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Abstract. We present a small time-efficient universal Turing machine with 5 states and 6
symbols. This Turing machine simulates our new variant of tag system. It is the smallest
known universal Turing machine that simulates Turing machine computations in polynomial
time.

1 Introduction

We present a new small deterministic polynomial time universal Turing machine (UTM). This
Turing machine (TM) simulates our new variant of tag system and is the smallest known UTM
that simulates TMs in polynomial time. This is an improvement on our previous results [11].

In the early literature small UTMs directly simulated TMs [16, 6]. Subsequently the technique
of indirect simulation via other universal models was successfully used to construct small UTMs.
In the early 1960s Minsky used 2-tag systems to create a 7-state, 4-symbol machine [9]. Minsky’s
technique was more recently used to create the smallest known UTMs.

Let UTM(m, n) be the class of deterministic universal TMs withm states andn symbols.
Rogozhin [14] constructed UTMs in the classes UTM(10, 3), UTM(7, 4), UTM(5, 5), UTM(4, 6)
and UTM(2, 18), Kudlek and Rogozhin [8] constructed a UTM in UTM(3, 9) and Baiocchi [1]
constructed UTMs in UTM(19, 2) and UTM(7, 4). Baiocchi’s 4-symbol UTM uses only 25 tran-
sition rules (TRs) whereas Rogozhin’s uses 26. Due to their unary encoding of the TM tape
contents 2-tag systems are exponentially slow simulators of TMs [2]. Hence the simulations of
Minsky, Rogozhin, Kudlek and Baiocchi all suffer from an exponential time complexity over-
head. Fig. 1 is a state-symbol plot, here we see that these machines induce a curve that we call the
exponential time curve. Previously we have constructed polynomial time UTMs in UTM(3, 11),
UTM(5, 7), UTM(6, 6), UTM(7, 5) and UTM(8, 4) [11]. Fig. 1 illustrates thepolynomial time
curve that is induced by these results. The halting problem has been proved decidable for all
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Fig. 1. State-symbol plot of small UTMs. The plot shows our new smallpolynomial time UTM, the poly-
nomial time curve induced by our previous UTMs, Rogozhin et al’s exponential time curve, and the non-
universal TM curve. A corollary from our new small polynomial time UTM is that there are polynomial time
UTMs in UTM(m,n) for all m ≥ 5, n ≥ 6.

deterministic TMs in the classes TM(2, 2) [12, 7], TM(3, 2) [13], TM(2, 3) (Pavlotskaya, unpub-
lished), TM(1, m) [4] and TM(m, 1) (trivial) for m ≥ 1. These results induce thenon-universal
curvein Fig 1.

Our main result states that there exist a deterministic polynomial time UTM in the class
UTM(5, 6). In Fig. 1 this UTM is represented by a triangle. This UTM simulates a new vari-
ant on the tag system which we call the bi-tag system (BTS). BTSs simulate TMs in polynomial
time. Hence our UTM in UTM(5, 6) avoids the exponential time overhead introduced by simu-
lating standard 2-tag systems. Our machine is smaller than the machines in [11] and represents a
new algorithm for small UTMs.

2 Preliminaries

Some discusion and definitions relating to the concepts ofsimulationandsimulate in polynomial
timecan be found in [11, 14, 15].

We consider deterministic TMs with a single bi-infinite tapeand a single tape head [5]. A TM
is a tupleM = (Q, Σ, B, f, q1, H). HereQ andΣ are the finite sets of states and tape symbols
respectively. Also,B ∈ Σ is the blank symbol,q1 ∈ Q is the start state, andH ⊆ Q is the set of
halt states. The transition functionf : Q×Σ → Σ × {L, R} ×Q is defined for allq ∈ Q−H .
If q ∈ H then the functionf is undefined on at least one element ofq×Σ. We writef as a list of
TRs. Each TR is a quintuplet = (qx, σ1, σ2, D, qy), with initial stateqx, read symbolσ1, write
symbolσ2, tape head directionD and next stateqy.

Throughout the paper we letM be a deterministic single tape TM with|Q| states,|Σ| symbols,
and time complexityT (n) on input lengthn. Also U5,6 denotes our UTM in class UTM(5, 6). In
regular expressions∪, ∗ and parentheses have their usual meanings [5].
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Fig. 2. (a) Example TM tape contents. The TM’s blank symbol isσ1. (b) CTM encoding of the TM tape
contents in (a), the symbolsr andl encode the infinite sequence of blank symbols to the right andleft of
M ’s encoded tape contents respectively.

3 Clockwise TM

Definition 1 (clockwise TM).A clockwise TM (CTM) is a tupleC = (Q, Σ, f, q1, q|Q|). Q andΣ

are the finite sets of states and tape symbols respectively,q1 ∈ Q is the start state andq|Q| ∈ Q

is the halt state. The transition functionf : Q×Σ → {Σ ∪ΣΣ} ×Q is undefined on stateq|Q|

and is defined for allq ∈ Q, q 6= q|Q|.

