
P-completeness of cellular automaton Rule 110⋆

Turlough Neary1 and Damien Woods2

1 TASS, Department of Computer Science,
National University of Ireland Maynooth, Ireland. tneary@cs.may.ie

2 Department of Mathematics and Boole Centre for Research in Informatics,
University College Cork, Ireland. d.woods@bcri.ucc.ie

Abstract. We show that the problem of predicting t steps of the 1D
cellular automaton Rule 110 is P-complete. The result is found by show-
ing that Rule 110 simulates deterministic Turing machines in polynomial
time. As a corollary we find that the small universal Turing machines of
Mathew Cook run in polynomial time, this is an exponential improve-
ment on their previously known simulation time overhead.

1 Introduction

In this paper we solve an open problem regarding the computational complexity
of Rule 110 which is one of the simplest cellular automata. We show that the
prediction problem for Rule 110 is P-complete. Rule 110 is a nearest neighbour,
one dimensional, binary cellular automaton [1]. It is composed of a sequence of
cells . . . p−1p0p1 . . . where each cell has a binary state pi ∈ {0, 1}. At timestep
t + 1 the value of cell pi,t+1 = F (pi−1,t, pi,t, pi+1,t) is given by the synchronous
local update function F

F (0, 0, 0) = 0 F (1, 0, 0) = 0

F (0, 0, 1) = 1 F (1, 0, 1) = 1

F (0, 1, 0) = 1 F (1, 1, 0) = 1

F (0, 1, 1) = 1 F (1, 1, 1) = 0

The problem of Rule 110 prediction is defined as follows.

Definition 1 (Rule 110 prediction). Given an initial Rule 110 configura-
tion, a cell index i and a natural number t written in unary. Is cell pi in state 1
at time t?

This problem is in P as a Turing machine simulates the cellular automaton in
O(t2) steps by repeatedly traversing from left to right. From Matthew Cook’s [2,
3] result one infers a NC lower bound on the problem. Cook showed that Rule
110 simulates Turing machines via the following sequence of simulations

Turing machine 7→ 2-tag system 7→ cyclic tag system 7→ Rule 110 (1)

⋆ BCRI preprint 04/2006, April 2006. http://www.bcri.ucc.ie/

where A 7→ B denotes that A is simulated by B. The universality of 2-tag sys-
tems [4] is well-known and Cook supplied the latter two simulations. Each of
these simulations runs in polynomial time (that is, B runs in a number of steps
that is polynomial in the number of A’s steps) with the exception of the expo-
nentially slow 2-tag system simulation of Turing machines [4]. This slowdown
is due to the 2-tag system’s unary encoding of Turing machine tape contents.
Thus via Equation (1), Rule 110 is an exponentially slow simulator of Turing
machines and so it has remained open as to whether Rule 110 prediction is
P-complete.

In this work we replace the tag system with a clockwise Turing machine to
give the following chain of simulations

Turing machine 7→ clockwise Turing machine

7→ cyclic tag system 7→ Rule 110
(2)

Each simulation runs in polynomial time and the reduction from Turing machine
to Rule 110 is computable by a logspace Turing machine. Thus our work shows
that Rule 110 simulates Turing machines efficiently, giving the following result.

Theorem 1. Rule 110 prediction is logspace complete for P.

Rule 110 is a very simple (2 state, nearest neighbour, one dimensional) cel-
lular automaton, and Matthew Cook [2, 3] gave four small universal Turing ma-
chines3 that simulate its computation. Their size given as (number of states,
number of symbols), are respectively (2, 5),(3, 4),(4, 3) and (7, 2). In terms of
program size these machines are a significant improvement on previous small
universal Turing machine results [5–10]. However in terms of time complexity
Cook’s machines offer no improvement over the exponentially slow machines of
Rogozhin et al. [5–8]. A corollary of our work is that Matthew Cook’s small
universal Turing machines are polynomial time simulators of Turing machines.

The prediction problem for a number of classes of cellular automata has been
shown to be P-complete. However Rule 110 is the simplest so far, in the sense
that previous P-completeness results have been shown for more general cellular
automata (e.g. more states, neighbours or dimensions). For example prediction
of cellular automata of dimension d > 1 with an arbitrary number of states is
known to be P-complete [11]. Lindgren and Nordahl [12] show that prediction
for one dimensional nearest neighbour cellular automata is P-complete for seven
states and Ollinger’s result [13] improves this to six. If the update rule depends
on the states of five neighbours then four states are sufficient [12, 11]. Moore [14]
shows that prediction of binary majority voting cellular automata is P-complete
for dimension d > 3. On the other hand, the prediction problem for a variety

3 Cook’s small “universal Turing machines” deviate from the usual Turing machine
definition in the following way: their blank tape consists of an infinitely repeated
word to the left and another to the right. Intuitively this change of definition seems
to make quite a difference to program size, especially since Cook encodes a program
in one of these repeated words. This has no bearing on our P-completeness result as
we require only a bounded initial configuration for Rule 110 prediction.

