
Small fast universal Turing machines

Turlough Neary

TASS research group, Department of Computer Science, National University of

Ireland, Maynooth, Ireland

Damien Woods

Boole Center for Research in Informatics, School of Mathematics, University

College Cork, Ireland

Abstract

We present deterministic polynomial time universal Turing machines with state-
symbol pairs of (3, 11), (5, 7), (6, 6), (7, 5) and (8, 4). These are the smallest known
universal Turing machines that simulate Turing machines in polynomial time.

Key words: universality, small universal Turing machine, computational
complexity, polynomial time.

1 Introduction

Shannon [1] first posed the question of finding the smallest possible universal
Turing machine (UTM). Initially small UTMs were constructed that directly
simulated Turing machines (TMs) [2,3]. Subsequently the technique of indirect
simulation via other universal models was successfully applied. In the early
1960s Minsky [4] created a 7-state, 4-symbol machine that simulates 2-tag
systems. Minsky’s technique was more recently used by Rogozhin et al. to
create the smallest known UTMs.

Let UTM(m, n) be the class of deterministic UTMs with m states and n sym-
bols. Rogozhin [5] constructed UTMs in the classes UTM(24, 2), UTM(10, 3),
UTM(7, 4), UTM(5, 5), UTM(4, 6), UTM(3, 10) and UTM(2, 18), Kudlek and
Rogozhin [6] constructed a machine in UTM(3, 9), and Baiocchi [7] constructed

Email addresses: tneary@cs.may.ie (Turlough Neary), d.woods@bcri.ucc.ie
(Damien Woods).

Preprint submitted to Elsevier 19 November 2007

r

explicitly constructed
polynomial time UTMs

explicitly constructed
exponential time UTMs

polynomial time curve

exponential time curve

non-universal curve

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

states

symbols

r

r

r

r

r

Fig. 1. State-symbol plot of small UTMs. The plot shows the polynomial time curve
induced by our machines, Rogozhin et al.’s exponential time curve, and the current
non-universal TM curve. A polynomial time UTM exists for each state-symbol pair
that is on, above, and to the right of the polynomial time curve.

UTMs in UTM(19, 2) and UTM(7, 4). In terms of the number of transition
rules (TRs), Baiocchi’s UTM(7, 4) machine is the smallest with only 25 TRs.

Due to their unary encoding of the TM tape contents, 2-tag systems are expo-
nentially slow simulators of TMs [8]. It is unknown if 2-tag systems simulate
TMs in polynomial time. Hence the UTMs of Minsky, Rogozhin, Kudlek and
Baiocchi all suffer from an exponential time complexity overhead. Fig. 1 is
a state-symbol plot, here we see that these machines induce a curve which
we call the exponential time curve. It is known that the following classes
are empty: UTM(2, 2) [9,10], UTM(3, 2) [11], UTM(2, 3) (Pavlotskaya, un-
published), UTM(1, n) [12] and UTM(n, 1) (trivial) for n > 1. These results
induce the non-universal curve in Fig. 1.

Our main result states that there exists deterministic polynomial time UTMs
in the classes UTM(3, 11), UTM(5, 7), UTM(6, 6), UTM(7, 5) and UTM(8, 4).
Fig. 1 illustrates the polynomial time curve that is induced by our result. It
follows immediately that there exists polynomial time UTMs for each state-
symbol pair that is on, above, and to the right of the polynomial time curve
in Fig. 1. It is interesting to note that in some places our polynomial time
curve actually intersects the exponential time curve. Also it should be noted
that our UTMs are the smallest that directly simulate TMs.

Before our work the most recent small polynomial time UTM was constructed

2

by Watanabe [3] in 1961 and is in the class UTM(8, 5). Subsequent efforts
to construct smaller UTMs have used the (exponentially slow) technique of
simulation via 2-tag systems. Our results offer a significant improvement over
Watanabe’s 1961 machine; our machines are significantly smaller and represent
a new algorithm for small UTMs.

In Section 2 we give some definitions used to encode input to our UTMs and
an overview of our simulation algorithm. In Section 3 we give a machine in
the class UTM(3, 11). We explain its input encoding and computation in some
detail. Section 4 contains a proof of correctness which proves that this UTM
simulates TMs in polynomial time. In Section 5 our algorithm is extended to
UTMs with a number of other state-symbol products and finally a conclusion
is given.

2 Preliminaries

At the beginning of this section we establish some formal conventions. We
then introduce some general encodings that each of our five machines adhere
to. We also give an overview of our simulation algorithm. Each UTM uses a
variation on this algorithm.

We refer the reader to Rogozhin [5] for a definition of UTM and a definition
of simulation between TMs. In both of these definitions the encoding and
decoding functions are recursive, our UTMs satisfy this requirement. Even
stronger, the encoding and decoding functions that we use are polynomial
time (in fact logspace) computable. Clearly the property of polynomial time
encoding and decoding is a necessary requirement for UTMs that simulate in
polynomial time. We cite van Emde Boas [13] for a definition of polynomial
time simulation.

2.1 TMs

We consider deterministic TMs with a single one-way infinite tape and a single
tape head [14]. A TM is a tuple M = (Q, Σ, B, f, q1, H). Here Q and Σ are the
finite sets of states and tape symbols respectively. B ∈ Σ is the blank symbol,
q1 ∈ Q is the start state, and H ⊆ Q is the set of halt states. The transition
function f : Q × Σ → Σ × {L, R} × Q is defined for all q ∈ Q −H . If q ∈ H

then the function f is undefined on at least one element of q × Σ. We write
f as a list of TRs. Each TR is a quintuple t = (qx, σ1, σ2, D, qy), with initial
state qx, read symbol σ1, write symbol σ2, move direction D and next state qy.

3

Throughout the paper U denotes a UTM and for some m, n ∈ N, Um,n denotes
our UTM in class UTM(m, n). We let M always denote a TM that is to be
simulated by some U . The encoding of M as a word is denoted M̂ . Analogously
the encodings of state q and tape symbol σ are denoted q̂ and σ̂ respectively.
For convenience we often call the word q̂ a state of M̂ . We let N denote the set
of nonnegative integers. In regular expressions ∪, ∗, ǫ and parentheses have
their usual meanings [14].

2.2 Input encodings for UTMs

Without loss of generality, any simulated TM M has the following restrictions:
(i) M ’s tape alphabet is Σ = {0, 1} and 0 is the blank symbol, (ii) for all
qi ∈ Q, i satisfies 1 6 i 6 |Q|, (iii) f is always defined, (iv) M ’s start state
is q1, (v) M has exactly one halt state q|Q| and its transition rules are of
the form (q|Q|, 0, 0, L, q|Q|) and (q|Q|, 1, 1, L, q|Q|). Point (v) is a well-known
halting technique that places the tape head at the beginning of the output.
The following definitions encode M .

Definition 1 (Encoding of M ’s tape symbols) The binary tape symbols

0 and 1 of M are encoded as the words 0̂ =←−a←−a and 1̂ =
←−
b←−a .

Each of our five UTMs has the symbols←−a ,
←−
b and λ as part of its tape alpha-

bet. The symbols ←−a and
←−
b are typically used to encode M ’s tape contents

while λ is usually used as a marker symbol.

Definition 2 (Encoding of M ’s initial configuration) The encoding of an
initial configuration of M is of the form

M̂ q̂1ŵ
←−a ω

where q̂1 is start state of M̂ , ŵ ∈ {←−a←−a ,
←−
b←−a }∗ is the encoding of the input

to M that is given by Definition 1, ←−a ω = ←−a←−a←−a . . ., and M̂ is the encoding
of M :

M̂ = λP(f, q|Q|)λP(f, q|Q|−1)λ . . . λP(f, q2)λP(f, q1)λE (1)

where the function P is defined below in Equation (2), and the word E ∈

{ǫ, e,←−a , λ
←−
b λ←−a ,

←−
b
←−
b
←−
b λ←−a } specifies the ending.

The initial position of U ’s tape head is at the leftmost symbol of q̂1.

In the previous definition the encoding of M is placed to the left of its encoded
input. The initial position of M ’s simulated tape head is indicated by the word
q̂1 and is immediately to the left of the leftmost encoded input symbol. The

4

remainder of the infinite tape of U contains the blank symbol ←−a . The ending
E varies over the five UTMs that we present.

The encoding of M ’s TRs is defined using the function P that specifies the
relative positions of encoded TRs for a given state qi.

P(f, qi) = E(ti,1)λE(ti,0)λE(ti,0)λE(ti,1)λE
′(f, ti,0) (2)

The encoding functions E and E ′ map TRs to words called ETRs. There is a
unique pair of E and E ′ functions for each of our five UTMs. Given what we
have so far, we need only to give E , E ′ and q̂1 to completely define the input
to our UTMs. These functions are given before each UTM.

2.3 UTM algorithm overview

In order to distinguish the current state qx of a simulated TM M , the earliest
small UTMs [2,3] maintained a list of all states with a marker at qx. A change
in M ’s current state is simulated by moving the marker to another location in
the list of states. The most significant difference between these earlier UTMs
and our algorithm is that we store the encoded current state of M on M ’s
simulated tape at the location of M ’s tape head. Thus the encoded current
state also records the current location of M ’s tape head during the simulation.
This point is illustrated in Fig. 2.

The problem of constructing a UTM can be divided into the following basic
steps. The UTM (1) reads the encoded current state and (2) reads the encoded
read symbol. Next the UTM (3) prints the encoded write symbol, (4) moves
the simulated tape head and (5) establishes the new encoded current state.
Due to the location of the encoded current state and the encodings that we
use for our UTMs, the sets {(1), (2)} and {(3), (4), (5)} each become a single
process. Steps (1) and (2) are combined such that a single set of transition
rules read both the encoded current state and the encoded read symbol. Steps
(3), (4) and (5) have been similarly combined. Combining these steps has
reduced the number of transition rules needed by our UTMs.

Here we give a brief description of the simulation algorithm. The encoded cur-
rent state of M is positioned at the simulated tape head location of M . Using
a unary indexing method, U locates the next ETR to execute. The next ETR

is indexed (pointed to) by the number of
←−
b symbols contained in the encoded

current state and read symbol. If the number of
←−
b symbols in the encoded

current state and encoded read symbol is i then the number of λ markers
between the encoded current state and the next ETR to be executed is i− 1.
To locate the next ETR, U simply neutralises the rightmost λ (i.e. replaces

λ with some other symbol) for each
←−
b in the encoded current state and read

5

(a)

(b)

(cR) (cL)

encoded current state encoded read symbol

encoded write symbol

Fig. 2. Right and left moving transition rule simulations. The encoded current state
marks the location of M ’s simulated tape head. (a) Encoded configurations before
beginning each TR simulation. (b) Intermediate configurations immediately after
the encoded read symbol and encoded current state have been read. (cR) Configu-
ration immediately after the simulated right move. (cL) Configuration immediately
after the simulated left move.

symbol, until there is only one
←−
b remaining. This indexed ETR is printed

over the encoded current state and read symbol. This printing completes the
execution of the ETR and establishes the new encoded current state, encoded
write symbol and simulated tape head move. Fig. 2(b) represents the tape
contents of U after an ETR of M̂ is indexed. Figs. 2(cR) and 2(cL) represent
the two possibilities for U ’s tape contents after an ETR is printed. To give
more details we present the algorithm as four cycles.

Cycle 1 (Index next ETR) In this cycle U reads the encoded current
state and encoded read symbol and neutralises markers to index the next

ETR. Initially U ’s tape head scans to the right until it reads a
←−
b . This

←−
b is

replaced with some other symbol. U ’s tape head then scans left to neutralise

a λ marker. This process is repeated until U reads the subword
←−
b←−a while

scanning right. This signals that the encoded current state and encoded read
symbol have been read. Cycle 1 is now complete and Cycle 2 begins.

Cycle 2 (Print ETR) Cycle 2 copies an ETR to M ’s simulated tape head
location. U scans left and records the next symbol of the ETR to be printed. U

then scans right and prints the next symbol of the ETR at a location specified
by a marker. The location of this marker is initially set at the end of Cycle 1
and its location is updated after the printing of each symbol of the ETR. This
process is repeated until the end of the ETR is detected causing U to enter
Cycle 3. The end of the ETR is detected by U encountering the marker or
neutralised marker that separates ETRs.

Cycle 3 (Restore tape) Cycle 3 restores M ’s encoded table of behaviour
after an ETR has been indexed and printed. U scans right restoring M̂ to its
initial value. This Cycle ends when U encounters the marker which was used
in Cycle 2 to specify the position of the next symbol of the ETR to be printed.
U then enters Cycle 4.