We write f as a list of clockwise transition rules (CTRs). Each CTR is a quadruplet =
(qx, σ1, w, qy), with initial stateqx, read symbolσ1, write valuew ∈ {Σ∪ΣΣ} and next stateqy.
A CTM has a circular tape and its operation is similar to that of a TM. A CTR is executed as
follows: If the write valuew is fromΣ then the tape cell containing the read symbol is overwritten
by w, if w is from ΣΣ then the cell containing the read symbol becomes 2 cells eachof which
contain one symbol fromw. The machine’s state becomesqy and the tape head moves clockwise
by one tape cell. CTMs are deterministic.

Lemma 1. The computation of TMM is simulated using spaceO(T (n)) and timeO(T 2(n)) by
a CTMCM .

Proof. Let N be a TM that has the following restrictions: (i) the blank symbol σ1 does not appear
as input toN , (ii) N may read the blank symbol but is not permitted to write it to the tape, (iii)
N has exactly one final state. Due to the restrictions placed onN we know that whenN reads a
blank symbol it is either at the left or right end of its tape contents. We wish to simulate a TM
M = ({q1, . . . , q|Q|}, {σ1, . . . , σ|Σ|}, σ1, f, q1, {q|Q|}) without restrictions.M is converted to a
restricted TMN that requires one extra state and one extra symbol, and executes one extra com-
putation step. We defineN = ({q1, . . . , q|Q|+1}, {σ1, . . . , σ|Σ|+1}, σ1, f, q1, {q|Q|+1}). We con-
struct a CTMCM that simulatesM via N . CM = (QC , ΣC , fC , q1, q|Q|+1) whereQC , ΣC , fC

are defined below.

ΣC = {σ2, . . . , σ|Σ|+1, r, l, γ}

The symbolγ is a special marker symbol and symbolsr and l encode the infinite sequence of
blank symbols to the right and left ofN ’s encoded tape contents respectively (see Fig. 2).

QC = {q1, q1,2, . . . , q1,|Σ|+1, q1,r, q1,r′ , q1,l, q2, q2,2, . . . , q2,|Σ|+1, q2,r, q2,r′ , q2,l, . . . , q|Q|+1}

We can think of right moves ofN ’s tape head as clockwise moves. Here we give right move
TRs followed by the CTRs that simulate them.

qx, σk, σj , R, qy : qx, σk, σj , qy (1)
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qx, σ1, σj , R, qy : qx, l, lσj, qy (2)

whereσk, σj 6= σ1. The CTR in Equation (2) simulatesN printing the write symbolσj over
the blank symbol immediately to the left of it’s tape contents. The CTR’s write valuelσj also
preservesl; the encoding of the infinite sequence of blank symbols to theleft of the tape contents.

The final right moving case is whenN ’s tape head is over the blank symbol immediately to
the right of its tape contents. InitiallyCM ’s tape head is overr and immediately after simulation
of the TR,CM ’s tape head is again overr. Immediately below are the CTRs that simulate this
case.

qx, σ1, σj , R, qy :
qx, r, σjr, qy,r′ (∗)

qy,r′ , κ, κ, qy,r′ (∗∗)

whereκ ∈ ΣC − {γ, r}. CTR (*) printsN ’s encoded write symbolσj and sendsCM ’s control
into stateqy,r′ . Stateqy,r′ movesCM ’s tape head to the cell containingr. This completes the
simulation of the TR.

Left moving TRs are more difficult to simulate asCM ’s tape head moves only clockwise.CM

begins by marking the current location of the tape head with the symbolγ. CM now moves each
symbol clockwise by one cell. WhenCM ’s tape head readsγ the left move is complete. This
process moves the tape head anti-clockwise relative to the tape contents. Immediately below is
given the CTRs that mark the tape head’s location with the symbol γ.

qx, σ1, σj , L, qy : qx, l, lγ, qy,j

qx, σ1, σj , L, qy : qx, r, γσj , qy,r

qx, σk, σj , L, qy : qx, σk, γ, qy,j

The CTRs that move each symbol clockwise by one cell are of theform:

qy,υ, ρ, υ, qy,ρ

whereυ, ρ ∈ ΣC −{γ}. WhenCM ’s tape head readsγ thenCM is in a state of the formqy,ρ and
the unique CTR defined by the state-symbol pair (qy,ρ, γ) will begin simulation of the next TR.
This TR is of the form (qy, σ1, σk, D, qz) if ρ = r, l and of the form (qy, ρ, σk, D, qz) if ρ 6= r, l.

Input to N is encoded forCM by a finite state transducer. Given this encoded inputCM

simulates the sequence ofT (n) TRs inN ’s computation and halts in stateq|Q|+1 the encoding of
N ’s halt stateq|Q|+1. CM uses space ofO(T (n)). A single computation step ofN is simulated
in O(T (n)) steps ofCM . Thus the computation time ofCM is O(T 2(n)). ⊓⊔

4 BTS

In this section we present the BTS, our new variant on the tag system, and prove that it simulates
TMs. The operation of a BTS is similar to that of a standard tagsystem [10]. The application of
each production in a tag system is dependent on exactly 1 symbol. BTSs use productions whose
application is dependent on either 1 or 2 symbols. Also BTSs are deterministic.
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Definition 2 (BTS). A BTS is defined by the tuple(A, E, eh, P ). HereA andE are disjoint finite
sets of symbols andeh ∈ E is called halt symbol.P is the finite set of productions where each
production is of one of the following three forms:

A→ A

E ×A→ A× E

E ×A→ A×A× E

whereP is defined on all elements of{A ∪ ((E − {eh})×A)} and undefined on all elements of
{eh} ×A.