2

of linear and quasilinear cellular automata is in NC [15, 16]. The question of
whether Rule 110 prediction is P-complete has been asked, either directly or
indirectly, in a number of previous works (for example [15–17]).

2 Clockwise Turing machines

A clockwise Turing machine is like a standard single-tape Turing machine [18]
except for the following details: (i) the tape is assumed to be circular, (ii) the tape
head moves only clockwise on the tape, (iii) the machine’s transition function is
of the form f : Q×Σ → (Σ∪ΣΣ)×Q. Here Q and Σ are the machine’s finite set
of states and tape symbols respectively. A transition rule t = (qx, σ, v, qy) ∈ f ,
is executed as follows. If the write value v is an element of Σ then the tape
cell containing the read symbol is overwritten by this value and the head moves
clockwise to the next cell. Otherwise if v ∈ ΣΣ then the tape cell containing the
read symbol is replaced with two cells that each contain one of v’s symbols and
the head moves clockwise to the next cell.

It is not difficult to give a clockwise Turing machine RM that simulates a
single-tape Turing machine M with a quadratic time overhead. We can think
of M ’s right moves as clockwise moves by RM with v ∈ Σ. However if M is
increasing its tape length by reading a blank symbol and moving right, then we
proceed differently. In this case RM inserts two symbols, v = σr, where σ is
M ’s write symbol. Then RM moves clockwise, traversing the entire tape, until
it meets the ‘rightmost end of tape marker’ symbol r. If M runs in time T (n)
then RM simulates a right move by M in O(T (n)) time.

A left move (when reading a non-blank symbol) by M is simulated by a
single traversal of the circular tape that leaves a marker and then shifts each
symbol one step clockwise. Upon reaching the marker the left move simulation
is complete. A left move by M , when reading a blank at the leftmost tape end,
is simulated using a similar strategy to that above. Proof details are to be found
in a previous paper [9].

Lemma 1. Let M be a single-tape Turing machine that runs in time T (n). Then
there is a clockwise Turing machine RM that simulates the computation of M
in time O(T 2(n)).

In the next section we prove that cyclic tag systems simulate clockwise Turing
machines. In order to simplify this proof we state the result for clockwise Turing
machines that have a binary tape alphabet Σ = {a, b}. As with standard Turing
machines, using a binary alphabet causes at most a constant factor increase in
the time, space and number of states.

3 Cyclic tag systems

Cyclic tag systems were used by Cook [2, 3] to show that Rule 110 is universal.

Definition 2 (cyclic tag system). A cyclic tag system C = α0, . . . , αp−1, is
a list of binary words αm ∈ {0, 1}∗ called appendants.

3

A configuration of a cyclic tag system consists of (i) a marker that points to a
single appendant αm in C, and (ii) a word w = w0 . . . w|w|−1 ∈ {0, 1}∗. We call w
the data word. Intuitively the list C is a program with the marker pointing to
instruction αm. In the initial configuration the marker points to appendant α0

and w is the binary input word.

Definition 3 (computation step of a cyclic tag system). A computation
step is deterministic and acts on a configuration in one of two ways:

– If w0 = 0 then w0 is deleted and the marker moves to appendant α(m+1 mod p).
– If w0 = 1 then w0 is deleted, the word αm is appended onto the right end

of w, and the marker moves to appendant α(m+1 mod p).

We write c1 ⊢ c2 when configuration c2 is obtained from c1 via a single
computation step. We let c1 ⊢i c2 denote a sequence of exactly i computation
steps. A cyclic tag system completes its computation if (i) the data word is the
empty word or (ii) it enters a forever repeating sequence of configurations. The
complexity measures of time and space are defined in the obvious way.

Example 1. (cyclic tag system computation) Let C = 00, 01, 11 be a cyclic tag
system with input word 011. Below we give the first four steps of the compu-
tation. In each configuration C is given on the left with the marked appendant
highlighted in bold font.

000000, 01, 11 011 ⊢ 00,010101, 11 11 ⊢ 00, 01,111111 101

⊢ 000000, 01, 11 0111 ⊢ 00,010101, 11 111 ⊢ . . .

3.1 Cyclic tag systems simulate clockwise Turing machines

Much of the proof of Theorem 1 is given by the folowing lemma.

Lemma 2. Let R be a binary clockwise Turing machine with |Q| states that
runs in time T (n). Then there is a cyclic tag system CR that simulates the
computation of R in time O(|Q|T 2(n) log T (n)).

Proof. Let R = (Q, {a, b}, f, q1, q|Q|) where Q = {q1, . . . , q|Q|} are the states,
{a, b} is the binary alphabet, f is the transition function, and q1, q|Q| ∈ Q are
the initial and final states respectively. In the sequel σj ∈ {a, b}. The bulk of the
proof is concerned with simulating a single (but arbitrary) transition rule of R.