Cycle 4 (Choose read or write symbol) This cycle either (i) begins the

6

indexing of an ETR or (ii) completes the execution of an ETR. More precisely:
(i) if U is immediately after simulating a left move then this cycle reads the
encoded read symbol to the left of the encoded current state, (ii) if U is
simulating a right move then this cycle prints the encoded write symbol to
the left of the encoded current state. On completion of either case Cycle 1 is
entered.

3 Construction of U3,11

Our first machine is in the class UTM(3, 11) and is denoted U3,11. As usual we
let M be a TM that is simulated by U3,11.

Definition 3 (Encoding of start state of M̂ for U3,11) The start state of

M̂ is q̂1 =←−a 5|Q|←−b 2.

Recall that M̂ is the encoding of M and is defined via the functions E and E ′.
These encoding functions map to words over the alphabet of U3,11, as defined
in Equations (3) and (4). We denote the words defined by E and E ′ with the
acronyms ETR and ETR′ respectively.

We use a shorthand notation for TRs. We let ti,σ1
= (qi, σ1, σ2, D, qy), that

is ti,σ1
denotes the unique TR in M with initial state qi and read symbol σ1.

Also tR,i = (qx, σ1, σ2, R, qi) and tL,i = (qx, σ1, σ2, L, qi); we write ∃tR,i to mean
that there exists a TR which moves right and has qi as its next state (there
are zero or more such TRs).

Let t = (qx, σ1, σ2, D, qy) be a fixed TR in M , then t is encoded via Equa-
tion (2) using the function E on its own, or in conjunction with E ′, where

E(t) =





ea(t)hb(t) if D = R, σ2 = 0

hea(t)hb(t) if D = R, σ2 = 1

ea(t)−1hb(t)eee if D = L, σ2 = 0

ea(t)−1hb(t)ehe if D = L, σ2 = 1

(3)

and

E ′(f, t) =





ea(tR,x)−3hb(tR,x)+2 if ∃tR,x, qx 6= q1

ǫ if ∄tR,x, qx 6= q1

e5|Q|−3h4 if qx = q1

(4)

where as before tR,x is any right moving TR such that tR,x ⊢ t, the functions
a(·) and b(·) are defined by Equations (5) and (6), e and h are tape symbols,

7

and ǫ is the empty word.

a(t) = 5|Q|+ 2− b(t) (5)

b(t) = 2 +
y∑

j=1

g(t, j) (6)

where g(·) is given by

g(t, j) =





5 if j < y

3 if D = L, j = y

0 if D = R, j = y

(7)

Definition 4 (Encoding of M ’s current state for U3,11) The encoding of

M ’s current state is of the form ←−a
∗←−

b
2←−

b
∗
{←−a ∪ ǫ} and is of length 5|Q|+ 2.

The value of the ending E, from Equation (1), for U3,11 is E = e.

Example 1 (Encoding of M1 for U3,11) Let TM M1 = ({q1, q2, q3}, {0, 1}, 0, f, q1, {q3})
where f = {(q1, 0, 1, R, q2), (q1, 1, 0, R, q1), (q2, 0, 0, L, q2), (q2, 1, 1, L, q3), (q3, 0, 0, L, q3),
(q3, 1, 1, L, q3)}. Using Equation (1), M1 is encoded as:

M̂1 = λP(f, q3)λP(f, q2)λP(f, q1)λe

From Definition 3 the start state of M̂1 is←−a 15←−b 2. Substituting the appropriate
values from Equation (2) gives

M̂1 =λE(t3,1)λE(t3,0)λE(t3,0)λE(t3,1)λE
′(f, t3,0)

λE(t2,1)λE(t2,0)λE(t2,0)λE(t2,1)λE
′(f, t2,0)

λE(t1,1)λE(t1,0)λE(t1,0)λE(t1,1)λE
′(f, t1,0)λe

Rewriting this using Equations (3) and (4) and the values given in Table 1
gives the word

M̂1 =λeh15eheλeh15eeeλeh15eeeλeh15eheλǫλeh15eheλe6h10eeeλ

e6h10eeeλeh15eheλe7h9λe15h2λhe10h7λhe10h7λe15h2λe12h4λe
(8)

2

To aid understanding, note that a key property of P from Equation (2) is that
it creates five ETRs in M̂ for each state in M . Hence five ETRs encode two
TRs. This apparent redundancy is due to the algorithm used by our UTMs.
When executing an ETR, the algorithm makes use of the direction of the
previous tape head movement of M . The leftmost ETR given by Equation (2)
simulates execution of TR ti,1 following a simulated left move. The second
ETR from the left simulates execution of TR ti,0 following a simulated left

8

ETR Transition Rule tR,x for E ′ b(t) a(t) E ′ or E

E ′(f, t1,0) q1, 0, 1, R, q2 q1, 1, 0, R, q1 2 + 0 = 2 15 e12h4

E(t1,0) q1, 0, 1, R, q2 2 + 5 + 0 = 7 10 he10h7

E(t1,1) q1, 1, 0, R, q1 2 + 0 = 2 15 e15h2

E ′(f, t2,0) q2, 0, 0, L, q2 q1, 0, 1, R, q2 2 + 5 + 0 = 7 10 e7h9

E(t2,0) q2, 0, 0, L, q2 2 + 5 + 3 = 10 7 e6h10eee

E(t2,1) q2, 1, 1, L, q3 2 + 5 + 5 + 3 = 15 2 eh15ehe

E ′(f, t3,0) q3, 0, 0, L, q3 null null null ǫ

E(t3,0) q3, 0, 0, L, q3 2 + 5 + 5 + 3 = 15 2 eh15eee

E(t3,1) q3, 1, 1, L, q3 2 + 5 + 5 + 3 = 15 2 eh15ehe

Table 1
Values for the a(·) and b(·) functions, and for each ETR of M̂1 in Example 1 .

move. The rightmost ETR and the centre ETR are both used to simulate
execution of TR ti,0 following a simulated right move. Finally the second ETR
from the right simulates execution of TR ti,1 following a simulated right move.

In our simulation, the number of
←−
b symbols in the encoded current state is

used as a unary index to locate the next ETR to be executed. The function b(·)
defined by Equation (6) gives the number of h symbols in an ETR. The number

of h symbols in the ETR being executed defines the number of
←−
b symbols

in the next encoded current state q̂y. The word P(f, qy) gives the ETRs that
encode the TRs for state qy. Hence the next ETR to be indexed is a subword
of P(f, qy) and b(·) is a summation dependant on all encoded states q̂j such
that j 6 y. The function g defined by Equation (7) is used by b(·) to calculate
the number of ETRs in each q̂j. The first case of g corresponds exactly to the
number of ETRs given in P (Equation (2)). The final two cases of g define
whether the encoded current state points to the rightmost ETR (g = 0) in the
list of ETRs for a state, or to the fourth from the right (g = 3).

It is important to note that the input and output encodings for our UTMs are
efficiently (logspace) computable. This is an important requirement for UTMs
that simulate TMs efficiently. Recall that a logspace transducer [15] is a TM
that has an read-only input tape, a work tape, and a write-only output tape,
where only the space used by the work tape is considered. Definition 2 gives
the encoding of an initial configuration of M . The transducer that computes
this input encoding to U3,11 takes M and w as input, where M is explicitly
given as a word in some straightforward manner.

Lemma 1 Given TM M as a word, and its input w, then there exists a
logspace transducer that computes the input M̂ q̂1ŵ to U3,11.

9

PROOF. The input to U3,11 is given by Defintion 2. Space of O(log |M |) is

sufficient to compute M̂ and q̂1 via Equations (1) to (7). Constant space is
sufficient to compute ŵ via Definition 1. 2

We state the lemma for U3,11. However all five UTMs in this paper have
logspace computable input encodings. The decoding of the output from U3,11,
and our four other UTMs, is computed by a linear time, constant space trans-
ducer via Definition 1.

3.1 U3,11 and its computation

Definition 5 (U3,11) Let TM U3,11 = ({u1, u2, u3}, {
←−a ,
←−
b , e, h,−→e ,

−→
h ,←−e ,

←−
h ,

λ, δ, γ},←−a , f, u1, {u3}) where f is given by the following transition rules.

u1,
←−a ,←−e , R, u1 u2,

←−a , γ, L, u2 u3,
←−a ,←−a , L, u3

u1,
←−
b ,←−e , R, u2 u2,

←−
b ,
←−
b , L, u1 u3,

←−
b , e, R, u1

u1, e,
−→e , L, u1 u2, e,

←−e , R, u1 u3, e, e, R, u1

u1, h,
−→
h , L, u1 u2, h,

←−
h , R, u3 u3, h,←−a , L, u1

u1,
−→e ,←−e , R, u1 u2,

−→e , e, R, u2 u3,
−→e ,←−e , R, u3

u1,
−→
h ,
←−
h , R, u1 u2,

−→
h , h, R, u2 u3,

−→
h ,
←−
h , R, u3

u1,
←−e ,−→e , L, u1 u2,

←−e ,−→e , L, u2 u3,
←−e , γ, L, u2

u1,
←−
h ,
−→
h , L, u1 u2,

←−
h ,
−→
h , L, u2 u3,

←−
h ,←−a , L, u3

u1, λ, δ, R, u1 u2, λ, λ, R, u2 u3, λ, δ, R, u3

u1, δ, λ, L, u1 u2, δ, λ, L, u2 u3, δ,

u1, γ,←−a , L, u3 u2, γ,
←−
h , R, u3 u3, γ,

←−
b , L, u3

We give an example of U3,11 simulating a TR of M1 from Example 1. This
simulation is of the first step in M1’s computation for a specific input. The
example is presented as the 4 cycles given in Section 2.3. In the below configu-
rations the current state of U3,11 is highlighted in bold font, to the left of U3,11’s
tape contents. M1’s encoded read and write symbols are also highlighted in
bold font. The position of U3,11’s tape head is given by an underline. In the
sequel we use the term overlined region.

Definition 6 (Overlined region) The overlined region exactly spans the en-
coded current state (has length 5|Q|+ 2), except on completion of reading an
encoded read symbol (has length 5|Q|+ 4) until the next encoded current state
is established.

10

Example 2 (U3,11’s simulation of TR t1,1 = (q1, 1, 0, R, q1) from TM M1)
The start state of U3,11 is u1 and the tape head of U3,11 is over the leftmost
symbol of q̂1 (as in Definition 2). In this example M1’s input is 101 (encoded

via 0̂ =←−a←−a and 1̂ =
←−
b←−a). M̂1 is in start state q̂1 with encoded read symbol

1̂. Thus the initial configuration of U is:

u1u1u1, (λEλEλEλEλE
′)3λe←−a←−a 14

←−
b
←−
b
←−
b←−a
←−
b←−a
←−
b←−a←−a←−a

←−
b←−a←−a ω

Cycle 1 (Index next ETR)

u1,
←−a ,←−e , R, u1 u2,

←−a , γ, L, u2 u1, e,
−→e , L, u1

u1,
←−
b ,←−e , R, u2 u2,

←−
b ,
←−
b , L, u1 u1, h,

−→
h , L, u1

u1,
−→e ,←−e , R, u1 u1,

←−e ,−→e , L, u1

u1,
−→
h ,
←−
h , R, u1 u1,

←−
h ,
−→
h , L, u1

u1, λ, δ, R, u1 u1, λ, δ, R, u1

u1, δ, λ, L, u1

In Cycle 1 the leftmost block of TRs (above) reads the encoded current state.
The rightmost block scans left and neutralises markers to index the next ETR.
The middle block decides when the cycle is complete. U3,11 scans the encoded

current state from left to right in state u1; each
←−
b is replaced with an ←−e and

U3,11 then enters state u2 to see if it is finished reading the encoded current
state and encoded read symbol. U3,11 is simulating TR t1,1 which is encoded
by E(t1,1). Hence we have replaced the shorthand notation E with the word
e15h2 defined by E(t1,1). The word e15h2 appears in the location defined by
Equation (8). After the initial configuration we have:

u1u1u1, (λEλEλEλEλE
′)2(λE)3λe15h2λE ′λe←−e←−a 14

←−
b
←−
b
←−
b←−a
←−
b←−a
←−
b←−a←−a←−a

←−
b←−a←−a ω

u1u1u1, (λEλEλEλEλE
′)2(λE)3λe15h2λE ′λe←−e←−e 14

←−
b
←−
b
←−
b←−a
←−
b←−a
←−
b←−a←−a←−a

←−
b←−a←−a ω

u2u2u2, (λEλEλEλEλE
′)2(λE)3λe15h2λE ′λe←−e←−e 14←−e

←−
b
←−
b←−a
←−
b←−a
←−
b←−a←−a←−a

←−
b←−a←−a ω

The leftmost
←−
b is replaced with an ←−e . U3,11 then moves right to test if it is

finished reading the encoded current state. If not, U3,11 reads another
←−
b , then

scans left in state u1 and neutralises the rightmost λ marker.

