
Small weakly universal Turing machines⋆

Turlough Neary1 and Damien Woods2

1 Boole Centre for Research in Informatics,
University College Cork, Ireland.

tneary@cs.may.ie
2 Department of Computer Science and Artificial Intelligence

University of Seville, Spain.
dwoods@us.es

Abstract. We give small universal Turing machines with state-symbol
pairs of (6, 2), (3, 3) and (2, 4). These machines are weakly universal,
which means that they have an infinitely repeated word to the left of
their input and another to the right. They simulate Rule 110 and are
currently the smallest known weakly universal Turing machines. Despite
their small size these machines are efficient polynomial time simulators
of Turing machines.

1 Introduction

Shannon [22] was the first to consider the problem of finding the smallest univer-
sal Turing machine, where size is the number of states and symbols. Here we say
that a Turing machine is standard if it has a single one-dimensional tape, one
tape head, and is deterministic [7]. Over the years, small universal programs were
given for a number of variants on the standard model. By generalising the stan-
dard model we often find smaller universal programs. One such generalisation
is to allow the blank portion of the Turing machine’s tape to have an infinitely
repeated word to the left, and another to the right. We refer to such universal
machines as weakly universal Turing machines, and they are the subject of this
work.

Beginning in the early sixties Minsky and Watanabe engaged in a vigor-
ous competition to see who could come up with the smallest universal Turing
machine [13, 14, 23, 24]. In 1961, Watanabe [23] gave a 6-state, 5-symbol ma-
chine that was the first weakly universal machine. In 1962, Minsky [14] found a
small 7-state, 4-symbol standard universal Turing machine. Not to be out-done,
Watanabe improved on his earlier machine to give 5-state, 4-symbol and 7-state,
3-symbol weakly universal machines [24].

⋆ Turlough Neary is funded by the Irish Research Council for Science, Engineering
and Technology and by Science Foundation Ireland Research Frontiers Programme
grant number 07/RFP/CSMF641. Damien Woods was supported by a Project of
Excellence from the Junta de Andalućıa grant TIC-581, and by Science Foundation
Ireland grant 04/IN3/1524.



The 7-state universal Turing machine of Minsky has received much atten-
tion. Minsky’s machine simulates Turing machines via 2-tag systems, which were
proved universal by Cocke and Minsky [3]. The technique of simulating 2-tag sys-
tems, pioneered by Minsky, was extended by Rogozhin [21] to give the (then)
smallest known universal Turing machines for a number of state-symbol pairs.
Many of these 2-tag simulators were subsequently reduced in size by Kudlek
and Rogozhin [9], and Baiocchi [2]. Neary and Woods [17] gave small universal
machines that simulate Turing machines via a new variant of tag systems called
bi-tag systems. All of the smallest known universal Turing machines, that obey
the standard definition (deterministic, one tape, one head), simulate either 2-tag
or bi-tag systems. They are plotted as circles and triangles in Figure 1. To get
the polynomial time overhead for 2-tag simulators in Figure 1 the 2-tag simu-
lation of Turing Machines given in [15, 26] is used instead of the exponentially
slow technique given in [3].

The small weak machines of Watanabe have received little attention. In par-
ticular the 5-state and 7-state machines seem little known and are largely ignored
in the literature. It is worth noting that while all other weak machines simulate
Turing machine via other simple models, Watanabe’s weak machines simulate
Turing machines directly. His machines are the most time efficient of the small
weak machines. More precisely, let t be the running time of any deterministic
single tape Turing machine M , then Watanabe’s machines are the smallest weak
machines that simulate M with a time overhead of O(t2).

We often refer to Watanabe’s machines as being semi-weak. Semi-weak ma-
chines are a restriction of weak machines: they have an infinitely repeated word
to one side of their input, and on the other side they have a (standard) infinitely
repeated blank symbol. Recently, Woods and Neary [28] have given semi-weakly
universal machines that simulate cyclic tag systems with state-symbol pairs of
(3, 7), (4, 5) and (2, 13). All of the smallest known semi-weakly universal ma-
chines are plotted as diamonds in Figure 1.

Cook [4] and Wolfram [25], recently gave weakly universal Turing machines,
smaller than Watanabe’s semi-weak machines, that simulate the universal cellu-
lar automaton Rule 110. These machines have state-symbol pairs of (7, 2), (4, 3),
(3, 4) and (2, 5) and are plotted as hollow squares in Figure 1. (Note that David
Eppstein constructed the (7, 2) machine to be found in [4].)