Encoding We define the cyclic tag system (program) to be of the form CR =
α0, . . . , α2z−1 where z = 30|Q|+61. Given an initial configuration of R (consist-
ing of current state qi ∈ Q, read symbol σ1, and tape contents σ1 . . . σs ∈ {a, b}∗)
we encode this as a configuration of CR as follows

α0α0α0, . . . , α2z−1 〈1, qi〉〈σ1〉 . . . 〈σs〉µ
s′

(3)

Here µ = 10z−1 and
s′ = 2⌈log2

s⌉ (4)

4

encoded encoded initial index y of appendant

object object length marker index appendant αy

〈1, qi〉 = 030i+20102z−30i−21 2z 0 30i + 20 〈 1′, qi〉

〈1, qi〉 = 030i+20102z−30i−21 2z z z + 30i + 20 0z〈1′, qi,s<s′〉

〈1, qi,s<s′〉 = 030i+25102z−30i−26 2z 0 30i + 25 〈1′, qi,s<s′〉

〈1, qi,s<s′〉 = 030i+25102z−30i−26 2z z z + 30i + 25 0z〈1′, qi,s<s′〉

〈a〉 = 0102z−2 2z 0 1 〈a〉

〈a〉 = 0102z−2 2z z z + 1 〈a〉

〈b〉 = 02102z−3 2z 0 2 〈b〉

〈b〉 = 02102z−3 2z z z + 2 〈b〉

〈a/〉 = 03102z−4 2z 0 3 〈a/〉

〈a/〉 = 03102z−4 2z z z + 3 〈a/〉

〈b/〉 = 04102z−5 2z 0 4 〈b/〉

〈b/〉 = 04102z−5 2z z z + 4 〈b/〉

µ = 10z−1 z 0 0 µ/

µ = 10z−1 z z z µ′

µ′ = 06102z−7 2z 0 6 µ′

µ′ = 06102z−7 2z z z + 6 µ′

µ/ = 05102z−6 2z 0 5 µ/

µ/ = 05102z−6 2z z z + 5 µ/

Table 1.1. (Stage 1. Halve counter). Every second µ is marked off by being changed
to µ/.

are used for a ‘tape length’ counter. The values of appendants αj are given
during the proof below. States qi and tape symbols {a, b} of R are encoded as:

〈1, qi〉 = 030i+20102z−30i−21

〈a〉 = 0102z−2

〈b〉 = 02102z−3

Our simulation algorithm consists of a number of stages. In a cyclic tag system
configuration the current stage x is identifiable by the notation 〈x, qi〉.

How to read the tables We define the cyclic tag system CR via a number
of tables that specify encoded objects (e.g. encoded symbols, states) in the data
word and the appendants they map to. Each table row gives an “encoded object”
followed by the “encoded object length”. The “initial marker index” gives the
location of the program marker immediately before the encoded object is read.
Each encoded object indexes an appendant αy, where y is specified by the “index
y of appendant” column and αy is specified by the “appendant αy” column.

To aid the reader we carefully describe the initial steps in the simulation
of a transition rule. We encode a configuration that is arbitrary except for its
tape length (which is 3). Initially the marker is pointing at appendant α0 and
the data word is 〈1, qi〉〈σ1〉〈σ2〉〈σ3〉µµµµ ∈ {0, 1}12z. The leftmost 2z symbols

5

in the data word encode the current state qi. From Table 1.1 this is 〈1, qi〉 =
030i+20102z−30i−21. The computation begins by deleting the 30i + 20 leftmost 0
symbols while moving the marker rightwards through the appendants, one step
for each deletion. The leftmost data symbol is now 1, this is deleted and causes
the appendant α30i+20 to be appended onto the rightmost end of the data word.
From Table 1.1 we see that α30i+20 = 〈1′, qi〉. Then 2z − 30i − 21 contiguous 0
symbols are deleted while moving the marker one step for each deletion. Since
|〈1, qi〉| = 2z and there are exactly 2z appendants in CR, the marker is once
again positioned at α0. We write these 2z steps as

α0α0α0, . . . , α2z−1 〈1, qi〉〈σ1〉〈σ2〉〈σ3〉µµµµ

⊢2z α0α0α0, . . . , α2z−1 〈σ1〉〈σ2〉〈σ3〉µµµµ〈1′, qi〉

Algorithm overview Our cyclic tag system algorithm has three stages. Stages 1
and 2 isolate the encoded read symbol of R which is located immediately to the
right of 〈1, qi〉. These stages make use of the tape-length counter specified by
Equations (3) and (4). In Stage 1 every second µ is marked and then in Stage 2
every second 〈σ〉 is marked. This process is iterated until all µ objects are marked
(1+log2 s′ iterations). The first six configurations of Fig. 1 illustrate this process.
The encoded read symbol is now isolated as it is the only unmarked encoded tape
symbol. The computation then enters Stage 3 which uses the encoded current
state and (isolated) encoded read symbol to index an appendant that encodes
the write symbol(s) and next state. In the final two configurations of Fig. 1
the new encoded current state and write value are appended and the counter is
doubled to maintain the equality in Equation (4).