u1u1u1, (λEλEλEλEλE
′)2(λE)3λe15h2λE ′λ−→e −→e 15−→e

←−
b
←−
b←−a
←−
b←−a
←−
b←−a←−a←−a

←−
b←−a←−a ω

u1u1u1, (λEλEλEλEλE
′)2(λE)3λe15h2λE ′δ−→e −→e 15−→e

←−
b
←−
b←−a
←−
b←−a
←−
b←−a←−a←−a

←−
b←−a←−a ω

Having neutralised a λ marker, U3,11 scans right in state u1 searching for the

next
←−
b .

u1u1u1, (λEλEλEλEλE
′)2(λE)3λe15h2λE ′δ←−e←−e 15←−e

←−
b
←−
b←−a
←−
b←−a
←−
b←−a←−a←−a

←−
b←−a←−a ω

11

The neutralisation process is repeated until the end of this cycle. Thus the

number of
←−
b symbols index the next ETR to be executed. U3,11 is finished

reading the encoded current state and read symbol when U3,11 reads a
←−
b in

state u1, moves right to test for the end of the encoded current state and
encoded read symbol, and reads an←−a in state u2. In the configurations below

when all the e and h symbols in an E ′ or an E are replaced with ←−e and
←−
h

symbols the resulting word is denoted
←−
E ′ or

←−
E respectively. Similarly when

all the e and h symbols in an E ′ or an E are replaced with −→e and
−→
h symbols

the resulting word is denoted
−→
E ′ or

−→
E respectively.

u1u1u1, (λEλEλEλEλE
′)2(λE)3λe15h2δ

←−
E ′δ←−e←−e 15←−e←−e

←−
b
←−
b
←−
b←−a←−a←−a←−a←−a

←−
b←−a←−a ω

u2u2u2, (λEλEλEλEλE
′)2(λE)3λe15h2δ

←−
E ′δ←−e←−e 15←−e←−e←−e←−e←−e←−a←−a←−a←−a←−a

←−
b←−a←−a ω

u2u2u2, (λEλEλEλEλE
′)2(λE)3λe15h2δ

←−
E ′δ←−e←−e 15←−e←−e←−e γ←−a←−a

←−
b←−a←−a ω (I)

In configuration (I) above U3,11 has entered Cycle 2. Also, the overlined region
is now extended to include the encoded read symbol as this has been read and
thus recorded in the same manner as the encoded current state.

Cycle 2 (Print ETR)

u2,
←−a , γ, L, u2 u1,

−→e ,←−e , R, u1 u3,
−→e ,←−e , R, u3

u2, e,
←−e , R, u1 u1,

−→
h ,
←−
h , R, u1 u3,

−→
h ,
←−
h , R, u3

u2, h,
←−
h , R, u3 u1, λ, δ, R, u1 u3,

←−e , γ, L, u2

u2,
←−e ,−→e , L, u2 u1, γ,←−a , L, u3 u3, λ, δ, R, u3

u2,
←−
h ,
−→
h , L, u2 u3, γ,

←−
b , L, u3

u2, λ, λ, R, u2

u2, δ, λ, L, u2

This cycle copies an ETR to M̂ ’s tape head position. The leftmost block
scans left and records the next symbol of the ETR to be printed. The two
right blocks scan right and print the appropriate symbol. In the configurations
below, U3,11 scans left until a h is read. Then U3,11 moves right and records
this h by entering u3.

u2u2u2, (λEλEλEλEλE
′)2(λE)3λe15hhδ

←−
E ′δ←−e←−e 17←−e γ←−a←−a

←−
b←−a←−a ω

u2u2u2, (λEλEλEλEλE
′)2(λE)3λe15hhλ

−→
E ′λ−→e −→e 17−→e γ←−a←−a

←−
b←−a←−a ω

u3u3u3, (λEλEλEλEλE
′)2(λE)3λe15h

←−
h λ
−→
E ′λ−→e −→e 17−→e γ←−a←−a

←−
b←−a←−a ω

12

U3,11 now scans right until it reads a γ and prints the recorded symbol.

u3u3u3, (λEλEλEλEλE
′)2(λE)3λe15h

←−
h δ
←−
E ′δ←−e←−e 17←−e γ←−a←−a

←−
b←−a←−a ω

u3u3u3, (λEλEλEλEλE
′)2(λE)3λe15h

←−
h δ
←−
E ′δ←−e←−e 17←−e

←−
b←−a←−a

←−
b←−a←−a ω

u2u2u2,(λEλEλEλEλE
′)2(λE)3λe15h

←−
h δ
←−
E ′δ←−e←−e 17γ

←−
b←−a←−a

←−
b←−a←−a ω

This printing process is iterated until U3,11 is finished printing the ETR. The
completion of this process occurs on reading a λ in state u2.

u2u2u2, (λEλEλEλEλE
′)2(λE)3λ−→e 15−→h 2λ

−→
E ′λ−→e −→e γ←−a 15

←−
b 2←−a←−a

←−
b←−a←−a ω

u2u2u2, (λEλEλEλEλE
′)2(λE)3λ−→e

15−→
h 2λ
−→
E ′λ−→e −→e γ←−a 15

←−
b 2←−a←−a

←−
b←−a←−a ω

Cycle 3 (Restore tape)

u2,
−→e , e, R, u2

u2,
−→
h , h, R, u2

u2, λ, λ, R, u2

u2, γ,
←−
h , R, u3

These TRs restore M ’s simulated tape and encoded table of behaviour. This
cycle is entered from Cycle 2 (Print ETR). In Cycle 3, U3,11 moves right

restoring each −→e to e and each
−→
h to h. This continues until U3,11 reads γ,

sending U3,11’s control to u3. Thus the configuration:

u2u2u2, (λEλEλEλEλE
′)2(λE)3λe15h2λE ′λeeγ←−a←−a 14

←−
b 2←−a←−a

←−
b←−a←−a ω

becomes:

u3u3u3, (λEλEλEλEλE
′)2(λE)3λe15h2λE ′λee

←−
h←−a←−a 14

←−
b 2←−a←−a

←−
b←−a←−a ω

Cycle 4 (Choose read or write symbol)

u3,
←−a ,←−a , L, u3

u3,
←−
b , e, R, u1

u3, e, e, R, u1

u3, h,←−a , L, u1

u3,
←−
h ,←−a , L, u3

u3, λ, δ, R, u3

u3, δ,

u1,
←−a ,←−e , R, u1

This cycle either (i) begins the indexing of an ETR or (ii) completes the
execution of an ETR. More precisely: (i) if U3,11 is immediately after simulating

13

a left move then this cycle reads the encoded read symbol to the left of the
encoded current state, (ii) if U3,11 is simulating a right move then this cycle
prints the encoded write symbol to the left of the encoded current state. Case
(ii) follows:

u3u3u3, (λEλEλEλEλE
′)2(λE)3λe15h2λE ′λee

←−
h←−a←−a 14

←−
b 2←−a←−a

←−
b←−a←−a ω

u3u3u3, (λEλEλEλEλE
′)2(λE)3λe15h2λE ′λee←−a←−a←−a 14

←−
b 2←−a←−a

←−
b←−a←−a ω

u1u1u1, (λEλEλEλEλE
′)2(λE)3λe15h2λE ′λee←−a←−a←−a 14

←−
b 2←−a←−a

←−
b←−a←−a ω

u1u1u1, (λEλEλEλEλE
′)2(λE)3λe15h2λE ′λee←−ee←−ee←−e←−a←−a 14

←−
b 2←−a←−a

←−
b←−a←−a ω (II)

In configuration (II) above we have shortened the overlined region; the two
symbols e←−e to the left of M1’s encoded current state encode the write sym-
bol 0.

The example simulation of TR t1,1 = (q1, 1, 0, R, q1) is now complete. As U3,11

simulates M1 the encoded tape contents to the left of the simulated tape head
is encoded as e and h symbols (i.e. 0̂ = ee and 1̂ = he). The contents to

the right is encoded as ←−a and
←−
b symbols (as in Definition 1). This is not a

problem as U3,11 simulates halting by moving the simulated tape head to the
left end of the tape. As a result the entire encoded tape contents of the TM

are to the right of the tape head and so are encoded by ←−a and
←−
b symbols.

In configuration (II) above the encoded write symbol 0̂ is written as the word
e←−e . This word will become ee after the next ETR has executed. The new
encoded current state satisfies Definition 4. M1’s simulated tape head (the
new encoded current state) is configured so that U3,11 reads the next encoded
read symbol to the right when searching for the next ETR. The ←−a that sig-
nals the end of the encoded current state is provided by the next encoded
read symbol 0̂. 2

Remark 1 If the first read symbol of Example 2 is changed from a 1̂ to

a 0̂, then one less
←−
b is read when indexing the next ETR. This indexes the

rightmost (rather than the second from the right) ETR.

4 Proof of correctness of U3,11

In this section we prove that U3,11 correctly simulates a number of the pos-
sible types of TRs. We then extend these cases to all cases thus proving the
correctness of U3,11’s computation.

Lemma 2 Given a valid initial configuration of U3,11, the encoded start state

14

indexes the ETR defined by E(t1,1) if M ’s read symbol is 1 and E ′(f, t1,0) if
M ’s read symbol is 0.

PROOF. The encoded start state contains exactly 2 of the
←−
b symbols. From

Example 2 when U3,11 reads a 1̂ in state q̂1 it neutralises two λ markers thus
locating the second ETR from the right. By Definition 2 and Equation (2) this
ETR is defined by E(t1,1). From Remark 1 and Example 2 when U3,11 reads
a 0̂ in state q̂1 it neutralises one λ, thus indexing the rightmost ETR defined
by E ′(f, t1,0). 2

Example 3 (U3,11’s simulation of TR t1,0 = (q1, 0, 1, R, q2) from M1) In
this example U3,11 is reading a 0̂ after a right move. The right move was given
by the simulation of t1,1 = (q1, 1, 0, R, q1) in Example 2. This unique case
involves two steps, executing an ETR′ and then an ETR. The execution of an
ETR′ is represented by parts (a) and (b) of Fig. 3 and the execution of the
subsequent ETR is represented by parts (c) and (d) of Fig. 3.

We take the last configuration of Example 2, with the encoded read symbol 0̂ =
←−a←−a to the right of the encoded current state. Substituting the appropriate
ETR′ e12h4 from Equation (8) gives:

u1u1u1, (λEλEλEλEλE
′)2(λE)4λe12h4λee←−e←−a 15

←−
b
←−
b←−a←−a←−a←−a←−a←−a

←−
b←−a←−a ω

u2u2u2, (λEλEλEλEλE
′)2(λE)4λe12h4δ←−e←−e←−e←−e 15←−e←−e γ←−a←−a←−a

←−
b←−a←−a ω

In the configuration immediately above we have reached the end of Cycle
1 (Index next ETR). One λ has been replaced with a δ, thus indexing the

ETR′ e12h4. The
←−
b←−a that signaled the end of Cycle 1 was provided by the

rightmost
←−
b of the encoded current state and the leftmost ←−a of the encoded

read symbol. Thus, only the leftmost ←−a of 0̂ = ←−a←−a←−a←−a←−a←−a was read and this is

sufficient to distinguish 0̂ from 1̂ =
←−
b←−a . However the overlined region does

not cover the entire encoded read symbol which is why an ETR′ executes
before an ETR in this unique case. Skipping to the end of Cycle 2 (Print
ETR) gives:

u2u2u2, (λEλEλEλEλE
′)2(λE)4λ−→e 12−→h 4λ−→e −→e −→e −→e γ←−a←−a 11

←−
b 4←−a←−a←−a

←−
b←−a←−a ω

u2u2u2, (λEλEλEλEλE
′)2(λE)4λe12h4λeeeeγ←−a←−a 11

←−
b 4←−a←−a←−a

←−
b←−a←−a ω

u3u3u3, (λEλEλEλEλE
′)2(λE)4λe12h4λeeee

←−
h←−a←−a 11

←−
b 4←−a←−a←−a

←−
b←−a←−a ω

u3u3u3, (λEλEλEλEλE
′)2(λE)4λe12h4λeeee

←−
h←−a←−a 11

←−
b 4←−a←−a←−a

←−
b←−a←−a ω

u3u3u3, (λEλEλEλEλE
′)2(λE)4λe12h4λeeee←−a←−a←−a 11

←−
b 4←−a←−a←−a

←−
b←−a←−a ω

u1u1u1, (λEλEλEλEλE
′)2(λE)4λe12h4λeeee←−a←−a←−a 11

←−
b 4←−a←−a←−a

←−
b←−a←−a ω

15

(a)

(b)

(c)

(d)

encoded current state encoded read symbol

encoded write symbol

Fig. 3. Right move simulation (special case). The encoded current state marks the
location of M ’s simulated tape head. The configurations given in (a), (b) and (c)
represent the reading of the encoded current state and an encoded 0 following a
right move. (a) Encoded configuration before beginning the TR simulation. (b)
Intermediate configuration after the encoded current state and first symbol of the
encoded read symbol have been read. (c) Intermediate configuration immediately
after the encoded read symbol has been read. (d) Configuration immediately after
the simulated right move.