Here we present weakly universal Turing machines with state-symbol pairs
of (6, 2), (3, 3) and (2, 4) making them the smallest known weakly universal
machines. Our machines efficiently simulate (single tape, deterministic) Turing
machines in time O(t4 log2 t), via Rule 110. These machines are plotted as solid
squares in Figure 1 and induce a weakly universal curve.

Weakness has not been the only generalisation on the standard model in the
search for small universal Turing machines. Priese [20] gave a 2-state, 4-symbol
machine with a 2-dimensional tape, and a 2-state, 2-symbol machine with a 2-
dimensional tape and 2 tape heads. Margenstern and Pavlotskaya [11] gave a
2-state, 3-symbol Turing machine that is universal when coupled with a finite
automaton. The Turing machine part of this couple uses only 5 instructions, and

2



bc : universal, 2-tag simulation, O(t4 log2 t)

u : universal, bi-tag simulation, O(t6)

ld : semi-weakly universal, direct simulation, O(t2)

l : semi-weakly universal, cyclic tag simulation, O(t4 log2 t)

rs : weakly universal, Rule 110 simulation, O(t4 log2 t)

r : weakly universal, Rule 110 simulation, O(t4 log2 t)

: universal curve (standard machines)

: weakly universal curve

: non-universal curve (standard machines)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

states

symbols u

u

u

u

r

r

r

bc

bc

bc

bc

l

l

l

ld

ld

rs

rs

rs

rs

Fig. 1. State-symbol plot of small universal Turing machines. Each of our new weak
machines is represented by a solid square. These machines induce a weakly universal
curve. Simulation time overheads are specified. The non-universal curve shows standard
machines that are known to have a decidable halting problem.

they also show that the halting problem is decidable for couples in which the Tur-
ing machine has only 4 instructions. Hence, it is not possible to have a universal
couple with a 4-instruction Turing machine that simulates any Turing machine
M and halts if and only if M halts. Thus, they have given the smallest possible
Turing machine that is universal when coupled with a finite automaton. It is
worth noting that the weakly universal machines that we present in this paper
have the smallest number of instructions of any known universal machines with
polynomial time overhead. This comparison even includes all other generalised
Turing machine models such as those mentioned above: all known machines that
use fewer instructions but generalise other aspects (multiple tapes, coupling with
automata etc.) of the model are exponentially slow.

More on small universal Turing machines, and related notions, can be found
in [10, 15, 27].

1.1 Preliminaries

The Turing machines considered in this paper are deterministic and have a single
bi-infinite tape. We let Um,n denote our weakly universal Turing machine with m
states and n symbols. We write c1 ⊢ c2 if a configuration c2 is obtained from c1

via a single computation step. We let c1 ⊢s c2 denote a sequence of s computation
steps, and let c1 ⊢∗ c2 denote zero or more computation steps.

3



c0

c1

c2

c3

.

.

.

. . . -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 . . .

Fig. 2. Seven consecutive timesteps of Rule 110. These seven timesteps show the evo-
lution of the background ether that is used in the proof [4] of universality of Rule 110.
Each black or each white square represents, a Rule 110 cell containing, state 1 or 0
respectively. Each cell is identified by the index given above it. To the left of each row
of cells there is a configuration label that identifies that row.

2 Rule 110

Rule 110 is a very simple (2 state, nearest neighbour, one dimensional) cel-
lular automaton. It is composed of a sequence of cells . . . p−1p0p1 . . . where
each cell has a binary state pi ∈ {0, 1}. At timestep s + 1, the value pi,s+1 =
F (pi−1,s, pi,s, pi+1,s) of the cell at position i is given by the synchronous local
update function F

F (0, 0, 0) = 0 F (1, 0, 0) = 0

F (0, 0, 1) = 1 F (1, 0, 1) = 1

F (0, 1, 0) = 1 F (1, 1, 0) = 1

F (0, 1, 1) = 1 F (1, 1, 1) = 0

(1)

Rule 110 was proven universal by Cook [4] (Cook’s proof is sketched in [25]).
Neary and Woods [16] proved that Rule 110 simulates Turing machines efficiently
in polynomial time O(t3 log t), an exponential improvement. This time overhead
was further improved to O(t2 log t) [15]. Rule 110 simulates cyclic tag systems
in linear time. The weak machines in this paper, and in [4, 25], simulate Rule
110 with a quadratic polynomial increase in time and hence simulate Turing
machines in time O(t4 log2 t). It is worth noting that the prediction problem [5]
for these machines is P-complete, and this is also the case when we consider only
bounded initial conditions [16].