Definition 3 (BTS configuration).A configuration of a BTS is a word of the form
s = A∗(AE ∪ EA)A∗.

We may think ofs as the data word of a BTS. The computation of a BTS proceeds by deleting
symbols from the left end ofs and appending new symbols to the right end ofs. If a configuration
s2 is obtained froms1 via the application of a single production we writes1 ⊢ s2. In the sequel
P (a) denotes the value mapped to by the symbola ∈ A andP (ea) denotes the value mapped to
by the pair of symbolse ∈ E anda. In the following definition leta ∈ A, e ∈ E.

Definition 4 (BTS computation step).A P production is applied in one of two ways:

(i) If s = as′ thenas′ ⊢ s′P (a).
(ii) If s = eas′ theneas′ ⊢ s′P (ea).

A BTS computation is a finite sequence of computation steps that are consecutively applied
to an initial data word. Ifeh is the leftmost symbol in the data word then the computation halts.

Example 1. (BTS computation.)Let BTSR1 = ({a0, a1}, {e0, e1, e2}, e2, P ) whereP = {a0 →
a0, a1 → a1, e0a0 → a1e0, e0a1 → a1e2, e1a0 → a0e0, e1a1 → a1e2}. Given the worda1e0a0,
the computation ofR1 proceeds as follows:

a1e0a0 ⊢ e0a0a1 ⊢ a1a1e0 ⊢ a1e0a1 ⊢ e0a1a1 ⊢ a1a1e2 ⊢ a1e2a1 ⊢ e2a1a1

The computation halts as the halt symbole2 is the leftmost symbol. ⊓⊔

Lemma 2. Let C be a CTM that runs in timeT (n) on input lengthn. The computation ofC is
simulated using spaceO(T (n)) and timeO(T 2(n)) by a BTSRC .

Before giving the proof of Lemma 2 we explain the proof idea. EachA symbol ofRC encodes
a symbol ofC ’s tape alphabet. EachE symbol ofRC encodes a state ofC. The location of theE
symbol in the data word represents the location ofC ’s tape head, as illustrated in Fig. 3.

Each CTR ofC is simulated in the following way. The change of state, symbol and tape head
position is simulated by executing aP production over theE × A pair that encodes the current
state and read symbol (see Fig. 3(c)). A production is then applied to each symbol in the data
word. This moves the newE × A pair to the left of the data word, in order to prepare for the
simulation of the next CTR.

Proof. Let CTM C=({q1, . . . , q|Q|}, {σ1, . . . , σ|Σ|}, f, q1, q|Q|). We construct a BTSRC that
simulatesC ’s computation.

RC = (AC , EC , e|Q|, PC)
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(a)

0
01

0

q2 (b)

1
01

0
q3

(c) e2 0 0 0 1 applye20 → 1e3

0 0 1 1 e3 apply0 → 0

0 1 1 e3 0 apply0 → 0

1 1 e3 0 0 apply1 → 1

1 e3 0 0 1 apply1 → 1

(d) e3 0 0 1 1 TR simulation complete

Fig. 3. BTS simulating the CTR(q2, 0, 1, q3). CTM statesq2 andq3 are encoded ase2 ande3 respectively.
The e symbols also mark the location of the simulated tape head. (a) Configuration of the CTM before
execution of the CTR. (b) Configuration of the CTM after execution of the CTR. (c) BTS encoding of
configuration in (a). (d) BTS encoding of configuration in (b).

whereAC , EC , PC are defined below.

AC = {a1, . . . , a|Σ|}

C ’s tape symbolsσ1, . . . , σ|Σ| are encoded asa1, . . . , a|Σ| respectively.

EC = {e1, . . . , e|Q|}

C ’s statesq1, . . . , q|Q| of R are encoded ase1, . . . , e|Q| respectively and the encoded halt state
e|Q| is the halt symbol ofRC .

PC = {a1 → a1, . . . , a|Σ| → a|Σ|} ∪ P ′
C

P ′
C is the productions defined on(E −{e|Q|})×A. There is one production inP ′

C for each CTR
in C. CTRs fall in two categories, those that write a single symbol from Σ and those that write
a pair of symbols fromΣΣ. The two possible CTRs, and their encodings as productions,are as
follows

(qx, σi, σj , qy) : exai → ajey

(qx, σi, σjσk, qy) : exai → ajakey

We have constructed a BTSRC that simulatesC. RC usesO(T (n)) space. To simulate a
computation step ofC, a production is applied to each symbol in the data word that encodes the
current configuration ofC. This takesO(T (n)) steps and yields a new data word that encodes the
next configuration ofC ’s computation. In this wayRC simulatesT (n) steps ofC ’s computation
in time O(T 2(n)). The simulation halts when the halt symbole|Q| that encodes the halt state
becomes the leftmost symbol in the data word. ⊓⊔

Given a single tape TMM that runs in timeT (n), we conclude from the previous two lemmata
thatM is simulated by a BTS in timeO(T 4(n)). However this overhead is easily improved to
O(T 3(n)) as the next theorem shows.