At this point U3,11 has executed the ETR′. U3,11 now executes the ETR that
represents the second step of the simulation of TR t1,0. This ETR is defined by
E(t1,0). Substituting the ETR he10h7 from Equation (8) into the configuration
immediately above gives:

u1u1u1, (λEλEλEλEλE
′)2(λE)2λhe10h7λEλE ′λeeee←−a←−a←−a 11

←−
b 4←−a←−a←−a

←−
b←−a←−a ω

We now skip to the end of Cycle 1 (Index next ETR) giving:

u2u2u2, (λEλEλEλEλE
′)2(λE)2λhe10h7δ

←−
E δ
←−
E ′δ←−e←−e←−e←−e 18←−a←−a←−a

←−
b←−a←−a ω

u2u2u2, (λEλEλEλEλE
′)2(λE)2λhe10h7δ

←−
E δ
←−
E ′δ←−e←−e←−e←−e

18
γ
←−
b←−a←−a ω (III)

The ETR is indexed by neutralising 3 of the λ markers. The second part of
the 0̂ is read during this process. We now skip to the end of Cycle 3 (Restore
tape) and illustrate a 1̂ being written to the left of the encoded current state.

u2u2u2, (λEλEλEλEλE
′)2(λE)2λ

−→
h−→e 10−→h 7λ

−→
E λ
−→
E ′λ−→e −→e −→e γ

←−
b←−a 10

←−
b 7
←−
b←−a←−a ω

u2u2u2, (λEλEλEλEλE
′)2(λE)2λhe10h7λEλE ′λeeeγ

←−
b←−a 10

←−
b 7
←−
b←−a←−a ω

u3u3u3, (λEλEλEλEλE
′)2(λE)2λhe10h7λEλE ′λeee

←−
h
←−
b←−a 10

←−
b 7
←−
b←−a←−a ω

u1u1u1, (λEλEλEλEλE
′)2(λE)2λhe10h7λEλE ′λeee

←−
h e
←−
h e
←−
h e←−a

10←−
b 7
←−
b←−a←−a ω

In the configuration immediately above the write symbol is positioned to the
left of the new encoded current state. Recall that to the left of the simulated
tape head the symbol 1 is encoded as he. The

←−
h becomes h after execution of

the next ETR. The new encoded current state satisfies Definition 4 and the
simulation of TR t1,0 = (q1, 0, 1, R, q2) is complete. 2

16

Lemma 3 Given a valid configuration of U3,11, the encoded current state q̂x

and encoded read symbol σ̂1 index the ETR E(tx,σ1
).

PROOF. M̂ is a list of ETRs, five ETRs for each state (pair of TRs) in M .

The number of
←−
b symbols in the encoded current state q̂x and encoded read

symbol, is used to index the next ETR to be executed. If the number of
←−
b

symbols is l then the l−1th ETR from the right is indexed. In the encoding, the

function b(·) determines the number of
←−
b symbols in the next encoded current

state. The function b(·) is defined as a summation over g(·) in Equation (6)
for j, where 1 6 j 6 x.

From Equation (7), for each j < x, the function g(·) always has value 5, hence

there are at least 5(x−1) juxtaposed
←−
b symbols in q̂x. The state qx is encoded

using five ETRs. When j = x, then g = 0 or g = 3; giving a total number

of
←−
b symbols that point to the 1st or 4th of these five ETRs respectively.

Any encoded current state q̂x, was established by execution of an ETR r.
The ETR r encodes move direction Dr and next state qx. The location of the
ETR that is indexed by q̂x is dependent on the move direction Dr of r. When
Dr = L and j = x then g(·) = 3; when this 3 is added to 5(x− 1) this indexes
the 4th ETR (from right) of the ETRs for qx. Using this value of 5(x− 1) + 3
we get Cases A and B below. For clarity at this point note that Dr is the move
direction of the ETR r that established q̂x and σ̂1 is the read symbol that is
read with q̂x to index the next ETR E(tx,σ1

).

Case A: (Dr = L, σ1 = 0). 0̂ =←−a←−a adds no extra
←−
b symbols to the number

of
←−
b symbols provided by q̂x, thus the number of

←−
b symbols is given by g(·)

alone and indexes the 4th ETR (from right). By Equation (2) this is E(tx,0).

Case B: (Dr = L, σ1 = 1). 1̂ =
←−
b←−a adds one extra

←−
b to the number

of
←−
b symbols provided by q̂x, thus indexing the 5th ETR (from right). By

Equation (2) this is E(tx,1).

When Dr = R and j = x then g(·) = 0. Adding this 0 to 5(x − 1) we get
Cases C and D.

Case C: (Dr = R, σ1 = 1). 1̂ =
←−
b←−a adds one extra

←−
b to the number

of
←−
b symbols provided by q̂x, thus indexing the 2nd ETR (from right). By

Equation (2) this is E(tx,1).

Case D: (Dr = R, σ1 = 0). Case D is a unique case in which U3,11 simulates
a TR t with read symbol 0, immediately after a right moving TR tR,x (i.e.
tR,x ⊢ t). In such a case t is encoded as 2 ETRs using E and E ′. The encoded

17

read symbol 0̂ = ←−a←−a adds no extra
←−
b symbols thus indexing the rightmost

ETR, which is an ETR′. This ETR′ is given by the function E ′ and establishes
an intermediate encoded current state q̂x

′ that indexes another ETR that in
turn completes the simulation of t. This other ETR is positioned 2 ETRs to the
left of the ETR′. Hence in Equation (4), tR,x is passed to b(·) as a parameter

(instead of t) and E ′ adds 2 extra
←−
b symbols to index the ETR 2 places to

the left of ETR′. By Equation (2) this is E(tx,0). 2

Examples 2 and 3 give simulations of right moving TRs with the later case
covering the special case of reading a 0 after a right move. Example 4 gives
the simulation of a left moving TR.

Example 4 (U3,11’s simulation of TR t2,1 = (q2, 1, 1, L, q3) from M1) We

take the last configuration of Example 3, with 1̂ =
←−
b←−a to the right of the

encoded current state. Substituting the appropriate ETR from Equation (8)
gives:

u1u1u1, (λE)
4λE ′(λE)3λeh15eheλE ′(λE)4λE ′λeee

←−
h e←−a

10←−
b 7
←−
b←−a
←−
b←−a
←−
b←−a←−a ω

We now skip to the end of Cycle 1 (Index next ETR) giving:

u2u2u2, (λE)
4λE ′(λE)3λeh15eheδ

←−
E ′ (δ
←−
E)4δ

←−
E ′δ←−e←−e←−e

←−
h←−e←−e

18
γ←−a ω (IV)

Notice that the ETR is indexed by neutralising 7 of the λ markers while
reading the 1̂ in this process. Next the ETR eh15ehe is printed and we skip to
the end of Cycle 2 (Print ETR).

u2u2u2, (λE)
4λE ′(λE)3λ−→e

−→
h 15−→e

−→
h−→e δ

−→
E ′(δ
−→
E)4δ

−→
E ′δ−→e −→e −→e

−→
h γ←−a

←−
b 15←−a

←−
b←−a←−a ω

Skipping to the end of Cycle 3 (Restore tape) gives:

u2u2u2, (λE)
4λE ′(λE)3λeh15eheλE ′(λE)4λE ′λeeehγ←−a

←−
b 15←−a

←−
b←−a
←−
b←−a
←−
b←−a←−a ω (V)

In configuration (V) above the correct write symbol (1̂ =
←−
b←−a) has been

placed to the right of the encoded current state. The new encoded current
state satisfies Definition 4 and the simulation of TR t2,1 = (q2, 1, 1, L, q3) is
complete. 2

Remark 2 We show how U3,11 reads an encoded read symbol following a left
move. In this case the encoded read symbol is to the left of the encoded current

18

state. Immediately after configuration (V) of Example 4 we would get:

u3u3u3, (λE)
4λE ′(λE)3λeh15eheλE ′(λE)4λE ′λeeeh

←−
hh
←−
hh
←−
h←−a
←−
b 15←−a

←−
b←−a←−a ω

u3u3u3, (λE)
4λE ′(λE)3λeh15eheλE ′(λE)4λE ′λeeehhh

←−
h
←−
h
←−
h←−a
←−
b 15←−a

←−
b←−a←−a ω

u3u3u3, (λE)
4λE ′(λE)3λeh15eheλE ′(λE)4λE ′λeeehhh←−a←−a←−a←−a

←−
b 15←−a

←−
b←−a←−a ω (VI)

u1u1u1, (λE)
4λE ′(λE)3λeh15eheλE ′(λE)4λE ′λeee←−a←−a←−a

←−
b 15←−a

←−
b←−a←−a ω (VII)

In configuration (VII) above the overlined region is extended as the encoded
read symbol has been read. U3,11 has begun to index the next ETR and is
moving to the left to neutralise a λ. The rightmost symbol of the encoded
read symbol (which for left moves is always e) was previously overwritten

with a γ and this was eventually replaced with a
←−
h . Only the leftmost symbol

of the encoded read symbol must be recorded. If the read symbol was a 0̂ = ee

then U3,11’s tape head would have read an e instead of a h in configuration
(VI) above, sending U3,11’s tape head right instead of left. This would result in
one less λ being neutralised. This process records the difference in the encoded
read symbols ee and he.

Continuing from configuration (VII) immediately after the next ETR has been
indexed, we have the following configuration:

u2u2u2, λeh15ehe(δ
←−
E)3δ

←−
E ′ ((δ

←−
E)4δ

←−
E ′)2δ←−e←−e←−e←−e

18
γ
←−
b←−a←−a ω (VIII)

Lemma 4 Given a valid configuration with q̂|Q| as the encoded current state
then U3,11 halts.

PROOF. Recall from Section 2.2 that for all M the TRs for the halt state q|Q|

are left moving and have q|Q| as the next state. Thus when q̂|Q| is the encoded
current state U3,11 simulates repeated left moves. These left moves continue
until the left end of M ’s simulated tape is reached. When the simulated tape
head is attempting to move left at the left end of the simulated tape then the
following computation occurs:

u2u2u2, (λEλEλEλEλE
′)∗λγ←−a←−a ∗

←−
b 2
←−
b ∗←−a (

←−
b←−a ∪←−a←−a)∗←−a ω

u3u3u3, (λEλEλEλEλE
′)∗λ
←−
h←−a←−a ∗

←−
b 2
←−
b ∗←−a (

←−
b←−a ∪←−a←−a)∗←−a ω

u3u3u3, (λEλEλEλEλE
′)∗λ
←−
h←−a←−a ∗

←−
b 2
←−
b ∗←−a (

←−
b←−a ∪←−a←−a)∗←−a ω

u3u3u3, (λEλEλEλEλE
′)∗λ←−a←−a←−a ∗

←−
b 2
←−
b ∗←−a (

←−
b←−a ∪←−a←−a)∗←−a ω

u3u3u3, (λEλEλEλEλE
′)∗δ←−a←−a←−a ∗

←−
b 2
←−
b ∗←−a (

←−
b←−a ∪←−a←−a)∗←−a ω

u3u3u3, (λEλEλEλEλE
′)∗δ←−a←−a←−a ∗

←−
b 2
←−
b ∗←−a (

←−
b←−a ∪←−a←−a)∗←−a ω

19

There is no TR for the state-symbol pair (u3, δ) in U3,11 so the simulation
halts. 2

Lemma 5 Given a valid initial configuration of U3,11, then immediately after
the first ETR of a computation is indexed, the overlined region is of the form
←−e 5|Q|+3γ.