3 Three small weakly universal Turing machines

The following observation is one of the reasons for the improvement in size over
previous weak machines, and gives some insight into the simulation algorithm
we use. Notice from Equation (1) that the value of the update function F , with
the exception of F (0, 1, 1) and F (1, 1, 1), may be determined using only the
rightmost two states. Each of our universal Turing machines exploit this fact as
follows. The machines scan from right to left, and in six of the eight cases they
need only remember the cell immediately to the right of the current cell i in

4



order to compute the update for i. Thus for these six cases we need only store a
single cell value, rather than two values. The remaining two cases are simulated
as follows. If two consecutive encoded states with value 1 are read, it is assumed
that there is another encoded 1 to the left and the update F (1, 1, 1) = 0 is
simulated. If our assumption proves false (we instead read an encoded 0 to the
left), then our machine returns to the wrongly updated cell and simulates the
update F (0, 1, 1) = 1.

Before giving our three small Rule 110 simulators, we give some further back-
ground explanation. Rule 110 simulates Turing machines via cyclic tag systems.
A Rule 110 instance that simulates a cyclic tag system computation is of the
following form (for more details see [4]). The input to the cyclic tag system
is encoded in a contiguous finite number of Rule 110 cells. On the left of the
input a fixed constant word (representing the ‘ossifiers’) is repeated infinitely
many times. On the right, another fixed constant word (representing the cyclic
tag system program/appendants, and the ‘leaders’) is repeated infinitely many
times. Both of these repeated words are independent of the input.

As in [4], our weakly universal machines operate by traversing a finite amount
of the tape from left to right and then from right to left. This simulates a single
timestep of Rule 110 over a finite part of the encoded infinite Rule 110 instance.
With each simulated timestep the length of a traversal increases. To ensure that
each traversal is of finite length, the left blank word l and the right blank word
r of each of our weak machines must have a special form. These words contain
special subwords or symbols that terminate each traversal, causing the tape head
to turn. When the head is turning it overwrites any symbols that caused a turn.
Thus the number of cells that are being updated increases monotonically over
time. This technique simulates Rule 110 properly if the initial condition is set up
so that within each repeated blank word, the subword between each successive
turn point is shifted one timestep forward in time.

In the sequel we describe the computation of our three machines by showing
a simulation of the update on the ether in Figure 2. In the next paragraph below,
we outline why this example is in fact general enough to prove universality. First,
we must define blank words that are suitable for this example. The left blank
word l, on the Turing machine tape, encodes the Rule 110 sequence 0001. In
the initial configuration as we move left each subsequent sequence 0001 is one
timestep further ahead. To see this note from Figure 2 that 0001 occupies, cells
−7 to −4 in configuration c1, cells −11 to −8 in c2, cells −15 to −12 in c3, etc.
Similarly, the right blank word r encodes the Rule 110 sequence 110011. Looking
at the initial configuration, as we move right from cell 0, in the first blank word
the first four cells 1100 are shifted two timesteps ahead, and the next two cells
11 are shifted a further one timestep. To see this note from Figure 2 that 1100
occupies cells 1 to 4 in c2 and 11 occupies cells 5 and 6 in c3. In each subsequent
sequence the first four cells 1100 are shifted only one timestep ahead and the last
two cells 11 are shifted one further timestep. In each row the ether in Figure 2
repeats every 14 cells and if the number of timesteps s between two rows is s ≡ 0

5



mod 7 then the two rows are identical. The periodic nature of the ether, in both
time and space, allows us to construct such blank words.

It should be noted that the machines we present here, and those in [4, 25], re-
quire suitable blank words to simulate a Rule 110 instance directly. If no suitable
blank words can be found (i.e. if it is not possible to construct subwords that
terminate traversals in the encoding) then it may be the case that the particular
instance can not be simulated directly. In the sequel our machines simulate the
background ether that is used in the universality proof of Rule 110 [4]. The glid-
ers used by Cook [4] that move through this ether are periodic in time and space.
Thus, we can construct blank words that include these gliders and place the sub-
words that terminate traversals in the ether. By this reasoning, our example is
sufficiently general to prove that our machines simulate Turing machines via
Rule 110 and we do not give a full (and possibly tedious) proof of correctness.
For U3,3 we explicitly simulate three updates from Figure 2, which is general
enough so that an update [Equation (1)] on each of the eight possible three state
combinations is simulated. We give shorter examples for the machines U2,4 and
U6,2 as they use the same simulation algorithm as U3,3.

