyii*.

In the encoding of ainitial configurationof R thed* term in Equation (3) is replaced with
the empty word.
We wish to highlight an abuse of notation. Recall from SetdahatP(-) €¢ AUA x E U

A x A x E. From Defintion 5 we havéq,), (¢;) € {T}*, however in Equation (5) we have
(P(a;)), (P(eja;)) € {d, A}*. In the sequel this ambiguity will be made clear from the eaht

5.1 Us,g algorithm overview

Here we give a brief description of the simulation algoritbhynexplaining howUs ¢ locates and
simulates a production. Using a unary indexing mettiggs locates the encoded production to
be simulated. The encoded productidf*(¢)) from Equation (5)) is indexed (pointed to) by the

number of b symbols contained in the leftmost encoded symbol or paiymimls (Definition 5).

If the leftmost encoded symbol i&;) = b %3 then the valueli — 3 is used to indeXP(¢)).

If the leftmost encoded symbol ig;) = D 49, and{a;) = b 43 is adjacent then the value
4jg + 44 — 3 is used to indeX P(¢)). The number ofb symbols in the encoded symbol or

pair of symbols is equal to the number bimarkers between the leftmost encoded symbol and
(P(¢)). To locate(P(¢)), Us ¢ simply neutralises the rightmostin (R) (i.e. changes\ to J)

for each in the leftmost encoded symbol or pair of symbols. This pssantinues until the
markerc that separates two encoded symbols is read. This indexetigion (P(¢)) is then
printed immediately to the right of encoded data word. Thigting completes the execution

of (P(¢)).

Definition 7 (Us_g). The TMUs ¢ is defined a&/s g = ({u1, us, us, us, us}, { 0, b, X, 8, ¢,d},d,
frur, {ug, us, us, us, ug }) wheref is given by the following transition rules.

— — —
Ul,b,b,R7U1 u27b7 u37b7
— — — — — —
ulababaL;ul u27b7b7L7u2 ’Ltg,b,b,R,Ug
’LLl,A,(S, R7’U,1 UQ,)\,67L,U5 U3,)\,
u1167)\1L1u1 u2751 67L7u2 U3,(5, 67R,’LL3
Ui, C, CaLaUQ U2, C, CvL7u2 us, C, C,R,Ug
— —
ulada b,L,Ul u27d7 b,R,’LL4 Ug,d,C,L,Ug
— —
Uy, ba Us, b7
— — —
U4,b,b,R,U4 u57b7d7Rau5
’LL4,A, U5,)\, A,R,U{)
U4,5, 57 R,’LL4 ’LL5,5, A7R7u5
U4, C, C, R7 Uy Us, C, da R7 U1
— —
U4,d, baL;UQ u57d7 b7R7U3

We give an example df; ¢ simulating a production. This simulation is o4 a;) production
on an arbitrary data word. In this example we predéng’s algorithm as three cycles. In the
configurations below the current stateldf is highlighted in bold font to the left of/; ¢'s tape
contents. The position df; ¢'s tape head is given by an underline. The start statgsqf is u;
andUs ¢'s tape head is over the symbol directly to the righ{ B (as in Definition 6).

Example 2 U5 ¢ simulating productior(a;)). In this exampleR’s data word isz; A* EA*. En-
coding this data word using Definitions 5 and 6 gives the W‘Eﬁd—%(m)c)* (E)((A)e)*. This
gives a configuration df/s ¢ of the form:

up b . N(P(a;))N . N (P(ar))Ad* b

—
b

izde((A)e)* (E)((A)e)*dd . . .