Stage 1. Halve counter The counter value is specified by Equation (4) as the
number of µ (or later, µ′) objects. This value is halved by marking half of the µ
objects (changing µ to µ/) using Table 1.1. In this table we see that |µ| = z so
exactly two µ objects are read for a single traversal of the marker through all 2z
appendants. Every second µ indexes µ/ and every other µ indexes µ′. The encoded
state 〈1, qi〉 indexes 〈1′, qi〉 or 〈1′, qi,s<s′〉, which sends control to Table 1.2.

We continue the above simulation (we later generalise to an arbitrary number
of tape symbols).

α0α0α0, . . . , α2z−1 〈σ1〉〈σ2〉〈σ3〉µµµµ〈1′, qi〉

⊢2z α0α0α0, . . . , α2z−1 〈σ2〉〈σ3〉µµµµ〈1′, qi〉〈σ1〉

⊢4z α0α0α0, . . . , α2z−1 µµµµ〈1′, qi〉〈σ1〉〈σ2〉〈σ3〉

⊢z α0, . . . ,αzαzαz , . . . , α2z−1 µµµ〈1′, qi〉〈σ1〉〈σ2〉〈σ3〉µ/

⊢z α0α0α0, . . . , α2z−1 µµ〈1′, qi〉〈σ1〉〈σ2〉〈σ3〉µ/µ′

⊢2z α0α0α0, . . . , α2z−1 〈1′, qi〉〈σ1〉〈σ2〉〈σ3〉µ/µ′µ/µ′

The algorithm tests if the counter is 0 by checking if exactly one unmarked µ
was read. If so 〈3, qi〉 is appended and we enter Stage 3. Otherwise 〈2, qi〉 is
appended and we enter Stage 2. Table 1.2 simulates this ‘if’ statement.

6

encoded encoded initial index y of appendant

object object length marker index appendant αy

〈1′, qi〉 = 030i+21102z−30i−12 2z + 10 0 30i + 21 〈2, qi〉

〈1′, qi〉 = 030i+21102z−30i−12 2z + 10 z z + 30i + 21 〈3, qi〉

〈1′, qi,s<s′〉 = 030i+26102z−30i−17 2z + 10 0 30i + 26 〈2, qi,s<s′〉

〈1′, qi,s<s′〉 = 030i+26102z−30i−17 2z + 10 z z + 30i + 26 〈3, qi,s<s′〉

〈a〉 = 0102z−2 2z 10 11 〈a′〉

〈a〉 = 0102z−2 2z z + 10 z + 11 〈a〉

〈b〉 = 02102z−3 2z 10 12 〈b′〉

〈b〉 = 02102z−3 2z z + 10 z + 12 〈b〉

〈a/〉 = 03102z−4 2z 10 13 〈a/〉

〈a/〉 = 03102z−4 2z z + 10 z + 13 〈a/〉

〈b/〉 = 04102z−5 2z 10 14 〈b/〉

〈b/〉 = 04102z−5 2z z + 10 z + 14 〈b/〉

µ′ = 06102z−7 2z 10 16 µ′

µ′ = 06102z−7 2z z + 10 z + 16 µ′

µ/ = 05102z−6 2z 10 15 µ/

µ/ = 05102z−6 2z z + 10 z + 15 µ/

Table 1.2. (Stage 1. Check counter value). Here 〈1′, qi〉 or 〈1′, qi,s<s′〉 is used to check
if the counter is 0.

As we continue our simulation we note from Table 1.2 that the word 〈1′, qi〉
is of length 2z + 10. Hence the marker is at appendant α10 after 〈1′, qi〉 is read:

α0α0α0, . . . , α2z−1 〈1′, qi〉〈σ1〉〈σ2〉〈σ3〉µ/µ′µ/µ′

⊢2z+10 α0, . . . ,α10α10α10, . . . , α2z−1 〈σ1〉〈σ2〉〈σ3〉µ/µ′µ/µ′〈2, qi〉

⊢14z α0, . . . ,α10α10α10, . . . , α2z−1 〈2, qi〉〈σ
′
1〉〈σ

′
2〉〈σ

′
3〉µ/µ′µ/µ′

Immediately above is the first configuration of Stage 2.