Theorem 1. The computation of TMM is simulated using spaceO(T (n)) and timeO(T 3(n))
by a BTSRM .

Proof. From Lemmata 1 and 2 a BTS simulates the computation ofM via a CTM CM . From
Lemma 1CM simulatesM in time O(T 2(n)). HoweverCM usesO(T (n)) space, henceRM

usesO(T (n)) space.RM appliesO(T (n)) productions to simulate a CTR ofCM . ThusRM

executesO(T 2(n)) CTRs to simulatesM via CM in timeO(T 3(n)). ⊓⊔
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5 U5,6

In this section we giveU5,6 our UTM which simulates BTSs. We begin by giving the input en-
coding toU5,6 followed by the definition ofU5,6. We letR denote a BTS that is to be simulated
by U5,6. The encoding ofR as a word is denoted〈R〉. Analogously the encodings ofa ∈ A

ande ∈ E are denoted〈a〉 and〈e〉 respectively. The encodings of productionsP (a) andP (ea)
are denoted as〈P (a)〉 and〈P (ea)〉 respectively. LetR be a BTSR = (A, E, eh, P ) where

A = {a1, . . . , ag}

E = {e1, . . . , eh}

Definition 5 (encoding ofR’s input symbols). The input symbolsai ∈ A and ej ∈ E are

encoded as follows〈ai〉 =
←−
b 4i−3 and〈ej〉 =

←−
b 4jg .

Definition 6 (encoding of a configuration ofR). The encoding of a configuration ofR is of the
form

ωd〈R〉d∗(〈A〉c)∗
(

〈A〉〈E〉 ∪ 〈E〉〈A〉
)

(〈A〉c)∗dω (3)

where(〈A〉c)∗
(

〈A〉〈E〉∪〈E〉〈A〉
)

(〈A〉c)∗ encodesR’s data word via Definition 5,dω = ddd . . .,
ωd = . . . ddd, and〈R〉 is the encoding ofR:

〈R〉 =
−→
b cλ2〈P (eh−1ag)〉λ

2〈P (eh−1ag−1)〉 . . . λ
2〈P (eh−1a1)〉

λ2〈P (eh−2ag)〉λ
2〈P (eh−2ag−1)〉 . . . λ

2〈P (eh−2a1)〉

...

λ2〈P (e1ag)〉λ
2〈P (e1ag−1)〉 . . . λ

2〈P (e1a1)〉

λ3〈P (ag)〉λ
3〈P (ag−1)〉 . . . λ

3〈P (a1)〉λ

(4)

where

〈P (φ)〉 =











dλd4i−3 if φ = ai

λd4mgdλd4k−3 if φ = ejai, ejai → akem

d4mgdλd4k−3dλd4v−3 if φ = ejai, ejai → avakem

(5)

whereai, ak, av ∈ A andej, em ∈ E.
Finally, the position ofU5,6’s tape head is over the symbol immediately to the right of〈R〉d∗.

In the encoding of aninitial configurationof R thed∗ term in Equation (3) is replaced with
the empty wordǫ.

We wish to highlight an abuse of notation. Recall from Section 4 thatP (·) ∈ A ∪ A × E ∪

A × A × E. From Defintion 5 we have〈ai〉, 〈ej〉 ∈ {
←−
b }∗, however in Equation (5) we have

〈P (ai)〉, 〈P (ejai)〉 ∈ {d, λ}∗. In the sequel this ambiguity will be made clear from the context.

5.1 U5,6 algorithm overview

Here we give a brief description of the simulation algorithmby explaining howU5,6 locates and
simulates a production. Using a unary indexing method,U5,6 locates the encoded production to
be simulated. The encoded production (〈P (φ)〉 from Equation (5)) is indexed (pointed to) by the
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number of
←−
b symbols contained in the leftmost encoded symbol or pair of symbols (Definition 5).

If the leftmost encoded symbol is〈ai〉 =
←−
b 4i−3 then the value4i − 3 is used to index〈P (φ)〉.

If the leftmost encoded symbol is〈ej〉 =
←−
b 4jg, and〈ai〉 =

←−
b 4i−3 is adjacent then the value

4jg + 4i − 3 is used to index〈P (φ)〉. The number of
←−
b symbols in the encoded symbol or

pair of symbols is equal to the number ofλ markers between the leftmost encoded symbol and
〈P (φ)〉. To locate〈P (φ)〉, U5,6 simply neutralises the rightmostλ in 〈R〉 (i.e. changesλ to δ)

for each
←−
b in the leftmost encoded symbol or pair of symbols. This process continues until the

markerc that separates two encoded symbols is read. This indexed production〈P (φ)〉 is then
printed immediately to the right of encoded data word. This printing completes the execution
of 〈P (φ)〉.