As with the machines in [4, 25], the machines we present here do not halt.
Cook [4] shows how a special glider may be produced during the simulation of a
Turing machine by Rule 110. This glider may be used to simulate halting as the
encoding can be such that it is generated by Rule 110 if and only if the simulated
machine halts. The glider would be encoded on the tape of our machines as a
unique, constant word.

3.1 U3,3

We begin by describing an initial configuration of U3,3. To the left of, and in-
cluding, the tape head position, the Rule 110 state 0 is encoded by 0, and the
Rule 110 state 1 is encoded by either 1 or b. The word 1b0 is used to terminate
a left traversal. (Note an exception: the 1 in the subword 1b0 encodes the Rule
110 state 0.) To the right of the tape head position, the Rule 110 state 0 is
encoded by 1, and the Rule 110 state 1 is encoded by 0 or b. The tape symbol 0
is used to terminate a right traversal. The left and right blank words, described
in paragraph 4 of Section 3, are encoded as 001b and 0b110b respectively.

u1 u2 u3

0 1Lu1 0Ru1 bLu1

1 bLu2 1Lu2 0Ru3

b bLu3 1Ru3

Table 1. Table of behaviour for U3,3.

We give an example of U3,3 simulating the three successive Rule 110 timesteps
c0 ⊢ c1 ⊢ c2 ⊢ c3 given in Figure 2. In the below configurations the current

6



state of U3,3 is highlighted in bold, to the left of its tape contents. The tape
head position of U3,3 is given by an underline and the start state is u1. The
configuration immediately below encodes c0 from Figure 2 with the tape head
over cell index 0.

u1u1u1, . . . 0 0 1 b 0 0 1 b 0 0 1 b 0 0 0 1 0 b 1 1 0 b 0 b 1 1 0 b . . .

⊢ u2u2u2, . . . 0 0 1 b 0 0 1 b 0 0 1 b 0 0 0 b 0 b 1 1 0 b 0 b 1 1 0 b . . .

⊢ u1u1u1, . . . 0 0 1 b 0 0 1 b 0 0 1 b 0 0 0 b 0 b 1 1 0 b 0 b 1 1 0 b . . .

⊢ u3u3u3, . . . 0 0 1 b 0 0 1 b 0 0 1 b 0 0 0 b 0 b 1 1 0 b 0 b 1 1 0 b . . .

⊢ u1u1u1, . . . 0 0 1 b 0 0 1 b 0 0 1 b 0 0 b b 0 b 1 1 0 b 0 b 1 1 0 b . . .

⊢2 u1u1u1, . . . 0 0 1 b 0 0 1 b 0 0 1 b 1 1 b b 0 b 1 1 0 b 0 b 1 1 0 b . . .

⊢ u3u3u3, . . . 0 0 1 b 0 0 1 b 0 0 1 b 1 1 b b 0 b 1 1 0 b 0 b 1 1 0 b . . .

When the tape head reads the subword 1b0 the left traversal is complete and
the right traversal begins.

⊢6 u3u3u3, . . . 0 0 1 b 0 0 1 b 0 0 0 1 0 0 1 1 0 b 1 1 0 b 0 b 1 1 0 b . . .

⊢ u1u1u1, . . . 0 0 1 b 0 0 1 b 0001 0011 b b 1 1 0 b 0 b 1 1 0 b . . .

Immediately after the tape head reads a 0, during a right traversal, the simulation
of timestep c0 ⊢ c1 is complete. To see this, compare the part of the Turing
machine tape in bold with cells −7 to 0 of configuration c1 in Figure 2. We
continue our simulation to give timestep c1 ⊢ c2.

⊢ u2u2u2, . . . 0 0 1 b 0 0 1 b 0 0 0 1 0 0 1 b b b 1 1 0 b 0 b 1 1 0 b . . .

⊢ u2u2u2, . . . 0 0 1 b 0 0 1 b 0 0 0 1 0 0 1 b b b 1 1 0 b 0 b 1 1 0 b . . .

⊢ u1u1u1, . . . 0 0 1 b 0 0 1 b 0 0 0 1 0 0 1 b b b 1 1 0 b 0 b 1 1 0 b . . .