Stage 2. Mark half of the encoded tape symbols The ultimate aim of
this stage is to isolate the encoded read symbol. Each iteration of this stage uses
Table 2.1 to mark off every second (even numbered) encoded tape symbol 〈σj〉.
As we continue our simulation we note from Table 2.1 that |〈2, qi〉| = 2z + 10.
Hence the marker is at appendant α20 after reading 〈2, qi〉.

α0, . . . ,α10α10α10, . . . , α2z−1 〈2, qi〉〈σ
′
1〉〈σ

′
2〉〈σ

′
3〉µ/µ′µ/µ′

⊢2z+10 α0, . . . ,α20α20α20, . . . , α2z−1 〈σ′
1〉〈σ

′
2〉〈σ

′
3〉µ/µ′µ/µ′02z−20〈1, qi〉

⊢z α0, . . . ,αz+20αz+20αz+20, . . . , α2z−1 〈σ′
2〉〈σ

′
3〉µ/µ′µ/µ′02z−20〈1, qi〉〈σ1〉

⊢z α0, . . . ,α20α20α20, . . . , α2z−1 〈σ′
3〉µ/µ′µ/µ′02z−20〈1, qi〉〈σ1〉〈σ/2〉

⊢9z α0, . . . ,αz+20αz+20αz+20, . . . , α2z−1 02z−20〈1, qi〉〈σ1〉〈σ/2〉〈σ3〉µ/µµ/µ

⊢2z−20 α0, . . . ,αzαzαz, . . . , α2z−1 〈1, qi〉〈σ1〉〈σ/2〉〈σ3〉µ/µµ/µ

7

encoded encoded initial index y of appendant

object object length marker index appendant αy

〈2, qi〉 = 030i+12102z−30i−3 2z + 10 10 30i + 22 02z−20〈1, qi〉

〈2, qi,s<s′〉 = 030i+17102z−30i−8 2z + 10 10 30i + 27 02z−20〈1, qi,s<s′〉

〈a′〉 = 0710z−8 z 20 27 〈a〉

〈a′〉 = 0710z−8 z z + 20 z + 27 〈a/〉

〈b′〉 = 0810z−9 z 20 28 〈b〉

〈b′〉 = 0810z−9 z z + 20 z + 28 〈b/〉

〈a/〉 = 03102z−4 2z 20 23 〈a/〉

〈a/〉 = 03102z−4 2z z + 20 z + 23 〈a/〉

〈b/〉 = 04102z−5 2z 20 24 〈b/〉

〈b/〉 = 04102z−5 2z z + 20 z + 24 〈b/〉

µ′ = 06102z−7 2z 20 26 µ

µ′ = 06102z−7 2z z + 20 z + 26 µ

µ/ = 05102z−6 2z 20 25 µ/

µ/ = 05102z−6 2z z + 20 z + 25 µ/

Table 2.1. (Stage 2. Mark half of the encoded tape symbols). Rows 3 to 6 are used to
mark off every second 〈σ〉.

If we are simulating a transition rule that has write value from ΣΣ = {a, b}2,
and the tape length is a power of 2, then we must double the counter value in
order to satisfy Equation (4). This doubling occurs in Stage 3. However the tape
length test happens in Stage 1 using Table 1.1 as follows.

Suppose that the encoded tape length is not a power of 2 and thus s < s′.
Then, on some iteration, Stage 2 reads an odd number, strictly greater than 1, of
unmarked encoded tape symbols. If this occurs then 〈1, qi〉 indexes the appendant
〈1′, qi,s<s′〉. To see this, notice that in Stage 2 the tape symbols a, b are encoded
as 〈a′〉, 〈b′〉 where |〈a′〉| = |〈b′〉| = z. If CR reads an odd number of these then
the initial marker index is at z. Suppose otherwise that the encoded tape length
is a power of 2. Then 〈1, qi〉 always indexes the appendant 〈1′, qi〉 in Stage 1. In
summary, if 〈1′, qi,s<s′〉 is not appended before Stage 3 begins then the number
of tape symbols is a power of 2 and s = s′.

The simulation continues as follows:

α0, . . . ,αzαzαz, . . . , α2z−1 〈1, qi〉〈σ1〉〈σ/2〉〈σ3〉µ/µµ/µ

⊢2z α0, . . . ,αzαzαz, . . . , α2z−1 〈σ1〉〈σ/2〉〈σ3〉µ/µµ/µ0z〈1′, qi,s<s′〉

⊢13z α0α0α0, . . . , α2z−1 〈1′, qi,s<s′〉〈σ1〉〈σ/2〉〈σ3〉µ/µ′µ/µ/

⊢16z+10 α0, . . . ,α10α10α10, . . . , α2z−1 〈2, qi,s<s′〉〈σ′
1〉〈σ/2〉〈σ

′
3〉µ/µ′µ/µ/

⊢14z+10 α0, . . . ,α20α20α20, . . . , α2z−1 02z−20〈1, qi,s<s′〉〈σ1〉〈σ/2〉〈σ/3〉µ/µµ/µ/

⊢17z−20 α0, . . . ,αzαzαz, . . . , α2z−1 〈1′, qi,s<s′〉〈σ1〉〈σ/2〉〈σ/3〉µ/µ/µ/µ/

⊢16z+10 α0, . . . ,αz+10αz+10αz+10, . . . , α2z−1 〈3, qi,s<s′〉〈σ1〉〈σ/2〉〈σ/3〉µ/µ/µ/µ/

Immediately above is the first the configuration of Stage 3.