Definition 7 (U5,6). The TMU5,6 is defined asU5,6 = ({u1, u2, u3, u4, u5}, {
−→
b ,
←−
b , λ, δ, c, d}, d,

f, u1, {u2, u3, u4, u5, u6}) wheref is given by the following transition rules.

u1,
−→
b ,
←−
b , R, u1 u2,

−→
b , u3,

−→
b ,

u1,
←−
b ,
−→
b , L, u1 u2,

←−
b ,
←−
b , L, u2 u3,

←−
b ,
←−
b , R, u3

u1, λ, δ, R, u1 u2, λ, δ, L, u5 u3, λ,

u1, δ, λ, L, u1 u2, δ, δ, L, u2 u3, δ, δ, R, u3

u1, c, c, L, u2 u2, c, c, L, u2 u3, c, c, R, u3

u1, d,
−→
b , L, u1 u2, d,

←−
b , R, u4 u3, d, c, L, u2

u4,
−→
b , u5,

−→
b ,

u4,
←−
b ,
←−
b , R, u4 u5,

←−
b , d, R, u5

u4, λ, u5, λ, λ, R, u5

u4, δ, δ, R, u4 u5, δ, λ, R, u5

u4, c, c, R, u4 u5, c, d, R, u1

u4, d,
←−
b , L, u2 u5, d,

←−
b , R, u3

We give an example ofU5,6 simulating a production. This simulation is of aP (ai) production
on an arbitrary data word. In this example we presentU5,6’s algorithm as three cycles. In the
configurations below the current state ofU5,6 is highlighted in bold font to the left ofU5,6’s tape
contents. The position ofU5,6’s tape head is given by an underline. The start state ofU5,6 is u1

andU5,6’s tape head is over the symbol directly to the right of〈R〉 (as in Definition 6).

Example 2 (U5,6 simulating productionP (ai)). In this exampleR’s data word isaiA
∗EA∗. En-

coding this data word using Definitions 5 and 6 gives the word
←−
b 4i−3c(〈A〉c)∗〈E〉(〈A〉c)∗. This

gives a configuration ofU5,6 of the form:

u1u1u1

−→
b . . . λ3〈P (ai)〉λ

3 . . . λ3〈P (a1)〉λd∗
←−
b
←−
b 4i−4c(〈A〉c)∗〈E〉(〈A〉c)∗dd . . .
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Cycle 1 (index next production)

u1,
−→
b ,
←−
b , R, u1

u1,
←−
b ,
−→
b , L, u1

u1, λ, δ, R, u1

u1, δ, λ, L, u1

u1, c, c, L, u2

u1, d,
−→
b , L, u1

In Cycle 1,U5,6 reads the leftmost encoded symbol and locates the next encoded production to

execute. ThenU5,6’s tape head scans from left to right and when it reads a
←−
b it changes it to a

−→
b .

ThenU5,6’s tape head scans left to neutralise aλ marker (changes it to aδ). This process is re-
peated untilU5,6 reads ac. This signals the end of Cycle 1 and the beginning of Cycle 2. In the
configurations below we replace〈P (ai)〉 with dλd4i−3 and〈P (a1)〉 with dλd, their respective
encodings via Equation (5). After the initial configurationwe have:
u1u1u1

−→
b . . . λ3dλd4i−3λ3 . . . λ3dλdλd∗

−→
b
←−
b 4i−4c(〈A〉c)∗〈E〉(〈A〉c)∗dd . . .

u1u1u1

−→
b . . . λ3dλd4i−3λ3 . . . λ3dλdλ

−→
b ∗−→b

←−
b 4i−4c(〈A〉c)∗〈E〉(〈A〉c)∗dd . . .

u1u1u1

−→
b . . . λ3dλd4i−3λ3 . . . λ3dλdδ

−→
b ∗−→b

←−
b 4i−4c(〈A〉c)∗〈E〉(〈A〉c)∗dd . . .

u1u1u1

−→
b . . . λ3dλd4i−3λ3 . . . λ3dλdδ

←−
b ∗←−b

←−
b 4i−4c(〈A〉c)∗〈E〉(〈A〉c)∗dd . . .

In the configuration immediately above aλ marker has been neutralised (changed to aδ). The
above process is repeated until thec to the right of〈ai〉 =

←−
b 4i−3 is read.

u1u1u1

−→
b . . . λ3dλd4i−3δ3 . . . δ3

←−
b δ
←−
b δ
←−
b ∗←−b 4i−3c(〈A〉c)∗〈E〉(〈A〉c)∗dd . . .

u2u2u2

−→
b . . . λ3dλd4i−3δ3 . . . δ3

←−
b δ
←−
b δ
←−
b ∗←−b 4i−3c(〈A〉c)∗〈E〉(〈A〉c)∗dd . . .

In the configuration immediately aboveU5,6 has entered Cycle 2. The encoded production〈P (a1)〉
was located by neutralising4i− 3 markers.

Cycle 2 (print production)

u2,
←−
b ,
←−
b , L, u2 u4,

←−
b ,
←−
b , R, u4 u3,

←−
b ,
←−
b , R, u3 u5, λ, λ, R, u5

u2, λ, δ, L, u5 u4, δ, δ, R, u4 u3, δ, δ, R, u3 u5, d,
←−
b , R, u3

u2, δ, δ, L, u2 u4, c, c, R, u4 u3, c, c, R, u3

u2, c, c, L, u2 u4, d,
←−
b , L, u2 u3, d, c, L, u2

u2, d,
←−
b , R, u4

Cycle 2 prints the encoded production indexed in Cycle 1 immediately to the right of the encoded
data word.U5,6 scans left in stateu2 and records the next symbol of the encoded production to

be printed. IfU5,6 reads ad it enters stateu4 scans right and prints a
←−
b at the right end of the

encoded data word. IfU5,6 reads the subworddλ it scans right in stateu3 and prints ac at the right
end of the encoded data word. This process is repeated until the end of the encoded production
is detected causingU5,6 to enter Cycle 3. The end of the encoded production is detected byU5,6
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reading the subwordλλ.
u2u2u2