Cycle 1 (index next production)

— —
Uy, b7 b,R,’LLl

— —
Uy, b7 b 7L7u1
u17)\167R1u1
U1,5, A7Lvul

uy, C, CvL7u2

—
u17d7 b 7L7u1

In Cycle 1,Us ¢ reads the leftmost encoded symbol and locates the next edgomdduction to

execute. Thel; ¢'s tape head scans from left to right and when it reads iachangesitto a .
ThenUs g¢'s tape head scans left to neutralise anarker (changes it to &. This process is re-
peated untilUs ¢ reads a. This signals the end of Cycle 1 and the beginning of Cyclen2hé
configurations below we repladé#(a;)) with d\d*—3 and (P(a;)) with d\d, their respective
encodings via Equation (5). After the initial configuratioa have:

up b . ABAAY TN AN D b A Ae((AYe) (B ((A)e)*dd. ..
=) — —— .
up b .. A3AAGYTENE L NBAAAAD * D b Y te((A)e) (B ((A)e)*dd. .

—

up b . N3AAY TN L N3ANDS D b b i te((A)e) (B)((A)e)*dd. ..
up b . NS RN L N3ANAS D D b e((A)e)* (E)((A)e)*dd

In the configuration immediately abovedxamarker has been neutralised (changed 8).al'he
above process is repeated until thee the right of(a;) = b *~3 is read.

— . — = —
up b NANY3E3 36 bab* b Y 3e((A)e)* (E)((A)e)*dd. ..
uz b .. N3AAY 3SR 53D 8 b 8 * b Y 3e((A)e)* (E)((A)e)*dd. .
In the configurationimmediately abo¥g ¢ has entered Cycle 2. The encoded product®u))
was located by neutralising — 3 markers.

Cycle 2 (print production)

— — — — — —

u27b7baLau2 U4,b,b,R,U4 Ug,b,b,R,’LL:; ’LL5,)\,A,R,U5
—
UQ,A,(S,L,U{) U4,(5,67R,U4 U3,67(5,R7U3 u57d7 b,R,’LL3
u2767 5,L,U2 Uy, C, C,R,U4 us, c, C, R,Ug
—
’LLQ,C,C,L,UQ u47d7 b7L7u2 U3,d,C,L,U2
—

Ug,d, b,R,’LL4

Cycle 2 prints the encoded production indexed in Cycle 1 idtiately to the right of the encoded
data word.Us ¢ scans left in state, and records the next symbol of the encoded production to

be printed. IfUs ¢ reads &l it enters statei, scans right and prints(:b_ at the right end of the
encoded data word. if5 ¢ reads the subword) it scans right in states and prints a: at the right
end of the encoded data word. This process is repeated hmtirtd of the encoded production
is detected causings ¢ to enter Cycle 3. The end of the encoded production is detduté/s ¢

reading the subword\.
ug b .. N3P TS B bbb b 3e((A)e) (E)((A)e)*dd. ..

LAY D83 3558 b 3e((A)e)
LAY D 83 53D 8 b 00 b Y 3e((A)e)* (E
LA 53 53 D6 b 8 b b Y 3e((A)e)* (B

e

4

S
=l =l ==l

2

—
*bd...
—

up b .. N3N AD 6% 53D b b Be((A)e) (BY((A)e)* b d. ..

In the configuration immediately abovelais printed at the right end of the encoded data word.
Immediately after the above process is repeated a fdther4 times we have the following:

uz b .. N3dAD 438 L 3D 8D b U Be((A)e) (BY((A)e)* b4 3dd. ..
C

ug b ... \3d6b ¥ 353 358D * b Y 3e((A)e)* (E)((A)e)* b4 3dd. ..

uz b .. N3BT8 B3B38 b b Be((A)e) (BY((A)e)* b 43dd. ..
uz b ... N3 B08D04 363, 53D b b b 3c((A)e) (BY((A)e)* b 43dd. ..
up b .. N3 b b4 35% 3D b b 3e((A)e) (B)((A)e)* b Y 3ed. ..