8

encoded encoded initial index y of appendant

object object length marker index appendant αy

〈3, qi〉 = 030i+1410z+5 z + 30i + 20 z + 10 z + 30i + 24 02z−30i−30

〈3, qi,s<s′〉 = 030i+1910z+10 z + 30i + 30 z + 10 z + 30i + 29 02z−30i−40

〈a〉 = 0102z−2 2z 30i + 30 30i + 31 〈σp〉〈1, qk〉

〈a〉 = 0102z−2 2z 30i + 30 30i + 31 D〈σp〉〈σh〉〈1, qk〉

〈b〉 = 02102z−3 2z 30i + 30 30i + 32 〈σp〉〈1, qk〉

〈b〉 = 02102z−3 2z 30i + 30 30i + 32 D〈σp〉〈σh〉〈1, qk〉

〈a〉 = 0102z−2 2z 30i + 40 30i + 41 〈σp〉〈1, qk〉

〈a〉 = 0102z−2 2z 30i + 40 30i + 41 〈σp〉〈σh〉〈1, qk〉

〈b〉 = 02102z−3 2z 30i + 40 30i + 42 〈σp〉〈1, qk〉

〈b〉 = 02102z−3 2z 30i + 40 30i + 42 〈σp〉〈σh〉〈1, qk〉

〈a/〉 = 03102z−4 2z 30i + 30 30i + 33 〈a〉

〈a/〉 = 03102z−4 2z 30i + 40 30i + 43 〈a〉

〈b/〉 = 04102z−5 2z 30i + 30 30i + 34 〈b〉

〈b/〉 = 04102z−5 2z 30i + 40 30i + 44 〈b〉

µ/ = 05102z−6 2z 30i + 30 30i + 35 µ

µ/ = 05102z−6 2z 30i + 40 30i + 45 µ

Table 3.1. (Stage 3. Simulate transition rule). This table prints the encoded write
value and establishes the new encoded current state 〈1, qk〉. If the counter does not
need to be doubled this table completes simulation of the transition rule.

Stage 3. Complete simulation of transition rule In this stage an appen-
dant αy is indexed, based on the value of the encoded current state and encoded
read symbol using Table 3.1. The printing of appendant αy simulates the encoded
write value, encoded next state, and the clockwise tape head movement.

Using Table 3.1 we read the encoded current state, either 〈3, qi〉 or 〈3, qi,s<s′〉,
after which the initial marker index is either 30i + 30 or 30i + 40 respectively.
The encoded read symbol was already isolated and uniquely retains its original
value of 〈a〉 or 〈b〉; this value points at the appendant αy (rows 3 to 10). All
other (non-isolated) encoded tape symbols are of the form 〈a/〉 or 〈b/〉 and they
point to the appendants 〈a〉 or 〈b〉 respectively.

The simulated transition rule is of the form (qi, σj , σp, qk) or (qi, σj , σpσh, qk),
respectively encoded as the appendants 〈σp〉〈1, qk〉 or 〈σp〉〈σh〉〈1, qk〉. In the
present example we simulate the rule (qi, σ1, σ4, qk):

α0, . . . ,αz+10αz+10αz+10, . . . , α2z−1 〈3, qi,s<s′〉〈σ1〉〈σ/2〉〈σ/3〉µ/µ/µ/µ/

⊢z+30i+30 α0, . . . ,α30i+40α30i+40α30i+40, . . . , α2z−1 〈σ1〉〈σ/2〉〈σ/3〉µ/µ/µ/µ/02z−30i−40

⊢2z α0, . . . ,α30i+40α30i+40α30i+40, . . . , α2z−1 〈σ/2〉〈σ/3〉µ/µ/µ/µ/02z−30i−40〈σ4〉〈1, qk〉

⊢12z α0, . . . ,α30i+40α30i+40α30i+40, . . . , α2z−1 02z−30i−40〈σ4〉〈1, qk〉〈σ2〉〈σ3〉µµµµ

⊢2z−30i−40 α0α0α0, . . . , α2z−1 〈σ4〉〈1, qk〉〈σ2〉〈σ3〉µµµµ

9

encoded encoded initial index y of appendant

object object length marker index appendant αy

D = 039102z 2z + 40 0 39 02z−40

〈1, qk〉 = 030k+20102z−30k−21 2z 40 30k + 60 〈1, qk〉

〈a〉 = 0102z−2 2z 40 41 〈a〉

〈b〉 = 02102z−3 2z 40 42 〈b〉

µ = 10z−1 z 40 40 µµ

µ = 10z−1 z z + 40 z + 40 µµ

Table 3.2. (Stage 3. Double counter). Each µ indexes the appendant µµ.