−→
b . . . λ3dλd4i−4dδ3 . . . δ3

←−
b δ
←−
b δ
←−
b ∗←−b 4i−3c(〈A〉c)∗〈E〉(〈A〉c)∗dd . . .

u4u4u4

−→
b . . . λ3dλd4i−4

←−
b δ3 . . . δ3

←−
b δ
←−
b δ
←−
b ∗←−b 4i−3c(〈A〉c)∗〈E〉(〈A〉c)∗dd . . .

u4u4u4

−→
b . . . λ3dλd4i−4

←−
b δ3 . . . δ3

←−
b δ
←−
b δ
←−
b ∗←−b 4i−3c(〈A〉c)∗〈E〉(〈A〉c)∗dd . . .

u2u2u2

−→
b . . . λ3dλd4i−4

←−
b δ3 . . . δ3

←−
b δ
←−
b δ
←−
b ∗←−b 4i−3c(〈A〉c)∗〈E〉(〈A〉c)∗

←−
b d . . .

u2u2u2

−→
b . . . λ3dλd4i−4

←−
b δ3 . . . δ3

←−
b δ
←−
b δ
←−
b ∗←−b 4i−3c(〈A〉c)∗〈E〉(〈A〉c)∗

←−
b d . . .

In the configuration immediately above a
←−
b is printed at the right end of the encoded data word.

Immediately after the above process is repeated a futher4i− 4 times we have the following:
u2u2u2

−→
b . . . λ3dλ

←−
b 4i−3δ3 . . . δ3

←−
b δ
←−
b δ
←−
b ∗←−b 4i−3c(〈A〉c)∗〈E〉(〈A〉c)∗

←−
b 4i−3dd . . .

u5u5u5

−→
b . . . λ3dδ

←−
b 4i−3δ3 . . . δ3

←−
b δ
←−
b δ
←−
b ∗←−b 4i−3c(〈A〉c)∗〈E〉(〈A〉c)∗

←−
b 4i−3dd . . .

u3u3u3

−→
b . . . λ3

←−
b δ
←−
b 4i−3δ3 . . . δ3

←−
b δ
←−
b δ
←−
b ∗←−b 4i−3c(〈A〉c)∗〈E〉(〈A〉c)∗

←−
b 4i−3dd . . .

u3u3u3

−→
b . . . λ3

←−
b δ
←−
b 4i−3δ3 . . . δ3

←−
b δ
←−
b δ
←−
b ∗←−b 4i−3c(〈A〉c)∗〈E〉(〈A〉c)∗

←−
b 4i−3dd . . .

u2u2u2

−→
b . . . λ3

←−
b δ
←−
b 4i−3δ3 . . . δ3

←−
b δ
←−
b δ
←−
b ∗←−b 4i−3c(〈A〉c)∗〈E〉(〈A〉c)∗

←−
b 4i−3cd . . .

In the configuration immediately above ac marker is printed at the right end of the encoded data
word. On the next scan leftU5,6 encounters the subwordλλ which causesU5,6 to enter Cycle 3.

u2u2u2

−→
b . . . λλλ

←−
b δ
←−
b 4i−3δ3 . . . δ3

←−
b δ
←−
b δ
←−
b ∗←−b 4i−3c(〈A〉c)∗〈E〉(〈A〉c)∗

←−
b 4i−3cd . . .

u5u5u5

−→
b . . . λλδ

←−
b δ
←−
b 4i−3δ3 . . . δ3

←−
b δ
←−
b δ
←−
b ∗←−b 4i−3c(〈A〉c)∗〈E〉(〈A〉c)∗

←−
b 4i−3cd . . .

u5u5u5

−→
b . . . λλδ

←−
b δ
←−
b 4i−3δ3 . . . δ3

←−
b δ
←−
b δ
←−
b ∗←−b 4i−3c(〈A〉c)∗〈E〉(〈A〉c)∗

←−
b 4i−3cd . . .

Cycle 3 (restore tape)

u5,
←−
b , d, R, u5

u5, δ, λ, R, u5

u5, c, d, R, u1

Cycle 3 restoresR’s encoded table of behaviour after an encoded production has been indexed
and printed.U5,6 scans right restoring each

←−
b to ad and eachδ to aλ. WhenU5,6 reads thec

at the left end of the encoded data word, it changes this c to a d. This cycle is now complete and
Cycle 1 is entered.
u5u5u5

−→
b . . . λ3dλd4i−3λ3 . . . λ3dλdλd∗d4i−3c(〈A〉c)∗〈E〉(〈A〉c)∗

←−
b 4i−3cd . . .

u1u1u1

−→
b . . . λ3dλd4i−3λ3 . . . λ3dλdλd∗d4i−3d(〈A〉c)∗〈E〉(〈A〉c)∗

←−
b 4i−3cd . . . (I)

The simulation of the encoded production is now complete.U5,6 is ready to begin the indexing
and execution of the next encoded production. Configuration(I) satisfies Definition 6. ⊓⊔