PROOF. The encoded start state q̂1 in an initial configuration is of the

form ←−a 5|Q|←−b 2. Example 2 gives the case of reading a 1̂ in the encoded start

state q̂1. In this case q̂1 and 1̂ have both been read, that is the
←−
b and ←−a

symbols of q̂1 and 1̂ have been replaced with←−e symbols and the rightmost←−a
is replaced with a γ. This gives an overlined region of ←−e 5|Q|+3γ.

The other case is reading a 0̂ in state q̂1. By definition the 0̂ is located im-
mediately to the right of q̂1. When reading a 0̂ on the right there are two
steps; executing an ETR′ and then an ETR. From Lemma 2 we know that the
ETR′ E ′(f, t1,0) is indexed. Example 3 executes an ETR′ and indexes the sub-
sequent ETR, while in encoded state q̂1. At this point the entire 0̂ has been

read. Thus the
←−
b and ←−a symbols of q̂1 and 0̂ have been replaced with ←−e

symbols and the rightmost ←−a is replaced with a γ. This gives an overlined
region of ←−e 5|Q|+3γ. 2

Lemma 6 U3,11 simulates any TR of any deterministic TM M .

PROOF. The proof is by induction on the form of the overlined region. The
base case is given by Lemma 5; after the first ETR is indexed then the overlined
region is ←−e 5|Q|+3γ.

We will show that immediately after any ETR is indexed, the overlined region
is ←−e 5|Q|+3γ.

Assume that the overlined region is ←−e 5|Q|+3γ immediately after indexing an
ETR ξ1 in the simulation of timestep i of M ’s computation. Let ξ2 be the
ETR that is executed immediately after ξ1. We now show that the overlined
region is←−e 5|Q|+3γ immediately after indexing ξ2 in the simulation of timestep
i + 1.

The four cases of ETRs are defined by Equation (3). In Examples 2, 3 and 4,
three of these cases are shown to execute correctly on an overlined region of
the form←−e 5|Q|+3γ. We use Example 4 to verify the remaining case (left move,
write 0) by substitution of the ETR defined by Case 4 of Equation (3) with the
ETR defined by Case 3 of Equation (3). The examples generalise to arbitrary
TRs.

20

Case 1 of Equation (3): Examples 2 and 3 verify Case 1. In configuration (I)
above (in simulation of timestep i) the overlined region is ←−e 5|Q|+3γ and the
ETR ξ1 that is indexed is defined by Case 1 of Equation (3). In configura-
tion (III) above (in simulation of timestep i + 1) the next ETR ξ2 has been
indexed and the overlined region is ←−e 5|Q|+3γ.

Case 2 of Equation (3): Examples 3 and 4 verify Case 2. In configura-
tion (III) above (in simulation of timestep i) the overlined region is ←−e 5|Q|+3γ

and the ETR ξ1 that is indexed is defined by Case 2 of Equation (3). In con-
figuration (IV) above (in simulation of timestep i + 1) the next ETR ξ2 has
been indexed and the overlined region is ←−e 5|Q|+3γ.

Case 4 of Equation (3): Example 4 and configuration (VIII) verify Case 4.
In configuration (IV) above (in simulation of timestep i) the overlined region is
←−e 5|Q|+3γ and the ETR ξ1 that is indexed is defined by Case 4 of Equation (3).
In configuration (VIII) above (in simulation of timestep i + 1) the next ETR
ξ2 has been indexed and the overlined region is ←−e 5|Q|+3γ.

Case 3 of Equation (3): Case 4 also verifies Case 3 by substitution of the
ETR defined by Case 4 of Equation (3) with the ETR defined by Case 3.

We have shown that the overlined region is ←−e 5|Q|+3γ immediately after any
ETR is indexed. From Examples 2, 3 and 4, each ETR executes on an over-
lined region of←−e 5|Q|+3γ establishing the correct simulated tape head location,
encoded write symbol, and an encoded current state that satisfies Definition 4.
By Lemmas 2 and 3 the encoded current state indexes the correct ETR. Due
to the relative lengths of the encoded current state and overlined region the
above mentioned examples generalise to any TR of any TM M . 2

Let M be a deterministic TM with |Q| states and time complexity [14] of T (n)
on input length n.

Theorem 7 U3,11 simulates any TM M in space O(T (n) + |Q|2) and time
O(|Q|T 2(n) + |Q|3T (n)).

PROOF. By the previous lemma U3,11 simulates any TR. Thus given a valid
encoding of M ’s initial configuration (Definition 2), U3,11 simulates the se-
quence of TRs in M ’s computation. From Lemma 4 when U3,11 simulates the
halting state of M , U3,11’s tape head returns to the left end of M ’s encoded
output and halts. The encoded output is easily decoded via Definition 1.

(Space). At time T (n) the space used by M is bounded by T (n). Simulator
U3,11 uses space O(T (n) + |Q|2), where O(|Q|2) space is used to store M as

21

the word M̂ and O(T (n)) space is used to store M ’s encoded tape after T (n)
simulated steps.

(Time). Simulating a TR involves 4 cycles. (1) Index an ETR by neutralising
O(|Q|) of the λ markers: O(|Q|T (n)+ |Q|3) steps. (2) Copy an ETR of length
O(|Q|) from M̂ to the encoded current state location: O(|Q|T (n)+ |Q|3) steps.
(3) Restore U3,11’s tape contents: O(T (n)+|Q|2) steps. (4) Complete execution
of ETR: a small constant number of steps. Thus U3,11 uses O(|Q|T (n) + |Q|3)
time to simulate a single step of M , and O(|Q|T 2(n) + |Q|3T (n)) time to
simulate the entire computation of M . 2

This result holds for more general definitions of TMs. For example, let M ′

be a deterministic multitape TM with bi-infinite tapes and more than two
symbols. M ′ is converted to a two symbol, one-way-infinite single tape TM M .
The number of states in M is only a constant times greater than the number
of states and symbols in M ′, also M is at worst polynomially slower than M ′.
Thus, U3,11 simulates M ′ in polynomial time.

From Theorem 7 we get the following immediate corollary.

Corollary 8 There are polynomial time UTMs in UTM(m, n) for all m > 3,
n > 11.

5 Polynomial time Curve

In this section we further extend our result by finding small polynomial time
UTMs in other classes. Thus we establish a polynomial time curve of small
UTMs analogous to what Rogozhin [5] has achieved with Minsky’s [4] expo-
nential time UTM in UTM(7,4).

All UTMs in this paper use the same basic algorithm as U3,11. The proof
of correctness given for U3,11 can be applied to the remaining machines in a
straightforward way, so we do not restate it. The encoding of the input and
operation of these UTMs is the same as U3,11 unless noted otherwise. Each
UTM makes use of specially tailored E and E ′ functions.

5.1 Construction of U6,6

For U6,6 the start state of M̂ is encoded as q̂1 = ←−a 5|Q|←−b 2. The encoding of

the current state is of the form ←−a
∗←−

b
2←−

b
∗
{←−a ∪ ǫ} and is of length 5|Q|+ 2.

22

Let t = (qx, σ1, σ2, D, qy) be a fixed TR in M , then t is encoded via P using
the function E on its own, or in conjunction with E ′, where

E(t) =





←−
b b(t)←−a a(t)−3←−b if D = R, σ2 = 0
←−
b b(t)←−a a(t)+1 if D = R, σ2 = 1
←−a←−a←−a

←−
b b(t)←−a a(t)−2←−b if D = L, σ2 = 0

←−a
←−
b←−a
←−
b b(t)←−a a(t)−2←−b if D = L, σ2 = 1

(9)

and

E ′(f, t) =





←−
b b(tR,x)+2←−a a(tR,x)−5←−b if ∃tR,x, qx 6= q1

ǫ if ∄tR,x, qx 6= q1
←−
b 4←−a 5|Q|−5←−b if qx = q1

(10)

where as before tR,x is any right moving TR such that tR,x ⊢ t.

The value of the ending E, from Equation (1), for U6,6 is E =←−a .

Example 5 (Encoding of TM M2 for U6,6) Let TM M2 = ({q1, q2}, {0, 1}, 0, f, q1, {q2})
where f is defined by (q1, 0, 0, R, q1), (q1, 1, 1, R, q2), (q2, 0, 0, L, q2) and (q2, 1, 1, L, q2).
M2 is encoded as: M̂2 = λP(f, q2)λP(f, q1)λE. Substituting the appropriate
values from Equation (2) gives

M̂2 =λE(t2,1)λE(t2,0)λE(t2,0)λE(t2,1)λE
′(f, t2,0)

λE(t1,1)λE(t1,0)λE(t1,0)λE(t1,1)λE
′(f, t1,0)λE.

Rewriting this using Equations (9) and (10) gives

M̂2 =λ←−a
←−
b←−a
←−
b 11λ←−a←−a←−a

←−
b 11λ←−a←−a←−a

←−
b 11λ←−a

←−
b←−a
←−
b 11

λ
←−
b 10λ

←−
b 7←−a 6λ

←−
b 2←−a 7←−b λ

←−
b 2←−a 7←−b λ

←−
b 7←−a 6λ

←−
b 4←−a 5←−b λ←−a .

(11)

2

Definition 7 (U6,6) Let TM U6,6 = ({u1, u2, u3, u4, u5, u6}, {
←−a ,
←−
b ,−→a ,

−→
b , λ, δ},

23

←−a , f, u1, {u3, u5, u6}) where f is given by the following transition rules.

u1,
←−a ,←−a , R, u1 u2,

←−a , λ, L, u4 u3,
←−a ,−→a , L, u3

u1,
←−
b ,←−a , R, u2 u2,

←−
b ,
←−
b , L, u3 u3,

←−
b ,
−→
b , L, u3

u1,
−→a ,←−a , R, u1 u2,

−→a ,←−a , R, u2 u3,
−→a

u1,
−→
b ,
←−
b , R, u1 u2,

−→
b ,
←−
b , R, u2 u3,

−→
b ,←−a , L, u5

u1, λ,
←−
b , L, u2 u2, λ,←−a , L, u2 u3, λ, δ, R, u1

u1, δ, δ, R, u1 u2, δ, δ, R, u2 u3, δ, δ, L, u3

u4,
←−a ,−→a , L, u4 u5,

←−a ,←−a , L, u1 u6,
←−a

u4,
←−
b ,
−→
b , L, u4 u5,

←−
b ,←−a , L, u3 u6,

←−
b

u4,
−→a ,←−a , R, u5 u5,

−→a ,−→a , R, u2 u6,
−→a ,←−a , R, u6

u4,
−→
b ,
←−
b , R, u5 u5,

−→
b ,
−→
b , R, u1 u6,

−→
b ,
←−
b , R, u6

u4, λ, λ, R, u5 u5, λ u6, λ,
−→
b , R, u5

u4, δ, δ, L, u4 u5, δ, λ, R, u6 u6, δ, λ, R, u6

Remark 3 There are some minor differences between the operation of U6,6

and U3,11. The order of symbols in ETRs of U6,6 is reversed when compared

with ETRs of U3,11, assuming ←−a = e and
←−
b = h. To see this, note the

difference between Equations (3) and (9). When printing an ETR, U6,6 reverses
the order so that encoded current states are of the same form as those in U3,11.
Also M ’s encoded tape symbols to the left and right of the simulated tape

head use the same encodings (0̂ = ←−a←−a and 1̂ =
←−
b←−a). This is not the case

for U3,11.

We give an example of U6,6 simulating a TR of M2 from Example 5. As usual
the example is separated into 4 cycles.

Example 6 (U6,6’s simulation of TR t1,1 = (q1, 1, 1, R, q2) from TM M2)
The start state of U6,6 is u1 and the tape head of U6,6 is over the leftmost sym-

bol of q̂1 (as in Definition 2). The input to M2 is 11 (encoded via 1̂ =
←−
b←−a).