Alternatively if the rule is of the form (qi, σ1, σ4σ5, qk) then the latter configu-
ration is instead

α0α0α0, . . . , α2z−1 〈σ4〉〈σ5〉〈1, qk〉〈σ2〉〈σ3〉µµµµ

The simulation of the transition rule is now complete. The marker in CR’s pro-
gram is at appendant α0. The encoded write value is written, the new encoded
state 〈1, qk〉 is established and the (clockwise) tape head movement is simulated.

We have given a sequence of configurations that explicitly simulate the appli-
cation of a transition rule. We used arbitrary initial and next states qi, qk ∈ Q,
and arbitrary tape symbols σj ∈ {a, b}.

The simulation is specific in the sense that the length of the tape data is fixed.
The computation of CR remains similar for any length of tape data that is not
a power of 2. If the tape length is a power of 2, and thus s = s′, then CR enters
Stage 3 via 〈3, qi〉 instead of 〈3, qi,s<s′〉. On the one hand, if the tape data does
not increase in length, the remainder of the computation proceeds in a similar
manner to the above simulation. On the other hand, if the tape data increases in
length [i.e. we are simulating a transition rule of the form (qi, σj , σpσh, qk)] then
rows 4 or 6 of Table 3.1 are executed. The appendants in these rows contain
the subword D. After reading D (using Table 3.2) the marker points at α40

which causes each µ in the counter to index the appendant µµ. This doubles the
counter’s value and completes the simulation of the transition rule.

The simulation is also specific in the sense that the encoded state is the
leftmost object in the data word when we begin simulating a transition rule.
This generalises to an arbitrary encoded state position. To see this notice that
the encoded state directs control flow of the algorithm through Stages 1 to 3.
The order of executing the stages is unaffected by the relative position of the
encoded state in the data word.

We have shown how CR simulates an arbitrary transition rule of R. To simu-
late halting CR enters a repeating sequence of configurations. The halt state q|Q|

is encoded in the normal way as 〈1, q|Q|〉 = 030|Q|+20102z−30|Q|−21. We define the
appendant at index 30|Q|+ 20 to be 〈1, q|Q|〉. Therefore 〈1, q|Q|〉 indexes a copy
of itself. Also after 〈1, q|Q|〉 is read, each encoded tape symbol indexes a copy of
itself. This causes CR to enter a forever repeating sequence of configurations.

10

Space analysis At time T (n) there are O(T (n)) encoded objects (state and
symbols) in CR’s data word; each of length O(|Q|). Thus CR uses O(|Q|T (n))
space.

Time analysis Simulating a transition rule involves 3 stages. Each stage ex-
ecutes in O(|Q|T (n)) steps. To simulate a single transition rule the counter is
halved O(log T (n)) times, (i.e. Stages 1 and 2 are executed O(log T (n)) times)
and Stage 3 is executed once. Thus O(|Q|T (n) log(T (n)) time is sufficient to
simulate a transition rule and O(|Q|T 2(n) log T (n)) time is sufficient to simulate
the computation of R. ⊓⊔

A consequence of the previous lemma is that Rule 110 simulates Turing
machines in polynomial time. Matthew Cook’s [2, 3] universal Turing machines
(see footnote on page 2) simulate Rule 110 in quadratic time, which in turn
(using Cook’s construction) simulates Turing machines in exponential time. We
have improved this time bound to polynomial.

Corollary 1. Matthew Cook’s small universal Turing machines simulate Turing
machines in polynomial time.

Finally we show that the reduction from the generic machine simulation

problem (GMSP) [11] to Rule 110 prediction is computable by a logspace
transducer Turing machine. The GMSP is stated as: given a word x, an encod-
ing 〈M〉 of a single-tape Turing machine M , and an integer t in unary, does M
accept x within t steps?

Lemma 3. The GMSP is logspace reducible to Rule 110 prediction.

Proof. From Section 2 the number of states of the binary clockwise Turing
machine RM is linear in the number of states and symbols of M . We encode
these machines as words in a straightforward way such that for their lengths:
|〈RM 〉| = O(|〈M〉|). Also the input xR to RM is of length linear in |x|, the length
of M ’s input. The conversion is clearly logspace computable.

We reduce the simulation problem for RM to the analogous problem for cyclic
tag systems. In the proof of Lemma 2 we showed how to construct CRM

. We
encode CRM

as a word 〈CRM
〉. The value z used in the proof of Lemma 2 is

linear in |Q|, the number of states of RM . There are 2z appendants, each of
length O(|Q|), giving an encoded program length of O(|Q|2). From Equation (3)
the input 〈xR〉 to CRM

is of length O(|Q||xR|). Thus the encoded appendants
and input are logspace constructable.