Remark 1.In Configuration (I) we see that the wordd∗ separating〈R〉 and the encoded data
word increased in length by4i − 3. During simulation of each production the word encoding
the leftmost symbol is changed to a word contsisting only ofds. Hence the number ofds that
separate〈R〉 and the encoded data word increases as the simulation continues.
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Example 3 (U5,6 simulating productionP (ejai)). In this exampleR’s data word isejaiA
∗. En-

coding this data word using Definitions 5 and 6 gives the word
←−
b 4jg
←−
b 4i−3c(〈A〉c)∗. This gives

a configuration ofU5,6 of the form:

u1u1u1

−→
b . . . λ2〈P (ejai)〉 . . . λ

3〈P (a1)〉λd∗
←−
b 4jg
←−
b 4i−3c(〈A〉c)∗dd . . . (II)

The productionP (ejai) = akem is encoded as〈P (ejai)〉 = λd4mgdλd4k−3 via Equation (5).
Thus from the configuration immediately above get:
u1u1u1

−→
b . . . λ2λd4mgdλd4k−3 . . . λ3dλdλd∗

←−
b 4jg
←−
b 4i−3c(〈A〉c)∗dd . . .

u1u1u1

−→
b . . . λ2λd4mgdλd4k−3 . . . δ3

←−
b δ
←−
b δ
←−
b ∗←−b 4jg

←−
b 4i−3c(〈A〉c)∗dd . . .

In the configuration immediately above we skip to the end of Cycle 1. The indexing of〈P (ejai)〉

is now complete. In Configuration (II) noc marker separates the word
←−
b 4jg = 〈ej〉 and the

word
←−
b 4i−3 = 〈ai〉 hence both are used to index〈P (ejai)〉. Now U5,6 prints 〈P (ejai)〉 in the

same manner as Example (2) to give:
u5u5u5

−→
b . . . λ2δ

←−
b 4mg

←−
b δ
←−
b 4k−3 . . . δ3

←−
b δ
←−
b δ
←−
b ∗←−b 4jg

←−
b 4i−3c(〈A〉c)∗

←−
b 4k−3c

←−
b 4mgdd . . .

The configuration immediately above ends Cycle 2. The printing of 〈P (ejai)〉 at the right end
of the encoded data word is now complete. Note that ac marker is not printed to the right of
the word

←−
b 4mg = 〈em〉. Thus when this〈em〉 becomes the leftmost encoded symbol, both its

value and the encoded symbol immediately to it’s right are used to index the appropriate encoded
production. Skiping to the end of Cycle 3 gives:
u5u5u5

−→
b . . . λ3d4mgdλd4k−3 . . . λ3dλdλd∗d4jgd4i−3d(〈A〉c)∗

←−
b 4k−3c

←−
b 4mgdd . . .

The simulation of productionP (ejai) is now complete. ⊓⊔

Lemma 3. U5,6 halts when the encoded halt symbol becomes the leftmost encoded symbol in the
encoded data word.

Proof. The halt symboleh is encoded via Definition 5 as〈eh〉 =
←−
b 4hg. The arbitrary data word

aiA
∗ to the right ofeh is encoded via Definition 6 as

←−
b 4i−3c(〈A〉c)∗. When the halt symboleh

is the leftmost symbol we get a configuration of the form:
u1u1u1

−→
b cλ . . . λd∗

←−
b 4hg

←−
b 4i−3c(〈A〉c)∗dd . . .

u1u1u1

−→
b cδ . . . δ

←−
b ∗←−b 4hg

←−
b
←−
b
←−
b 4i−5c(〈A〉c)∗dd . . . (III)

In the configuration immediately above we skip to the point inthe simulation where everyλ in
〈R〉 is neutralised. The number ofλ markers in〈R〉 is 4hg + 1 (see Equation (4)). Hence every
←−
b in 〈eh〉 and a single

←−
b from 〈ai〉 are read to neutralise allλ markers in〈R〉. WhenU5,6 reads

the second
←−
b in 〈ai〉 it scans left to give:

u1u1u1

−→
b cδ . . . δ

−→
b ∗−→b 4hg

−→
b
−→
b
←−
b 4i−5c(〈A〉c)∗dd . . .

u2u2u2

−→
b cδ . . . δ

−→
b ∗−→b 4hg

−→
b
−→
b
←−
b 4i−5c(〈A〉c)∗dd . . .

There is no TR for the state-symbol pair (u2,
−→
b ) so the computation halts. Above we assume

that 〈ai〉 has more than one
←−
b . Howevera1 is encoded by a single

←−
b . This unique case is not

a problem. In Configuration (III) ac is read byU5,6 instead of a
←−
b sendingU5,6’s control in to

stateu2. ThenU5,6 scans left in stateu2 and halts when it reads the
−→
b . ⊓⊔
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Lemma 4. U5,6 simulates any BTS.