⊢ u2u2u2, . . . 0 0 1 b 0 0 1 b 0 0 0 1 0 0 b b b b 1 1 0 b 0 b 1 1 0 b . . .

⊢3 u1u1u1, . . . 0 0 1 b 0 0 1 b 0 0 0 1 0 b b b b b 1 1 0 b 0 b 1 1 0 b . . .

⊢2 u2u2u2, . . . 0 0 1 b 0 0 1 b 0 0 0 b 1 b b b b b 1 1 0 b 0 b 1 1 0 b . . .

⊢3 u1u1u1, . . . 0 0 1 b 0 0 1 b 0 0 b b 1 b b b b b 1 1 0 b 0 b 1 1 0 b . . .

⊢3 u3u3u3, . . . 0 0 1 b 0 0 1 b 1 1 b b 1 b b b b b 1 1 0 b 0 b 1 1 0 b . . .

⊢15 u1u1u1, . . . 0 0 1 b 0001 0011 0111 1100 b b 0 b 1 1 0 b . . .

The simulation of timestep c1 ⊢ c2 is complete. To see this, compare the part
of the Turing machine tape in bold with cells −11 to 4 of configuration c2 in
Figure 2. We continue our simulation to give timestep c2 ⊢ c3.

⊢3 u2u2u2, . . . 0 0 1 b 0 0 0 1 0 0 1 1 0 1 1 1 1 b 1 1 b b 0 b 1 1 0 b . . .

⊢4 u2u2u2, . . . 0 0 1 b 0 0 0 1 0 0 1 1 0 1 1 1 1 b 1 1 b b 0 b 1 1 0 b . . .

7



⊢5 u1u1u1, . . . 0 0 1 b 0 0 0 1 0 0 1 1 b b 1 1 1 b 1 1 b b 0 b 1 1 0 b . . .

⊢2 u2u2u2, . . . 0 0 1 b 0 0 0 1 0 0 1 b b b 1 1 1 b 1 1 b b 0 b 1 1 0 b . . .

⊢5 u1u1u1, . . . 0 0 1 b 0 0 0 1 0 b b b b b 1 1 1 b 1 1 b b 0 b 1 1 0 b . . .

⊢2 u2u2u2, . . . 0 0 1 b 0 0 0 b 1 b b b b b 1 1 1 b 1 1 b b 0 b 1 1 0 b . . .

⊢6 u3u3u3, . . . 0 0 1 b 1 1 b b 1 b b b b b 1 1 1 b 1 1 b b 0 b 1 1 0 b . . .

⊢21 u1u1u1, . . . 0001 0011 0111 1100 010011 b b 1 1 0 b . . .

The simulation of timestep c2 ⊢ c3 is complete. To see this, compare the part
of the Turing machine tape in bold with cells −15 to 6 of configuration c3 in
Figure 2.

3.2 U2,4

We begin by describing an initial configuration of U2,4. To the left of, and in-
cluding, the tape head position, the Rule 110 state 0 is encoded by either 0 or 0/
and the Rule 110 state 1 is encoded by either 1 or 1/ . The word 0/ 1 is used to
terminate a left traversal. To the right of the tape head position, the Rule 110
state 0 is encoded by 0/ and the Rule 110 state 1 is encoded by 1/ or 0. The tape
symbol 0 is used to terminate a right traversal. The left and right blank words,
from paragraph 4 of Section 3, are encoded as 0 0 0/ 1 and 0 1/ 0/ 0/ 0 1/ respectively.

u1 u2

0 0/ Lu1 1/ Ru1

1 1/ Lu2 0/ Lu2

0/ 1/ Lu1 0Ru2

1/ 1/ Lu1 1Ru2

Table 2. Table of behaviour for U2,4.

We give an example of U2,4 simulating the two successive Rule 110 timesteps
c0 ⊢ c1 ⊢ c2 given in Figure 2. The configuration immediately below encodes c0

from Figure 2 with the tape head over cell index 0.

u1u1u1, . . . 0 0 0/ 1 0 0 0/ 1 0 0 0/ 1 0 0 0 1 0 1/ 0/ 0/ 0 1/ 0 1/ 0/ 0/ 0 1/ . . .

⊢6 u1u1u1, . . . 0 0 0/ 1 0 0 0/ 1 0 0 0/ 1 0/ 0/ 1/ 1/ 0 1/ 0/ 0/ 0 1/ 0 1/ 0/ 0/ 0 1/ . . .