To show that a logspace transducer Turing machine generates a Rule 110
instance from 〈CRM

〉#〈xR〉#
t we examine Cook’s Rule 110 simulation of cyclic

tag systems [2]. The input is written directly as the states of O(|〈xR〉|) contigu-
ous cells beginning at, say, cell p0. On the left of the input a constant word
(representing Cook’s ‘ossifiers’) is repeated O(t) times. On the right the cyclic
tag system program (list of appendants and ‘leaders’) is written O(t) times. ⊓⊔

Since we already know that Rule 110 prediction is in P, the proof of
Theorem 1 is complete.

11

cyclic tag system
program

sections of program
currently in use

〈1, qi〉〈σj〉〈σ〉〈σ〉〈σ〉µµµµ

〈2, qi〉〈σj〉〈σ〉〈σ〉〈σ〉µ/µµ/µ

〈1, qi〉〈σj〉〈σ/〉〈σ〉〈σ/〉µ/µµ/µ

〈2, qi〉〈σj〉〈σ/〉〈σ〉〈σ/〉µ/µ/µ/µ

〈1, qi〉〈σj〉〈σ/〉〈σ/〉〈σ/〉µ/µ/µ/µ

〈3, qi〉〈σj〉〈σ/〉〈σ/〉〈σ/〉µ/µ/µ/µ/

D〈σp〉〈σh〉〈1, qk〉〈σ〉〈σ〉〈σ〉µµµµ

〈σp〉〈σh〉〈1, qk〉〈σ〉〈σ〉〈σ〉µµµµµµµµ

Fig. 1. Cyclic tag system simulation of transition rule (qi, σj , σpσh, qk). The cyclic
tag system program is illustrated on the left. In the data word the encoded current
state 〈x, qi〉 directs the control flow by determining the sections of the cyclic tag system
program that are used in Stage x.

References

1. Wolfram, S.: Statistical mechanics of cellular automata. Reviews of Modern Physics
55 (1983) 601–644

2. Cook, M.: Universality in elementary cellular automata. Complex Systems 15

(2004) 1–40
3. Wolfram, S.: A new kind of science. Wolfram Media, Inc. (2002)
4. Cocke, J., Minsky, M.: Universality of tag systems with P = 2. Journal of the

ACM 11 (1964) 15–20
5. Rogozhin, Y.: Small universal Turing machines. TCS 168 (1996) 215–240
6. Baiocchi, C.: Three small universal Turing machines. In Margenstern, M.,

Rogozhin, Y., eds.: Machines, Computations, and Universality. Volume 2055 of
LNCS., Chişinău, Moldova, MCU, Springer (2001) 1–10

7. Kudlek, M., Rogozhin, Y.: A universal Turing machine with 3 states and 9 symbols.
In Kuich, W., Rozenberg, G., Salomaa, A., eds.: Developments in Language Theory
(DLT) 2001. Volume 2295 of LNCS., Vienna, Springer (2002) 311–318

8. Minsky, M.: Size and structure of universal Turing machines using tag systems. In:
Recursive Function Theory, Symp. in Pure Math. Volume 5., AMS (1962) 229–238

9. Neary, T., Woods, D.: A small fast universal Turing machine. Technical Report
NUIM-CS-TR-2005-12, Dept. of Computer Science, NUI Maynooth (2005)

10. Neary, T., Woods, D.: Small fast universal Turing machines. TCS (To appear.)
11. Greenlaw, R., Hoover, H.J., Ruzzo, W.L.: Limits to parallel computation: P-

completeness theory. Oxford university Press, Oxford (1995)
12. Lindgren, K., Nordahl, M.G.: Universal computation in simple one-dimensional

cellular automata. Complex Systems 4 (1990) 299–318
13. Ollinger, N.: The quest for small universal cellular automata. In Widmayer, P.,

et al., eds.: International Colloquium on Automata, Languages and Programming
(ICALP). Volume 2380 of LNCS., Malaga, Spain, Springer (2002) 318–329

14. Moore, C.: Majority-vote cellular automata, Ising dynamics and P-completeness.
Journal of Statistical Physics 88 (1997) 795–805

15. Moore, C.: Quasi-linear cellular automata. Physica D 103 (1997) 100–132
16. Moore, C.: Predicting non-linear cellular automata quickly by decomposing them

into linear ones. Physica D 111 (1998) 27–41
17. Aaronson, S.: Book review: A new kind of science. Quantum Information and

Computation 2 (2002) 410–423
18. Hopcroft, J.E., Ullman, J.D.: Introduction to automata theory, languages, and

computation. Addison-Wesley (1979)

12