In the configuration immediately above:anarker is printed at the right end of the encoded data
word. On the next scan letf; s encounters the subwoprd\ which cause$/s ¢ to enter Cycle 3.

uz b . AMDOb Y353 358D b 3e((A)e) (E)((A)e)* b 4 3ed. ..
us b .. AN D b3 53D 88D * b ¥ 3c((A)e) (E)((A)e)* b 4i—3ed. ..
us b .. AN Db 353D 88D b ¥ 3e((A)e) (E)((A)e)* b4 3ed. ..

|

Cycle 3 (restore tape)

—
us, b 7d7 Ra us
Us, 51 A7 Ra us

us, C, da R7 U1

Cycle 3 restorest’s encoded table of behaviour after an encoded productierbkan indexed
and printedUs ¢ scans right restoring each to ad and each to a\. WhenUs ¢ reads the:
at the left end of the encoded data word, it changes this c tdraid cycle is now complete and
Cycle 1 is entered.

us b .. A3AAZYTENE L ABAAAAD* A3 e((A)e)* (B ((A)e)* b 4 3ed. ..

up b . NBAAYTENE L 3ANAT A3 d((A)e)* (B) ((A)e)* b 3ed . .. ()
The simulation of the encoded production is now complétg; is ready to begin the indexing
and execution of the next encoded production. Configurgt)msatisfies Definition 6. a0

Remark 1.In Configuration (I) we see that the worti separating R) and the encoded data
word increased in length by — 3. During simulation of each production the word encoding
the leftmost symbol is changed to a word contsisting onlyi@fHence the number efs that
separatéR) and the encoded data word increases as the simulation geatin

10

Example 3 U5 ¢ simulating productiorP(e;a;)). In this exampleR's data word is;a; A*. En-
coding this data word using Definitions 5 and 6 gives the W(E@Q?“*%((Ak)*. This gives

a configuration ot/ ¢ of the form:

up b . A2(P(eja;)) ... A3 (P(ay))Ad* b 499 b =3c((A)e)*dd.. . (I
The productionP(e;a;) = agen, is encoded a$P(e;a;)) = Ad*™9d\d**—3 via Equation (5).
Thus from the configuration immediately above get:

up b .. AN | A3dNAD D9 D 4B e((A)e)*dd . ..

up b . N2AAIANGHR S 53D b6 b * b 9D 43 e((A)e) dd. ..

In the configuration immediately above we skip to the end afl€y. The indexing ofP(e;a;))

is now complete. In Configuration (Il) ne marker separates the word 49 — (e;) and the
word b 43 = (a;) hence both are used to indéR(e;a;)). Now Us ¢ prints (P(e;a;)) in the
same manner as Example (2) to give:

us b ... 220695503 53 56D b9 D A 3e((A)e)* b W3 b m9dd.

The configuration immediately above ends Cycle 2. The printif (P(e;a;)) at the right end
of the encoded data word is now complete. Note thatnaarker is not printed to the right of
the word b 4m9 = (em). Thus when thige,,) becomes the leftmost encoded symbol, both its
value and the encoded symbol immediately to it's right aeglis index the appropriate encoded
production. Skiping to the end of Cycle 3 gives:

us b .. N3AIANGR 3 | N3N dY9 Y3 d((A)e)* D 3e b madd. .

The simulation of productiof?(e;a;) is now complete. O

Lemma 3. U; ¢ halts when the encoded halt symbol becomes the leftmosi@hsgmbol in the
encoded data word.

Proof. The halt symbot;,, is encoded via Definition 5 &&;,) = ?4’19. The arbitrary data word

a; A* to the right ofey, is encoded via Definition 6 a;4i_3c(<A>c)*. When the halt symbal;,
is the leftmost symbol we get a configuration of the form:

— — — .
uy beh.. Ad* DI b Y 3c((A)e)*dd. . .
— — — .
up bed...0b* bbb b Oc((A)e)*dd. .. (1
In the configuration immediately above we skip to the pointhia simulation where every in
(R) is neutralised. The number afmarkers in(R) is 4hg + 1 (see Equation (4)). Hence every
— —
b in {(e,) and a singleb from (a;) are read to neutralise allmarkers in(R). WhenUs; ¢ reads
—
the secondb in (a;) it scans left to give:
— — = ——— .
up bed...0b*bIb b b c((A)e)*dd. ..
— — — — .
ug bed... 60 b2MIb b bH5c((A)c)*dd. ..
There is no TR for the state-symbol pairg(?) so the computation halts. Above we assume
— —
that (a;) has more than oné . Howeverqa; is encoded by a singlé . This unique case is not
—
a problem. In Configuration (l1l) a is read byUs ¢ instead of ab sendingUs ¢'s control in to
—
stateus. ThenUs ¢ scans left in state; and halts when it reads the. O

11

Lemma 4. Us ¢ simulates any BTS.