Thus the initial configuration is:

u1u1u1, (λEλEλEλEλE
′)2λ←−a←−a

10←−
b 2
←−
b←−a
←−
b←−a←−a ω

24

Cycle 1 (Index next ETR)

u1,
←−a ,←−a , R, u1 u2,

←−a , λ, L, u4 u3,
←−a ,−→a , L, u3

u1,
←−
b ,←−a , R, u2 u2,

←−
b ,
←−
b , L, u3 u3,

←−
b ,
−→
b , L, u3

u1,
−→a ,←−a , R, u1 u3, λ, δ, R, u1

u1,
−→
b ,
←−
b , R, u1 u3, δ, δ, L, u3

u1, δ, δ, R, u1

In Cycle 1 the left block of TRs (above) reads the encoded current state. The
right block neutralises λ markers to index the next ETR. The neutralisation

is done in the usual way; each
←−
b in the encoded current state causes a λ to

be replaced with a δ. The middle block decides when the cycle is complete. In

state u1 the tape head scans from left to right; each
←−
b in the encoded current

state is replaced with an ←−a and U6,6 then enters state u3 via u2.

We have replaced the shorthand notation E with the word
←−
b 7←−a 6 defined

by E(t1,1). The word
←−
b 7←−a 6 appears in the location defined by Equation (11).

After the initial configuration we have:

u1u1u1, (λE)
4λE ′(λE)3λ

←−
b 7←−a 6λE ′λ←−a←−a 10

←−
b
←−
b
←−
b←−a
←−
b←−a
←−
b←−a
←−
b←−a←−a ω

u2u2u2, (λE)
4λE ′(λE)3λ

←−
b 7←−a 6λE ′λ←−a←−a 10←−a

←−
b
←−
b←−a
←−
b←−a
←−
b←−a
←−
b←−a←−a ω

u3u3u3, (λE)
4λE ′(λE)3λ

←−
b 7←−a 6λE ′λ←−a←−a 10←−a

←−
b
←−
b←−a
←−
b←−a
←−
b←−a
←−
b←−a←−a ω

u3u3u3, (λE)
4λE ′(λE)3λ

←−
b 7←−a 6λE ′λ−→a −→a 10−→a

←−
b
←−
b←−a
←−
b←−a
←−
b←−a
←−
b←−a←−a ω

u1u1u1, (λE)
4λE ′(λE)3λ

←−
b 7←−a 6λE ′δ−→a −→a 10−→a

←−
b
←−
b←−a
←−
b←−a
←−
b←−a
←−
b←−a←−a ω

The neutralisation process continues until U6,6 reads the final
←−
b , moves right

to test for the end of the encoded current state and read symbol in u2, and
then reads an←−a . When this occurs U6,6 is finished reading the encoded current
state and read symbol. Skipping to the end of this cycle gives:

u4u4u4, (λE)
4λE ′(λE)3λ

←−
b 7←−a 6δE ′δ←−a←−a 10←−a←−a←−a λ

←−
b←−a←−a ω

U6,6 has neutralised two λ markers to index the next ETR.

25

Cycle 2 (Print ETR)

u4,
←−a ,−→a , L, u4 u5,

−→a ,−→a , R, u2 u1,
−→a ,←−a , R, u1 u2,

←−a , λ, L, u4

u4,
←−
b ,
−→
b , L, u4 u5,

−→
b ,
−→
b , R, u1 u1,

−→
b ,
←−
b , R, u1 u2,

−→a ,←−a , R, u2

u4,
−→a ,←−a , R, u5 u5, δ, λ, R, u6 u1, λ,

←−
b , L, u2 u2,

−→
b ,
←−
b , R, u2

u4,
−→
b ,
←−
b , R, u5 u1, δ, δ, R, u1 u2, λ,←−a , L, u2

u4, λ, λ, R, u5 u2, δ, δ, R, u2

u4, δ, δ, L, u4

This cycle copies an ETR to M ’s simulated tape head position. The leftmost
block scans left and locates the next symbol of the ETR to be printed. The
second block from the left records the symbol to be printed or ends the cycle.
The rightmost two blocks scan right and print the appropriate symbol. In the
configurations below, U6,6 scans left until a λ is read. Then U6,6 moves right
and records the symbol read by entering state u1 or u2. In the configurations

below when all the
←−
b and ←−a symbols in an E ′ are replaced with

−→
b and −→a

symbols then the resulting word is denoted
−→
E ′ .

u4u4u4, (λE)
4λE ′(λE)3λ

−→
b
−→
b
−→
b 5−→a 6δ

−→
E ′δ−→a −→a 12−→a λ

←−
b←−a←−a ω

u5u5u5, (λE)
4λE ′(λE)3λ

−→
b
−→
b
−→
b 5−→a 6δ

−→
E ′δ−→a −→a 12−→a λ

←−
b←−a←−a ω

u1u1u1, (λE)
4λE ′(λE)3λ

−→
b
←−
b
←−
b 5←−a 6δE ′δ←−a←−a 12←−a λ

←−
b←−a←−a ω

u2u2u2, (λE)
4λE ′(λE)3λ

−→
b
←−
b
←−
b 5←−a 6δE ′δ←−a←−a 12←−a

←−
b
←−
b←−a←−a ω

u4u4u4, (λE)
4λE ′(λE)3λ

−→
b
−→
b
−→
b 5−→a 6δ

−→
E ′δ−→a −→a 12λ

←−
b
←−
b←−a←−a ω

u5u5u5, (λE)
4λE ′(λE)3λ

←−
b
−→
b
−→
b 5−→a 6δ

−→
E ′δ−→a −→a 12λ

←−
b
←−
b←−a←−a ω

On the first pass U6,6 located the symbol to be printed by using λ as a marker.
On subsequent passes U6,6 locates the symbol to be printed by locating an −→a

or
−→
b . This printing process is iterated until U6,6 is finished printing the ETR.

The completion of this process occurs on reading a δ in state u5 which switches
control to u6.

u4u4u4, (λE)
4λE ′(λE)3λ

←−
b 7←−a 5−→a δ

−→
E ′δ−→a λ←−a 6

←−
b 7
←−
b←−a←−a ω

u5u5u5, (λE)
4λE ′(λE)3λ

←−
b 7←−a 5←−a δ

−→
E ′δ−→a λ←−a 6

←−
b 7
←−
b←−a←−a ω

u6u6u6, (λE)
4λE ′(λE)3λ

←−
b 7←−a 5←−a λ

−→
E ′δ−→a λ←−a 6

←−
b 7
←−
b←−a←−a ω

26

Cycle 3 (Restore tape)

u6,
−→a ,←−a , R, u6

u6,
−→
b ,
←−
b , R, u6

u6, λ,
−→
b , R, u5

u6, δ, λ, R, u6

These TRs restore M ’s simulated tape and encoded table of behaviour. U6,6

moves right restoring each −→a to ←−a , each
−→
b to

←−
b , and each δ to λ. This

continues until U6,6 reads λ, sending control to u5.

u6u6u6, (λE)
4λE ′(λE)3λ

←−
b 7←−a 6λE ′λ←−a λ←−a←−a 5

←−
b 7
←−
b←−a←−a ω

u5u5u5, (λE)
4λE ′(λE)3λ

←−
b 7←−a 6λE ′λ←−a

−→
b←−a←−a 5

←−
b 7
←−
b←−a←−a ω

Cycle 4 (Choose read or write symbol)

u5,
←−a ,←−a , L, u1 u3,

−→
b ,←−a , L, u5 u1,

←−a ,←−a , R, u1

u5,
←−
b ,←−a , L, u3 u1,

−→
b ,
←−
b , R, u1

u5, λ

This cycle either (i) begins the indexing of an ETR or (ii) completes the
execution of an ETR. More precisely: (i) if U6,6 is immediately after simulating
a left move then this cycle reads the encoded read symbol to the left of the
encoded current state, (ii) if U6,6 is simulating a right move then this cycle
prints the encoded write symbol to the left of the encoded current state. Case
(ii) follows:

u1u1u1, (λE)
4λE ′(λE)3λ

←−
b 7←−a 6λE ′λ←−a

−→
b←−a←−a 5

←−
b 7
←−
b←−a←−a ω

u1u1u1, (λE)
4λE ′(λE)3λ

←−
b 7←−a 6λE ′λ←−a

←−
b
←−
b
←−
b←−a←−a←−a←−a 5

←−
b 7
←−
b←−a←−a ω

In the configuration immediately above we have shortened the overlined sec-
tion; the two symbols to the left of M̂2’s encoded current state encode the
write symbol 1.

The example simulation of TR t1,1 = (q1, 1, 1, R, q2) is now complete. The

correct encoded write symbol 1̂ =
←−
b←−a has been written and the new encoded

current state is of the correct form. M2’s simulated tape head (the new encoded
current state) is configured so U6,6 reads the next encoded read symbol to the
right when searching for the next ETR. 2

Left moving TRs are simulated in a similar fashion to the right moving TR

27

given above, except in this case the write symbol is written on the right hand
side of the encoded current state as shown in Fig. 2 (cL). After the left move
M2’s simulated tape head (encoded current state) is configured to read the
encoded tape symbol to its left when searching for the next ETR.

The halting case for U6,6 is similar to the halting case for U3,11. When U6,6

encounters the state symbol pair (u5, λ), for which there is no TR, the com-
putation halts. This occurs during Cycle 4 when U6,6 attempts to simulate a
left move at the left end of the simulated tape.

5.2 Construction of U5,7

For U5,7 the start state of M̂ is encoded as q̂1 = ←−a 5|Q|←−b 4. The encoding of

M ’s current state is of the form ←−a ∗←−b 4←−b ∗{←−a ∪ ǫ} and is of length 5|Q|+ 4.

Let t = (qx, σ1, σ2, D, qy) be a fixed TR in M , then t is encoded via P using
the function E on its own, or in conjunction with E ′, where

E(t) =





←−
b b(t)+2←−a a(t)+1 if D = R, σ2 = 0
←−
b b(t)+2←−a a(t)←−b if D = R, σ2 = 1
←−a←−a←−a

←−
b b(t)+2←−a a(t)−1 if D = L, σ2 = 0

←−a
←−
b←−a
←−
b b(t)+2←−a a(t)−1 if D = L, σ2 = 1

(12)

and

E ′(f, t) =





←−
b b(tR,x)+4←−a a(tR,x)−2 if ∃tR,x, qx 6= q1

ǫ if ∄tR,x, qx 6= q1
←−
b 6←−a 5|Q|−2 if qx = q1

(13)

where as before tR,x is any right moving TR such that tR,x ⊢ t.

The value of the ending E, from Equation (1), for U5,7 is E = λ
←−
b λ←−a .

Definition 8 (U5,7) Let TM U5,7 = ({u1, u2, u3, u4, u5}, {
←−a ,
←−
b ,−→a ,

−→
b , λ,

←−
λ ,
−→
λ },

28

←−a , f, u1, {u4, u5}) where f is given by the following transition rules.

u1,
←−a ,←−a , R, u1 u2,

←−a , λ, L, u4 u3,
←−a ,−→a , L, u3

u1,
←−
b ,←−a , R, u2 u2,

←−
b ,
←−
b , L, u3 u3,

←−
b ,
−→
b , L, u3

u1,
−→a ,←−a , R, u1 u2,

−→a ,←−a , R, u2 u3,
−→a ,−→a , R, u1

u1,
−→
b ,
←−
b , R, u1 u2,

−→
b ,
←−
b , R, u2 u3,

−→
b ,
−→
b , R, u2

u1, λ,←−a , L, u2 u2, λ,
←−
b , L, u2 u3, λ,

←−
λ , R, u1

u1,
←−
λ ,
←−
b , R, u5 u2,

←−
λ ,←−a , L, u3 u3,

←−
λ ,
−→
λ , L, u3

u1,
−→
λ ,
←−
λ , R, u1 u2,

−→
λ ,
←−
λ , R, u2 u3,

−→
λ , λ, R, u5

u4,
←−a ,−→a , L, u4 u5,

←−a ,←−a , L, u5

u4,
←−
b ,
−→
b , L, u4 u5,

←−
b ,←−a , R, u1

u4,
−→a ,←−a , R, u3 u5,

−→a ,←−a , R, u5

u4,
−→
b ,
←−
b , R, u3 u5,

−→
b ,
←−
b , R, u5

u4, λ, λ, R, u3 u5, λ,
←−
λ , L, u1

u4,
←−
λ ,
−→
λ , L, u4 u5,

←−
λ ,

u4,
−→
λ , u5,

−→
λ , λ, R, u5

Remark 4 There are some minor differences between the operation of U5,7

and U3,11. The order of symbols in ETRs of U5,7 is reversed when compared

with ETRs of U3,11, assuming ←−a = e and
←−
b = h. To see this, note the differ-

ence between Equations (3) and (12). When printing an ETR, U5,7 reverses
the order so that encoded current states are of the same form as those in U3,11.
Also M ’s encoded tape symbols to the left and right of the simulated tape

head use the same encodings (0̂ = ←−a←−a and 1̂ =
←−
b←−a). This is not the case

for U3,11.