⊢ u2u2u2, . . . 0 0 0/ 1 0 0 0/ 1 0 0 0/1/ 0/ 0/ 1/ 1/ 0 1/ 0/ 0/ 0 1/ 0 1/ 0/ 0/ 0 1/ . . .

When the tape head reads the subword 0/ 1 the left traversal is complete and the
right traversal begins.

⊢6 u2u2u2, . . . 0 0 0/ 1 0 0 0/ 1 0 0 0 1 0 0 1 1 0 1/ 0/ 0/ 0 1/ 0 1/ 0/ 0/ 0 1/ . . .

⊢ u1u1u1, . . . 0 0 0/ 1 0 0 0/ 1 0001 0011 1/ 1/ 0/ 0/ 0 1/ 0 1/ 0/ 0/ 0 1/ . . .

8



Immediately after the tape head reads a 0, during a right traversal, the simulation
of timestep c0 ⊢ c1 is complete. To see this, compare the part of the Turing
machine tape in bold with cells −7 to 0 of configuration c1 in Figure 2. We
continue our simulation to give timestep c1 ⊢ c2.

⊢2 u1u1u1, . . . 0 0 0/ 1 0 0 0/ 1 0 0 0 1 0 0 1 1 1/ 1/ 0/ 0/ 0 1/ 0 1/ 0/ 0/ 0 1/ . . .

⊢2 u2u2u2, . . . 0 0 0/ 1 0 0 0/ 1 0 0 0 1 0 0 0/ 1/ 1/ 1/ 0/ 0/ 0 1/ 0 1/ 0/ 0/ 0 1/ . . .

⊢ u1u1u1, . . . 0 0 0/ 1 0 0 0/ 1 0 0 0 1 0 1/ 0/ 1/ 1/ 1/ 0/ 0/ 0 1/ 0 1/ 0/ 0/ 0 1/ . . .

⊢4 u2u2u2, . . . 0 0 0/ 1 0 0 0/ 1 0 0 0 1/ 0/ 1/ 1/ 1/ 1/ 1/ 0/ 0/ 0 1/ 0 1/ 0/ 0/ 0 1/ . . .

⊢5 u1u1u1, . . . 0 0 0/ 1 0 0 0/ 1 0/ 0/ 1/ 1/ 0/ 1/ 1/ 1/ 1/ 1/ 0/ 0/ 0 1/ 0 1/ 0/ 0/ 0 1/ . . .

⊢ u2u2u2, . . . 0 0 0/ 1 0 0 0/ 1/ 0/ 0/ 1/ 1/ 0/ 1/ 1/ 1/ 1/ 1/ 0/ 0/ 0 1/ 0 1/ 0/ 0/ 0 1/ . . .

⊢15 u1u1u1, . . . 0 0 0/ 1 0001 0011 0111 1100 1/ 1/ 0 1/ 0/ 0/ 0 1/ . . .

The simulation of timestep c1 ⊢ c2 is complete. To see this, compare the part
of the Turing machine tape in bold with cells −11 to 4 of configuration c2 in
Figure 2.

3.3 U6,2

We begin by describing an initial configuration of U6,2. To the left of, and in-
cluding, the tape head position, the Rule 110 state 0 is encoded by the word 00
and the Rule 110 state 1 is encoded by the word 11. The word 010100 is used to
terminate a left traversal and encodes the sequence of Rule 110 states 010. To
the right of the tape head position the Rule 110 state 0 is encoded by the word 00
and the Rule 110 state 1 is encoded by either of the words 01 or 10. The word 10
is used to terminate a right traversal. The left and right blank words, from para-
graph 4 of Section 3, are encoded as 00000101 and 100100001001 respectively.

u1 u2 u3 u4 u5 u6

0 0Lu1 0Lu6 0Ru2 1Ru5 1Lu4 1Lu1

1 1Lu2 0Lu3 1Lu3 0Ru6 1Ru4 0Ru4

Table 3. Table of behaviour for U6,2.

To illustrate the operation of U6,2 we simulate the Rule 110 timestep c0 ⊢ c1

given in Figure 2. The configuration immediately below encodes c0 from Figure 2
with the tape head over cell index 0.

u1u1u1, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

⊢ u2u2u2, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 11 1 0 0 1 0 0 0 0 1 0 0 1 . . .