Proof. Examples 2 and 3 give simulations of the two types of produstiExample 2 is a simula-
tion of an arbitraryP(a;) production on an arbitrary data word. Example 3 is speciftb@sense
that it is a production of the forn®(eja;) = aren,. However Example 3 is easily extended to
verify the other case dP(e;a;) = a,aren as it requires only the printing of a furthdrsymbol.
From Lemma 3 we know that when the encoded halt symbol bectimedsftmost symbol the
computation ol ¢ halts. HencédJs ¢ simulates the sequence of productions in a BTS's compu-
tation. The encoded output is easily decoded via Definition 5 a0

Theorem 2. U; g uses spac® (| X |13 (n)+|Q||X*T?(n)+|Q|*| X|*) and timeO (| X|*T° (n)+
QI Z1PT5(n) + Q2| X|*T*(n) + |Q?|X1°T3(n) + |Q|?| X|°T?(n)) to simulate TMM.

Proof. From Theorem 1 the BT®,, uses spac®(T'(n)) and timeO (T3 (n)).

(Space) From the proof of Lemmata 1 and 2 the BT5, that simulates\/ via Cj; has
O(|Q||X|) of the E symbols andD(|X|) of the A symbols. There is a production for eagh
symbol and a production for ea¢® — {e;}) x A pair. Hence there a@(|Q||X|?) productions.
From Equation (5) the length of an encoded productio®ji is O(|Q||X|?). Thus the space
used to storeR,; is O(|Q|?| X[4).

The space”); uses isO(T'(n)). To encodeC;,’s tape contents and current statg, uses
O(T(n)) of its A symbols and a singl& symbol. From the previous paragraph and Definition 5
Us ¢ usesO(|X]) to store eachd symbol andO(|Q]|X|?) to store each symbol. Thusls ¢
requiresO(|X|T'(n) + |Q||X|?) space to storé,,’s data word.

After each production has executed, the space betWggs encoded table of behaviour and
data word increases (Remark 1). For evE(y) productions executed;(n) encodedd symbols
and a single encoded symbol are deleted increasing this spaceyX|T(n) + |Q||X]?).
After simulatingO(T(n)) productions there i©(|X|T3(n) + |Q||X|*T?%(n)) space between
Rys's encoded table of behaviour and data word. The space ustdre?), and its data word
is O(|X|T(n) + |Q?|X]*). The space used hiys ¢ after simulatingO (7" (n)) productions is
O(IZ|T%(n) + |QIIZ1PT%(n) + QI X]").

(Time) Simulating aP(ea) production involves 3 Cycles. (1) Index an encoded producti
by neutralisingD(|Q||X?) As: O(|Q|| XT3 (n) + |QI?|X[*T?%(n) + |QI?| X|°) steps. (2) Print
an encoded production of leng®(|Q||X[2): O(|Q||X|>T3(n) + |Q|*|Z[*T%(n) + |QI3|X%)
steps. (3) Restor®; ¢'s tape:O(| |13 (n) + |Q||X[*T?(n) + |QJ*|X|*) steps. Thu#/; ¢ simu-
lates a singleP(ea) production ofRy in time O(|Q|| X [2T3(n) + |QI?| XT3 (n) + |Q|3|).
Using a similar argument a singB(a) production of lengthO(]X) is simulated byUs ¢ in
time O(|X?T3(n) + |Q|| X>T?(n) + |Q|?|X|?). For everyO(T'(n)) prodcutions executeRt s
executes only a singl®(ea) production. Hencd/; ¢ simulates)M in time O(|X*T%(n) +
QUEPT®(n) + |QPIZI*T(n) + Q| ZPT?(n) + |QF|X|°T*(n)). 0

In summarylUs ¢ simulates TMM in time O(T°(n)) and spac€®(73(n)) if we ignore the
number of states and symbolsf in our analysis.