We give a brief overview of the computation of U5,7.

Cycle 1 (Index next ETR)

u1,
←−a ,←−a , R, u1 u2,

←−a , λ, L, u4 u3,
←−a ,−→a , L, u3

u1,
←−
b ,←−a , R, u2 u2,

←−
b ,
←−
b , L, u3 u3,

←−
b ,
−→
b , L, u3

u1,
−→a ,←−a , R, u1 u3, λ,

←−
λ , R, u1

u1,
−→
b ,
←−
b , R, u1 u3,

←−
λ ,
−→
λ , L, u3

u1,
−→
λ ,
←−
λ , R, u1

In Cycle 1 the leftmost block of TRs (above) reads the encoded current state.

The rightmost block neutralises λ markers by replacing them with
←−
λ or

−→
λ

to index the next ETR. The middle block decides when the cycle is complete.

29

Each
←−
b in the encoded current state is replaced with ←−a and then U5,7 enters

state u3 via u2.

Cycle 2 (Print ETR)

u4,
←−a ,−→a , L, u4 u3,

−→a ,−→a , R, u1 u2,
←−a , λ, L, u4 u1,

−→a ,←−a , R, u1

u4,
←−
b ,
−→
b , L, u4 u3,

−→
b ,
−→
b , R, u2 u2,

−→a ,←−a , R, u2 u1,
−→
b ,
←−
b , R, u1

u4,
−→a ,←−a , R, u3 u3,

−→
λ , λ, R, u5 u2,

−→
b ,
←−
b , R, u2 u1, λ,←−a , L, u2

u4,
−→
b ,
←−
b , R, u3 u2, λ,

←−
b , L, u2 u1,

−→
λ ,
←−
λ , R, u1

u4, λ, λ, R, u3 u2,
−→
λ ,
←−
λ , R, u2

u4,
←−
λ ,
−→
λ , L, u4

This cycle copies an ETR to M ’s simulated tape head position. The leftmost
block scans left and locates the next symbol of the ETR to be printed. The
second block from the left records the symbol to be printed or ends the cycle.
The rightmost two blocks scan right and print the appropriate symbol.

Cycle 3 (Restore tape)

u5,
−→a ,←−a , R, u5

u5,
−→
b ,
←−
b , R, u5

u5, λ,
←−
λ , L, u1

u5,
−→
λ , λ, R, u5

These TRs restore M ’s simulated tape and encoded table of behaviour. U5,7

moves right restoring each −→a to ←−a , each
−→
b to

←−
b , and each

−→
λ to λ. This

continues until U5,7 reads λ, sending U5,7’s control into u1.

Cycle 4 (Choose read or write symbol)

u1,
←−a ,←−a , R, u1 u2,

←−
λ ,←−a , L, u3 u5,

←−a ,←−a , L, u5

u1,
←−
b ,←−a , R, u2 u5,

←−
b ,←−a , R, u1

u1,
←−
λ ,
←−
b , R, u5

This Cycle either (i) begins the indexing of an ETR or (ii) completes the
execution of an ETR. More precisely: (i) if U5,7 is immediately after simulating
a left move then this cycle reads the encoded read symbol to the left of the
encoded current state, (ii) if U5,7 is simulating a right move then this cycle
prints the encoded write symbol to the left of the encoded current state.

The halting case for U5,7 is more complex than the previous UTMs. If the
simulated tape head is attempting to move left at the left end of the simulated

30

tape then U5,7 has the following configuration:

u5u5u5, (λEλEλEλEλE
′)∗λλ

←−
b λλ←−a←−a

∗←−
b

4←−
b

∗←−a (
←−
b←−a ∪←−a←−a)∗←−a ω

The computation continues through 13 configurations before the halting con-
figuration given below is reached.

u5u5u5, (λEλEλEλEλE
′)∗λλ←−a

←−
b
←−
λ←−a←−a

∗←−
b

4←−
b

∗←−a (
←−
b←−a ∪←−a←−a)∗←−a ω

There is no TR for the state-symbol pair (u5,
←−
λ) in U5,7 so the simulation

halts.

5.3 Construction of U7,5

For U7,5 the start state of M̂ is encoded as q̂1 =←−a 5|Q|+1←−b 3. The encoding of

M ’s current state is of the form ←−a ∗←−b 3←−b ∗{←−a ∪ ǫ} and is of length 5|Q|+ 4.

Let t = (qx, σ1, σ2, D, qy) be a fixed TR in M , then t is encoded via P using
the function E on its own, or in conjunction with E ′, where

E(t) =





←−
b b(t)+1(←−a

←−
b)a(t)+1←−b if D = R, σ2 = 0

←−
b b(t)+1(←−a

←−
b)a(t)−1←−b

←−
b←−a
←−
b if D = R, σ2 = 1

(←−a
←−
b)3←−b b(t)+1(←−a

←−
b)a(t)−1←−b if D = L, σ2 = 0

←−a
←−
b
←−
b←−a
←−
b
←−
b b(t)+1(←−a

←−
b)a(t)−1←−b if D = L, σ2 = 1

(14)

and

E ′(f, t) =





←−
b b(tR,x)+3(←−a

←−
b)a(tR,x)−2←−b if ∃tR,x, qx 6= q1

ǫ if ∄tR,x, qx 6= q1
←−
b 5(←−a

←−
b)5|Q|−2←−b if qx = q1

(15)

where as before tR,x is any right moving TR such that tR,x ⊢ t.

The value of the ending E, from Equation (1), for U7,5 is E =
←−
b
←−
b
←−
b λ←−a .

Definition 9 (U7,5) Let TM U7,5 = ({u1, u2, u3, u4, u5, u6, u7}, {
←−a ,
←−
b , λ, δ, γ},

31

←−a , f, u1, {u2, u5}) where f is given by the following transition rules.

u1,
←−a ,←−a , R, u1 u2,

←−a , γ, L, u4 u3,
←−a ,←−a , L, u3

u1,
←−
b ,←−a , R, u2 u2,

←−
b ,
←−
b , L, u3 u3,

←−
b , λ, L, u3

u1, λ,
←−
b , R, u1 u2, λ, γ, R, u1 u3, λ, δ, R, u1

u1, δ, δ, R, u1 u2, δ, u3, δ, δ, L, u3

u1, γ,←−a , L, u2 u2, γ,
←−
b , R, u6 u3, γ,←−a , R, u5

u4,
←−a ,←−a , L, u4 u5,

←−a ,←−a , R, u2 u6,
←−a ,←−a , R, u6

u4,
←−
b , λ, L, u4 u5,

←−
b ,←−a , R, u3 u6,

←−
b ,←−a , L, u7

u4, λ, λ, R, u5 u5, λ, γ, R, u6 u6, λ,
←−
b , R, u6

u4, δ, δ, L, u4 u5, δ, λ, R, u7 u6, δ, δ, R, u6

u4, γ,
←−
b , R, u5 u5, γ, u6, γ,

←−
b , L, u2

u7,
←−a ,←−a , R, u7

u7,
←−
b ,←−a , R, u1

u7, λ,
←−
b , R, u7

u7, δ, λ, R, u7

u7, γ, γ, L, u5

Remark 5 There are some minor differences between the operation of U7,5

and U3,11. The order of symbols in ETRs of U7,5 is reversed when compared

with ETRs of U3,11, assuming ←−a
←−
b = e and

←−
b = h. To see this, note the dif-

ference between Equations (3) and (14). When printing an ETR, U7,5 reverses
the order so that encoded current states are of the same form as U3,11. Also
M ’s encoded tape symbols to the left and right of the simulated tape head use

the same encodings (0̂ =←−a←−a and 1̂ =
←−
b←−a). This is not the case for U3,11.

We give a brief overview of U7,5’s computation.

Cycle 1 (Index next ETR)

u1,
←−a ,←−a , R, u1 u2,

←−a , γ, L, u4 u3,
←−a ,←−a , L, u3

u1,
←−
b ,←−a , R, u2 u2,

←−
b ,
←−
b , L, u3 u3,

←−
b , λ, L, u3

u1, λ,
←−
b , R, u1 u3, λ, δ, R, u1

u1, δ, δ, R, u1 u3, δ, δ, L, u3

In Cycle 1 the leftmost block of TRs (above) reads the encoded current state.
The rightmost block neutralises λ markers by replacing them with δ symbols
to index the next ETR. The middle block decides when the cycle is complete.

32

Each
←−
b in the encoded current state is replaced with ←−a and U7,5 then enters

state u3 via u2.

Cycle 2 (Print ETR)

u2,
←−a , γ, L, u4 u5,

←−a ,←−a , R, u2 u6,
←−a ,←−a , R, u6 u2, λ, γ, R, u1

u4,
←−a ,←−a , L, u4 u5, λ, γ, R, u6 u6, λ,

←−
b , R, u6 u1,

←−a ,←−a , R, u1

u4,
←−
b , λ, L, u4 u5, δ, λ, R, u7 u6, δ, δ, R, u6 u1, λ,

←−
b , R, u1

u4, λ, λ, R, u5 u6, γ,
←−
b , L, u2 u1, δ, δ, R, u1

u4, δ, δ, L, u4 u1, γ,←−a , L, u2

u4, γ,
←−
b , R, u5

This cycle copies an ETR to M ’s simulated tape head position. The leftmost
block scans left and locates the next symbol of the ETR to be printed. The
second block from the left records the symbol to be printed or ends the cycle.
The rightmost two blocks scan right and print the appropriate symbol.

Cycle 3 (Restore tape)

u7,
←−a ,←−a , R, u7

u7, λ,
←−
b , R, u7

u7, δ, λ, R, u7

u7, γ, γ, L, u5

These TRs restore M ’s simulated tape and encoded table of behaviour. U7,5

moves right restoring each λ to
←−
b , and each δ to λ. This continues until U7,5

reads γ, sending U7,5’s control to u5.

Cycle 4 (Choose read or write symbol)

u5,
←−a ,←−a , R, u2 u2, γ,

←−
b , R, u6 u6,

←−a ,←−a , R, u6 u7,
←−a ,←−a , R, u7

u5,
←−
b ,←−a , R, u3 u3, γ,←−a , R, u5 u6,

←−
b ,←−a , L, u7 u7,

←−
b ,←−a , R, u1

This Cycle either (i) begins the indexing of an ETR or (ii) completes the
execution of an ETR. More precisely: (i) if U7,5 is immediately after simulating
a left move then this cycle reads the encoded read symbol to the left of the
encoded current state, (ii) if U7,5 is simulating a right move then this cycle
prints the encoded write symbol to the left of the encoded current state.

The halting case for U7,5 is more complex than the first two UTMs in this
paper. When the simulated tape head is attempting to move left at the left

33

end of the simulated tape then U7,5 has the following configuration:

u7u7u7, (λEλEλEλEλE
′)∗λ
←−
b
←−
b
←−
b λγ
←−
b←−a←−a ∗

←−
b 3
←−
b ∗←−a (

←−
b←−a ∪←−a←−a)∗←−a ω

The computation continues through 42 configurations before the halting con-
figuration given below is reached.

u5u5u5, (λEλEλEλEλE
′)∗λ
←−
b
←−
b
←−
b γ
←−
b
←−
b
←−
b←−a ∗

←−
b 3
←−
b ∗←−a (

←−
b←−a ∪←−a←−a)∗←−a ω

There is no TR for the state-symbol pair (u5, γ) in U7,5 so the simulation halts.

5.4 Construction of U8,4

For U8,4 the start state of M̂ is encoded as q̂1 = ←−a 5|Q|←−b 2. The encoding of

M ’s current state is of the form ←−a ∗←−b 2←−b ∗{←−a ∪ ǫ} and is of length 5|Q|+ 2.

Let t = (qx, σ1, σ2, D, qy) be a fixed TR in M , then t is encoded via P using
the function E on its own, or in conjunction with E ′, where

E(t) =





←−
b
←−
b←−a (←−a

←−
b)a(t)←−b 2(b(t))←−a←−a if D = R, σ2 = 0

←−a←−a
←−
b
←−
b
←−
b (←−a

←−
b)a(t)−1←−b 2(b(t))←−a←−a if D = R, σ2 = 1

←−a (←−a
←−
b)a(t)−1←−b 2(b(t))(←−a

←−
b)3←−a←−a if D = L, σ2 = 0

←−a (←−a
←−
b)a(t)−1←−b 2(b(t))←−a

←−
b
←−
b
←−
b←−a
←−
b←−a←−a if D = L, σ2 = 1

(16)

and

E ′(f, t) =





←−
b
←−
b←−a (←−a

←−
b)a(tR,x)−3←−b 2(b(tR,x)+2)←−a←−a if ∃tR,x, qx 6= q1

←−a if ∄tR,x, qx 6= q1
←−
b
←−
b←−a (←−a

←−
b)5|Q|−3←−b 8←−a←−a if qx = q1

(17)

where as before tR,x is any right moving TR such that tR,x ⊢ t.