⊢ u3u3u3, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 00 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

⊢ u2u2u2, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 01 1 0 0 1 0 0 0 0 1 0 0 1 . . .

9



⊢ u6u6u6, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 00 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

⊢ u1u1u1, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 01 0 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

⊢5 u1u1u1, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

⊢ u2u2u2, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 1 01 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

⊢ u6u6u6, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 10 1 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

⊢ u4u4u4, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 0 01 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

When the tape head reads the subword 1 0 1 0 0 the left traversal is complete
and the right traversal begins.

⊢ u5u5u5, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

⊢ u4u4u4, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

⊢ u5u5u5, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

⊢ u4u4u4, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

⊢ u6u6u6, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

⊢ u4u4u4, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

⊢4 u4u4u4, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 01 0 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

⊢ u5u5u5, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 10 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

⊢ u4u4u4, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 01 1 0 0 1 0 0 0 0 1 0 0 1 . . .

⊢2 u4u4u4, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

⊢ u6u6u6, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 1 . . .

⊢ u1u1u1, . . . 0 0 0 0 0 1 0 1 00000011 00001111 0 1 0 1 0 0 0 0 1 0 0 1 . . .

Immediately after the tape head reads a 10, during a right traversal, the simula-
tion of timestep c0 ⊢ c1 is complete. To see this, compare the part of the Turing
machine tape in bold (recall 0 and 1 are encoded as 00 and 11 respectively) with
cells −7 to 0 of configuration c1 in Figure 2.

4 Discussion on lower bounds

The pursuit to find the smallest possible universal Turing machine must also
involve the search for lower bounds, finding the largest Turing machines that
are in some sense non-universal. One approach is to settle the decidability of
the halting problem, but this approach is not suitable for the machines we have
presented.

It is known that the halting problem is decidable for (standard) Turing ma-
chines with the following state-symbol pairs (2, 2) [8, 18], (3, 2) [19], (2, 3) (claimed
by Pavlotskaya [18]), (1, n) [6] and (n, 1) (trivial), where n > 1. Then, these de-
cidability results imply that a universal Turing machine, that simulates any
Turing machine M and halts if and only if M halts, is not possible for these
state-symbol pairs. Hence these results give lower bounds on the size of univer-
sal machines of this type. While it is trivial to prove that the halting problem

10



is decidable for (possibly halting) weak machines with state-symbol pairs of the
form (n, 1), it is not known whether the other decidability results above gener-
alise to (possibly halting) weak Turing machines.

The weakly universal machines presented in this paper, and those in [4, 25], do
not halt. Hence the non-universality results discussed in the previous paragraph
would have to be generalised to non-halting weak machines to give lower bounds
that are relevant for our machines. This may prove difficult for two reasons.
The first issue is that, intuitively speaking, weakness gives quite an advantage.
For instance, the program of a universal machine may be encoded in one of the
infinitely repeated blank words of the weak machine. The second issue is related
to the problem of defining a computation. Informally, a computation could be
defined as a sequence of configurations that ends in a special terminal config-
uration. For non-halting machines, there are many ways to define a terminal
configuration. Given a definition of terminal configuration we may prove that
the terminal configuration problem (will a machine ever enter a terminal config-
uration) is decidable for a machine or set of machines. However this result may
not hold as a proof of non-universality if we subsequently alter our definition of
terminal configuration. In fact, it may be easily shown that the Turing machine
U2,4 from Table 2, which we prove weakly universal, is provably non-universal
when it is restricted to the standard blank background.

It is trivial that no weakly universal Turing machines exist for the state-
symbol pair (n, 1) even when we consider machines with no halting condition.
We also believe that relevant decidability results for the state-symbol pair (2, 2)
may be given. If this is true, then the problem of whether or not there are 2-
state and 3-state weakly universal machines remains open for only (2, 3) and
(3, 2) respectively.

Margenstern [10], Baiocchi [1], and Michel [12] have found small machines
that simulate iterations of the 3x + 1 problem and other Collatz-like functions.
The smallest known weakly universal machines are almost at the minimum pos-
sible size, thus implementing the Collatz problem on weak machines could be an
interesting way of exploring the little space remaining between these machines
and the state-symbol pairs where weak universality is not possible.

References

1. C. Baiocchi. 3N+1, UTM e tag-system. Technical Report Pubblicazione 98/38,
Dipartimento di Matematico, Università di Roma, 1998. (In Italian).