Proof. Examples 2 and 3 give simulations of the two types of productions. Example 2 is a simula-
tion of an arbitraryP (ai) production on an arbitrary data word. Example 3 is specific inthe sense
that it is a production of the formP (ejai) = akem. However Example 3 is easily extended to
verify the other case ofP (ejai) = avakem as it requires only the printing of a furtherA symbol.
From Lemma 3 we know that when the encoded halt symbol becomesthe leftmost symbol the
computation ofU5,6 halts. HenceU5,6 simulates the sequence of productions in a BTS’s compu-
tation. The encoded output is easily decoded via Definition 5. ⊓⊔

Theorem 2. U5,6 uses spaceO(|Σ|T 3(n)+|Q||Σ|2T 2(n)+|Q|2|Σ|4) and timeO(|Σ|2T 6(n)+
|Q||Σ|3T 5(n) + |Q|2|Σ|4T 4(n) + |Q|2|Σ|5T 3(n) + |Q|3|Σ|6T 2(n)) to simulate TMM .

Proof. From Theorem 1 the BTSRM uses spaceO(T (n)) and timeO(T 3(n)).
(Space). From the proof of Lemmata 1 and 2 the BTSRM that simulatesM via CM has

O(|Q||Σ|) of the E symbols andO(|Σ|) of the A symbols. There is a production for eachA

symbol and a production for each(E−{eh})×A pair. Hence there areO(|Q||Σ|2) productions.
From Equation (5) the length of an encoded production inRM is O(|Q||Σ|2). Thus the space
used to storeRM is O(|Q|2|Σ|4).

The spaceCM uses isO(T (n)). To encodeCM ’s tape contents and current stateRM uses
O(T (n)) of its A symbols and a singleE symbol. From the previous paragraph and Definition 5
U5,6 usesO(|Σ|) to store eachA symbol andO(|Q||Σ|2) to store eachE symbol. ThusU5,6

requiresO(|Σ|T (n) + |Q||Σ|2) space to storeRM ’s data word.
After each production has executed, the space betweenRM ’s encoded table of behaviour and

data word increases (Remark 1). For everyT (n) productions executed,T (n) encodedA symbols
and a single encodedE symbol are deleted increasing this space byO(|Σ|T (n) + |Q||Σ|2).
After simulatingO(T 3(n)) productions there isO(|Σ|T 3(n) + |Q||Σ|2T 2(n)) space between
RM ’s encoded table of behaviour and data word. The space used tostoreRM and its data word
is O(|Σ|T (n) + |Q|2|Σ|4). The space used byU5,6 after simulatingO(T 3(n)) productions is
O(|Σ|T 3(n) + |Q||Σ|2T 2(n) + |Q|2|Σ|4).

(Time). Simulating aP (ea) production involves 3 Cycles. (1) Index an encoded production
by neutralisingO(|Q||Σ|2) λs: O(|Q||Σ|3T 3(n) + |Q|2|Σ|4T 2(n) + |Q|3|Σ|6) steps. (2) Print
an encoded production of lengthO(|Q||Σ|2): O(|Q||Σ|3T 3(n) + |Q|2|Σ|4T 2(n) + |Q|3|Σ|6)
steps. (3) RestoreU5,6’s tape:O(|Σ|T 3(n) + |Q||Σ|2T 2(n) + |Q|2|Σ|4) steps. ThusU5,6 simu-
lates a singleP (ea) production ofRM in timeO(|Q||Σ|3T 3(n) + |Q|2|Σ|4T 2(n) + |Q|3|Σ|6).
Using a similar argument a singleP (a) production of lengthO(|Σ|) is simulated byU5,6 in
timeO(|Σ|2T 3(n) + |Q||Σ|3T 2(n) + |Q|2|Σ|5). For everyO(T (n)) prodcutions executedRM

executes only a singleP (ea) production. HenceU5,6 simulatesM in time O(|Σ|2T 6(n) +
|Q||Σ|3T 5(n) + |Q|2|Σ|4T 4(n) + |Q|2|Σ|5T 3(n) + |Q|3|Σ|6T 2(n)). ⊓⊔

In summary,U5,6 simulates TMM in time O(T 6(n)) and spaceO(T 3(n)) if we ignore the
number of states and symbols ofM in our analysis.

This result holds for more general definitions of TMs. For example, letM ′ be a deterministic
multitape TM.M ′ would be converted to a single tape TMM . The state-symbol product ofM
would be only a constant times greater than the state-symbolproduct ofM ′, alsoM would be
at worst polynomially slower thanM ′. Thus,U5,6 simulatesM ′ in polynomial time. We get the
following immediate corollary.
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Corollary 1. There are polynomial time UTMs in UTM(m, n) for all m ≥ 5, n ≥ 6.

Cook [3, 17] has recently published UTMs in UTM(2, 5), UTM(3, 4), UTM(4, 3) and UTM(7, 2)
that are smaller than Rogozhin et al’s. However, Cooks machines also suffer from an exponential
slowdown through simulation of 2-tag systems. Cook’s UTMs differ from the classical Turing
machine definition [5]. Instead of having a blank symbol these machines have a blank period.
Cook’s UTMs require the blank tape to have an infinitely repeating word to the left and a differ-
ent infinitely repeating word to the right.

We have improved the state of the art in small efficient UTMs. Fig. 1 summarises our results.
Our polynomial time UTM is smaller than those in [11]. Any reduction in the size of our UTM
in terms of state-symbol product would result in a polynomial time UTM of the same size as
Rogozhin et al’s exponential time UTMs.
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