This result holds for more general definitions of TMs. Forrapée, letM’ be a deterministic
multitape TM. M’ would be converted to a single tape TM. The state-symbol product aff
would be only a constant times greater than the state-syprioduct of M/, also M would be
at worst polynomially slower than/’. Thus,Us ¢ simulatesM’ in polynomial time. We get the
following immediate corollary.

12

Corollary 1. There are polynomial time UTMs in UT,) for all m > 5, n > 6.

Cook [3, 17] has recently published UTMs in UT®] 5), UTM(3,4), UTM(4, 3) and UTM(7, 2)
that are smaller than Rogozhin et al's. However, Cooks nmashéalso suffer from an exponential
slowdown through simulation of 2-tag systems. Cook’s UTNffed from the classical Turing
machine definition [5]. Instead of having a blank symbol éhesachines have a blank period.
Cook’s UTMs require the blank tape to have an infinitely rejpeaword to the left and a differ-
ent infinitely repeating word to the right.

We have improved the state of the art in small efficient UTMg. E summarises our results.
Our polynomial time UTM is smaller than those in [11]. Any tetion in the size of our UTM
in terms of state-symbol product would result in a polyndrtime UTM of the same size as
Rogozhin et al's exponential time UTMs.

References

1. C. Baiocchi. Three small universal Turing machines. IRY.M. Margenstern, editofMachines,
Computations, and Universalityolume 2055 ofLNCS pages 1-10, Chisinau, Moldova, May 2001.
MCU, Springer.

2. J. Cocke and M. Minsky. Universality of tag systems with= 2. Journal of the Association for
Computing Machinery11(1):15-20, January 1964.

3. M. Cook. Universality in elementary cellular automafammplex System5(1):1-40, 2004.

4. G. Hermann. The uniform halting problem for generalized state Turing machines. In IEEE, editor,
Proceedings, Ninth Annual Symposium on Switching and Aateitheory pages 368—372, Schenec-
tady, New York, October 1968. FOCS, IEEE Computer Sociegs®r

5. J. E. Hopcroft and J. D. Ullman.Introduction to automata theory, languages, and compairati
Addison-Wesley, 1979.

6. N. lkeno. A 6-symbol 10-state universal Turing machinePtoceedings, Institute of Electrical Com-
munications Tokyo, 1958.

7. M. Kudlek. Small deterministic Turing machine§ heoretical Computer Scienc&68(2):241-255,
1996.

8. M. Kudlek and Y. Rogozhin. Small universal Turing and glec Post machinefure Mathematics and
Applications 13(1-2):197-210, 2002.

9. M. Minsky. Size and structure of universal Turing mackinging tag systems. Recursive Function
Theory: Proceedings, Symposium in Pure Mathematickime 5, pages 229-238, Provelence, 1962.
AMS.

10. M. Minsky. Computation finite and infinite machineRrentice-Hall, New Jersey, 1967.

11. T. Neary and D. Woods. Small fast universal Turing maghirTechnical Report NUIM-CS-TR-2005-
11, National university of Ireland, Maynooth, 2005.

12. L. Pavlotskaya. Solvability of the halting problem fertin classes of Turing machinddathematical
Notes Academy of Science US3B(6):537-541, June 1973.

13. L. Pavlotskaya. Sufficient conditions for the haltingldem decidability of Turing machines (in Rus-
sian). Avtomaty i Mashinypages 91-118, 1978.

14. Y. Rogozhin. Small universal Turing machin&heoretical Computer Scienc&68(2):215-240, 1996.

15. P. van Emde Boagdandbook of theoretical computer science, volumehfapter 1, pages 1-66. Else-
vier, 1990.

16. S. Watanabe. 5-symbol 8-state and 5-symbol 6-statensaivTuring machinesACM, 8(4):476-483,
October 1961.

17. S. Wolfram.A new kind of scienceNolfram Media, Inc., 2002.

13