The value of the ending E, from Equation (1), for U8,4 is E = ǫ.

Definition 10 (U8,4) Let TM U8,4 = ({u1, u2, u3, u4, u5, u6, u7, u8}, {
←−a ,
←−
b , λ, δ},

34

←−a , f, u1, {u2}) where f is given by the following transition rules.

u1,
←−a ,←−a , R, u1 u2,

←−a , λ, L, u4 u3,
←−a ,←−a , L, u3

u1,
←−
b ,←−a , R, u2 u2,

←−
b ,
←−
b , L, u3 u3,

←−
b , δ, L, u3

u1, λ,
←−
b , L, u2 u2, λ, u3, λ, δ, R, u1

u1, δ, δ, R, u1 u2, δ, u3, δ, δ, L, u3

u4,
←−a ,←−a , L, u4 u5,

←−a ,←−a , R, u5 u6,
←−a ,←−a , R, u7

u4,
←−
b , δ, L, u5 u5,

←−
b , δ, R, u1 u6,

←−
b ,←−a , L, u7

u4, λ, λ, R, u6 u5, λ,←−a , L, u2 u6, λ,
←−
b , R, u6

u4, δ, δ, L, u4 u5, δ, δ, R, u5 u6, δ,
←−
b , R, u8

u7,
←−a ,←−a , R, u6 u8,

←−a ,←−a , R, u6

u7,
←−
b ,←−a , R, u1 u8,

←−
b ,←−a , L, u3

u7, λ,←−a , R, u1 u8, λ,←−a , L, u8

u7, δ, λ, R, u6 u8, δ,
←−
b , R, u6

We give a brief overview of U8,4’s computation. The tape contents are given

by the same symbols (1̂ =
←−
b←−a and 0̂ = ←−a←−a) to the left and right of the

simulated TMs tape head.

Cycle 1 (Index next ETR)

u1,
←−a ,←−a , R, u1 u2,

←−a , λ, L, u4 u3,
←−a ,←−a , L, u3

u1,
←−
b ,←−a , R, u2 u2,

←−
b ,
←−
b , L, u3 u3,

←−
b , δ, L, u3

u1, δ, δ, R, u1 u3, λ, δ, R, u1

u3, δ, δ, L, u3

In Cycle 1 the leftmost block of TRs (above) reads the encoded current state.
The rightmost block neutralises markers to index the next ETR. The middle
block decides when the cycle is complete. In state u1 the tape head scans from

left to right; each
←−
b in the encoded current state is replaced with ←−a and U8,4

then enters state u3 via u2.

35

Cycle 2 (Print ETR)

u2,
←−a , λ, L, u4 u5,

←−a ,←−a , R, u5 u1,
←−a ,←−a , R, u1

u4,
←−a ,←−a , L, u4 u5,

←−
b , δ, R, u1 u1, λ,

←−
b , L, u2

u4,
←−
b , δ, L, u5 u5, λ,←−a , L, u2 u1, δ, δ, R, u1

u4, λ, λ, R, u6 u5, δ, δ, R, u5

u4, δ, δ, L, u4

Before we explain this cycle we mention why ETRs for U8,4 are longer than
ETRs for the other UTMs (e.g. compare Equations (16) and (3)). In U8,4’s

ETRs there are multiple copies of the subwords ←−a
←−
b and

←−
b
←−
b . During the

Print ETR cycle, the subword ←−a
←−
b will cause an ←−a to be printed and the

subword
←−
b
←−
b will cause a

←−
b to be printed. During this cycle the next symbol

to be printed is the symbol to the left of the rightmost
←−
b in the ETR. The

rightmost
←−
b of the subwords←−a

←−
b and

←−
b
←−
b is simply a marker and the symbol

directly to its left is the symbol that is to be printed. Extra←−a symbols appear
in U8,4’s ETRs that do not result in symbols being printed during the print
ETR cycle. These extra ←−a symbols are added to allow the restore tape cycle
to execute correctly.

This cycle copies an ETR to M ’s simulated tape head position. The leftmost
block scans left and locates the next symbol of the ETR to be printed or ends
the cycle. The middle block records the symbol to be printed. If an ←−a is to

be printed the middle block also scans right and prints an ←−a . If a
←−
b is to be

printed the rightmost block scans right and prints a
←−
b .

Cycle 3 (Restore tape)

u6,
←−a ,←−a , R, u7 u7,

←−a ,←−a , R, u6 u8,
←−a ,←−a , R, u6

u6, λ,
←−
b , R, u6 u7, λ,←−a , R, u1 u8, λ,←−a , L, u8

u6, δ,
←−
b , R, u8 u7, δ, λ, R, u6 u8, δ,

←−
b , R, u6

These TRs restore M ’s simulated tape and encoded table of behaviour. U8,4’s

tape head scans right restoring δ symbols to
←−
b and λ symbols. Recall that

during Cycle 1 (Index next ETR) λ symbols are replaced with δ symbols in
order to index the next ETR. Note also that during Cycle 1, as U8,4 scans

left, it also replaces each
←−
b with δ. As mentioned earlier there are extra ←−a

symbols in each ETR that do not effect what is printed to the overlined region.
The reason for these extra ←−a symbols is to ensure that U8,4 can distinguish

which δ symbols to restore to λ symbols and which δ symbols to restore to
←−
b

symbols. The extra ←−a symbols ensure that U8,4 will be in state u7 if δ should

be restored to λ and in u6 or u8 if δ should be restored to
←−
b . This cycle ends

when U8,4 reads λ.

36

Cycle 4 (Choose read or write symbol)

u6,
←−a ,←−a , R, u7 u7,

←−
b ,←−a , R, u1 u8,

←−
b ,←−a , L, u3

u6,
←−
b ,←−a , L, u7

This cycle either (i) begins the indexing of an ETR or (ii) completes the
execution of an ETR. More precisely: (i) if U8,4 is immediately after simulating
a left move then this cycle reads the encoded read symbol to the left of the
encoded current state, (ii) if U8,4 is simulating a right move then this cycle
prints the encoded write symbol to the left of the encoded current state.

Remark 6 Halting case U8,4. Recall that all our UTMs simulate halting by
attempting to simulate a left move at the left end of the simulated tape. This
is also true for U8,4. However the halting case for U8,4 differs slightly from the
halting case for U3,11. U3,11 halts during Cycle 4 (Choose read or write symbol).
U8,4 halts in the configuration immediately after printing the last symbol of
the left moving ETR at the end of Cycle 2 (Print ETR).

6 Conclusion and future work

We have improved the state of the art in small efficient UTMs. Fig. 1 sum-
marises our results. Our UTMs infer a polynomial time curve that in some
places matches the already known (from Rogozhin et al.) exponential time
curve.

The decrease in the number of states and symbols was found, in part through
direct simulation of TMs. This is rather suprising given the trend over the last
forty years of indirect simulation through other universal models. The most
recent small UTMs simulate TMs via 2-tag systems, with an exponential time
overhead [4–7,16]. Before the advent of Minsky’s UTM in UTM(7, 4), the
smallest UTMs directly simulated TMs [2,3]. One problem in the construction
of these UTMs was the addressing of states, that is locating the next encoded
state during TR simulation. Some approaches to solving this problem are
briefly discussed in Section 3.1 of Minsky’s paper [4]. A major advantage of our
algorithm is the fact that the encoded current state is located at the simulated
tape head position. This technique simplifies the addressing of states.

As future work it would be of interest to use our algorithm to construct small
polynomial time UTMs in the classes UTM(2, n) and UTM(n, 2). This would
give a more complete polynomial time curve. Also, our UTM in UTM(6, 6)
uses only 32 of 36 available TRs and so it seems possible that it could be
improved to a UTM in UTM(5, 6) or UTM(6, 5).

37

What about small UTMs with less than polynomial time complexity? For
example, consider the construction of a linear time UTM. Our UTM stores the
encoded current state at the simulated tape head location. Suppose the entire
encoded table of behaviour is stored at this location. Simulating a TR merely
involves scanning through the encoded table of behaviour, it is not necessary to
scan the entire simulated tape contents. The idea is straightforward, however
trying to construct small linear time UTMs could be difficult.

Cook [16,17] has recently published UTMs in UTM(2, 5), UTM(3, 4), UTM(4, 3)
and UTM(7, 2) that are smaller than those of Rogozhin et al. However, Cook’s
UTMs differ from the classical [14] Turing machine definition. Instead of hav-
ing a blank symbol these machines have two blank words. Cook’s UTMs re-
quire the blank tape to have an infinitely repeating blank word to the left and
a different infinitely repeating blank word to the right. Cook’s machines also
suffer from an exponential slowdown through simulation of 2-tag systems. As
future work it would be interesting to find polynomial time UTMs as small as
Cook’s. At present it seems technically challenging to apply our algorithm to
state-symbol pairs as small as Cook’s so we suspect that a radically different
approach is required.

References

[1] C. E. Shannon, A universal Turing machine with two internal states, Automata
Studies, Annals of Mathematics Studies 34 (1956) 157–165.

[2] N. Ikeno, A 6-symbol 10-state universal Turing machine, in: Proceedings,
Institute of Electrical Communications, Tokyo, 1958.

[3] S. Watanabe, 5-symbol 8-state and 5-symbol 6-state universal Turing machines,
Journal of the Association for Computing Machinery 8 (4) (1961) 476–483.

[4] M. Minsky, Size and structure of universal Turing machines using tag systems,
in: Recursive Function Theory, Symposium in Pure Mathematics, Vol. 5,
American Mathematical Society, Provelence, 1962, pp. 229–238.

[5] Y. Rogozhin, Small universal Turing machines, Theoretical Computer Science
168 (2) (1996) 215–240.

[6] M. Kudlek, Y. Rogozhin, A universal Turing machine with 3 states and 9
symbols, in: W. Kuich, G. Rozenberg, A. Salomaa (Eds.), Developments in
Language Theory, DLT 2001, Vol. 2295 of Lecture Notes in Computer Science,
DLT, Springer, Vienna, 2002, pp. 311–318.

[7] C. Baiocchi, Three small universal Turing machines, in: M. Margenstern,
Y. Rogozhin (Eds.), Machines, Computations, and Universality, Vol. 2055 of
Lecture Notes in Computer Science, MCU, Springer, Chişinău, Moldova, 2001,
pp. 1–10.

38

[8] J. Cocke, M. Minsky, Universality of tag systems with P = 2, Journal of the
Association for Computing Machinery 11 (1) (1964) 15–20.

[9] M. Kudlek, Small deterministic Turing machines, Theoretical Computer Science
168 (2) (1996) 241–255.

[10] L. Pavlotskaya, Solvability of the halting problem for certain classes of Turing
machines, Mathematical Notes (Springer) 13 (6) (1973) 537–541.

[11] L. Pavlotskaya, Dostatochnye uslovija razreshimosti problemy ostanovki dlja
mashin T’juring, Avtomaty i Mashiny (1978) 91–118 (Sufficient conditions for
the halting problem decidability of Turing machines) (in Russian).

[12] G. Hermann, The uniform halting problem for generalized one state Turing
machines, in: Proceedings, Ninth Annual Symposium on Switching and
Automata Theory, IEEE Computer Society Press, Schenectady, New York,
1968, pp. 368–372.

[13] P. van Emde Boas, Machine models and simulations, in: J. van Leeuwen (Ed.),
Handbook of Theoretical Computer Science, Vol. A, Elsevier, Amsterdam, 1990,
Ch. 1, pp. 1–66.

[14] J. E. Hopcroft, J. D. Ullman, Introduction to automata theory, languages, and
computation, Addison-Wesley, 1979.

[15] M. Sipser, Introduction to the theory of computation, PWS, Boston, 1997.

[16] M. Cook, Universality in elementary cellular automata, Complex Systems 15 (1)
(2004) 1–40.

[17] S. Wolfram, A new kind of science, Wolfram Media Inc., 2002.

39