2. C. Baiocchi. Three small universal Turing machines. In M. Margenstern and
Y. Rogozhin, editors, Machines, Computations, and Universality (MCU), volume
2055 of LNCS, pages 1–10, Chişinău, Moldova, May 2001. Springer.

3. J. Cocke and M. Minsky. Universality of tag systems with P = 2. Journal of the
ACM, 11(1):15–20, Jan. 1964.

4. M. Cook. Universality in elementary cellular automata. Complex Systems, 15(1):1–
40, 2004.

5. R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to parallel computation:
P-completeness theory. Oxford university Press, Oxford, 1995.

11



6. G. Hermann. The uniform halting problem for generalized one state Turing ma-
chines. In Proceedings, Ninth Annual Symposium on Switching and Automata
Theory (FOCS), pages 368–372, Schenectady, New York, Oct. 1968. IEEE.

7. J. E. Hopcroft and J. D. Ullman. Introduction to automata theory, languages, and
computation. Addison-Wesley, 1979.

8. M. Kudlek. Small deterministic Turing machines. Theoretical Computer Science,
168(2):241–255, Nov. 1996.

9. M. Kudlek and Y. Rogozhin. A universal Turing machine with 3 states and 9
symbols. In W. Kuich, G. Rozenberg, and A. Salomaa, editors, Developments in
Language Theory (DLT) 2001, volume 2295 of LNCS, pages 311–318, 2002.

10. M. Margenstern. Frontier between decidability and undecidability: A survey. The-
oretical Computer Science, 231(2):217–251, Jan. 2000.

11. M. Margenstern and L. Pavlotskaya. On the optimal number of instructions for
universality of Turing machines connected with a finite automaton. International
Journal of Algebra and Computation, 13(2):133–202, Apr. 2003.

12. P. Michel. Small Turing machines and the generalized busy beaver competition.
Theoretical Computer Science, 326:45–56, 2004.

13. M. Minsky. A 6-symbol 7-state universal Turing machines. Technical Report 54-
G-027, MIT, Aug. 1960.

14. M. Minsky. Size and structure of universal Turing machines using tag systems. In
Recursive Function Theory, Symp. in Pure Math., volume 5, pages 229–238, 1962.

15. T. Neary. Small universal Turing machines. PhD thesis, Department of Computer
Science, National University of Ireland, Maynooth, 2008.

16. T. Neary and D. Woods. P-completeness of cellular automaton Rule 110. In
M. Bugliesi et al., editor, International Colloquium on Automata Languages and
Programing 2006, (ICALP) Part I, volume 4051 of LNCS, pages 132–143, Venice,
July 2006. Springer.

17. T. Neary and D. Woods. Four small universal Turing machines. Fundamenta
Informaticae, 91(1):123–144, 2009.

18. L. Pavlotskaya. Solvability of the halting problem for certain classes of Turing
machines. Mathematical Notes (Springer), 13(6):537–541, June 1973.

19. L. Pavlotskaya. Dostatochnye uslovija razreshimosti problemy ostanovki dlja
mashin T’juring. Problemi kibernetiki, pages 91–118, 1978. (In Russian).

20. L. Priese. Towards a precise characterization of the complexity of universal and
non-universal Turing machines. Siam journal of Computing, 8(4):508–523, 1979.

21. Y. Rogozhin. Small universal Turing machines. Theoretical Computer Science,
168(2):215–240, Nov. 1996.

22. C. E. Shannon. A universal Turing machine with two internal states. Automata
Studies, Annals of Mathematics Studies, 34:157–165, 1956.

23. S. Watanabe. 5-symbol 8-state and 5-symbol 6-state universal Turing machines.
Journal of ACM, 8(4):476–483, Oct. 1961.

24. S. Watanabe. 4-symbol 5-state universal Turing machine. Information Processing
Society of Japan Magazine, 13(9):588–592, 1972.

25. S. Wolfram. A new kind of science. Wolfram Media, 2002.
26. D. Woods and T. Neary. On the time complexity of 2-tag systems and small

universal Turing machines. In 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 439–448, Berkeley, California, Oct. 2006. IEEE.

27. D. Woods and T. Neary. The complexity of small universal Turing machines: A
survey. Theoretical Computer Science, 410(4–5):443–450, Feb. 2009.

28. D. Woods and T. Neary. Small semi-weakly universal Turing machines. Funda-
menta Informaticae, 91(1):179–195, 2009.

12


