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Abstract. We present small polynomial time universal Turing machines
with state-symbol pairs of (5, 5), (6, 4), (9, 3) and (18, 2). These machines
simulate our new variant of tag system, the bi-tag system and are the
smallest known universal Turing machines with 5, 4, 3 and 2-symbols
respectively. Our 5-symbol machine uses the same number of instructions
(22) as the smallest known universal Turing machine by Rogozhin.

1 Introduction

Shannon [16] was the first to consider the problem of finding the smallest pos-
sible universal Turing machine. In 1962 Minsky [7] created a 7-state, 4-symbol
universal Turing machine that simulates Turing machines via 2-tag systems.
Minsky’s technique of 2-tag simulation was extended by Rogozhin [15] to create
small universal Turing machines with state-symbol pairs of (24, 2), (10, 3), (7,4),
(5,5), (4,6), (3,10) and UTM(2, 18). Subsequently some of these machines were
reduced in size to give machines with state-symbol pairs of (3,9) [5], (19,2) [1]
and (7,4) [1]. Figure 1 is a state-symbol plot where the current smallest 2-tag
simulators of Rogozhin et al. are plotted as circles.

Here we present universal Turing machines with state-symbol pairs of (5, 5),
(6,4), (9,3) and (18, 2), the later two machine having previously appeared in [9].
These machines simulate Turing machines via bi-tag systems and are plotted
as triangles in Figure 1. These machines improve the state of the art in small
universal Turing machines and reduce the space between the universal and non-
universal curves. Our 5-symbol machine uses the same number of instructions
(22) as the current smallest known universal Turing machine (Rogozhin’s 6-
symbol machine [15]). Also, our 5-symbol machine has less instructions than
Rogozhin’s 5-symbol machines. Since 2-tag systems were first used by Minsky [7]
to construct his famous universal Turing machine with 7-states and 4-symbols, a
number of authors [1, 14, 15] have constructed 4-symbol machines. However our
4-symbol machine is the first reduction in the number of states.

Recently the simulation overhead of Turing machines by 2-tag systems was
improved from exponential [2] to polynomial [17,18]. More precisely, if Z is a
single tape deterministic Turing machine that runs in time ¢, then the universal
Turing machines of Minsky and Rogozhin et al. now simulate Z in O(t%(logt)?)
time. It turns out that the time overhead can be improved to O(t*(logt)?) (this
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Fig. 1: Current state-symbol plot of small universal Turing machines.

result is as yet unpublished). In earlier work [11] we gave the smallest known
universal Turing machines that directly simulate Turing machines. These ma-
chines run in time O(¢?) and are plotted as squares in Figure 1. Assuming a
single instruction is reserved for halting it is known that there are no univer-
sal Turing machine for the following state-symbol pairs: (2,2) [4,12], (3,2) [13],
(2,3) (Pavlotskaya, unpublished), (1,n) [3] and (n,1) (trivial) for n > 1. These
results induce the non-universal curve in Figure 1.

Our universal Turing machines simulate bi-tag systems with a quadratic poly-
nomial increase in time. Hence from Theorem 1 our universal Turing machines
simulate Turing machines efficiently in time O(¢®(n)). Information on alternative
small universal Turing machines can be found in [6, 19, 20].

1.1 Preliminaries

The Turing machines considered in this paper are deterministic and have one
tape. Our universal Turing machine in the class UTM(m, n) is denoted U, ,,. We
write ¢ F ¢o if a configuration ¢y is obtained from ¢y via a single computation
step. We let ¢; ™ ¢o denote a sequence of m computation steps and let ¢; F* ¢
denote 0 or more computation steps. Also, we let {(x) denote the encoding of =
and e denote the empty word.

2 Bi-tag systems

The computation of a bi-tag system is similar to that of a tag system [8]. Bi-tag
systems are essentially 1-tag systems (and so they read and delete one symbol
per timestep) augmented with additional context sensitive rules that read, and
delete, two symbols per timestep.



Definition 1 (Bi-tag system). A bi-tag system is a tuple (A, E, ey, P). Here
A and E are disjoint finite sets of symbols and e, € E is the halt symbol. P is
the finite set of productions. Fach production is of one of the following 8 forms:

P(a)=a, P(e,a)c AE, Ple,a)e€ AAE,

where a € A, e € E, and P is defined on all elements of {AU((E — {en}) x A)}
and undefined on all elements of {en} X A. Bi-tag systems are deterministic.

A configuration of a bi-tag system is a word of the form s = A*(AE U EA)A*
called the dataword. In Definition 2 we let a € A and e € E.

Definition 2 (BTS computation step). A production is applied in one of
two ways:

(i) if s = as’ then as’ + s'P(a),

(i) if s = eas’ then eas’ + s'P(e,a).

Theorem 1 ([10]). Given a deterministic single tape Turing machine Z that
runs in time t then there exists a bi-tag system that simulates the computation
of Z using space O(t(n)) and time O(t3(n)).

In earlier work [10] Theorem 1 is obtained by proving bi-tag systems simulate
Turing machines via clockwise Turing machines. A clockwise Turing machine is a
Turing machine with a tape head that moves in one direction only, on a circular
tape.

3 Universal Turing machines

In this section we give the input encoding to our universal Turing machines.
Following this we give each of our universal Turing machines and describe their
operation by explaining how they simulate bi-tag systems. Let R denote a bi-tag
system that is to be simulated. The encoding of R as a word is denoted (R). The
encodings of symbols a € A and e € E are denoted (a) and (e) respectively. The
encodings of productions P(a) and P(e,a) are denoted as (P(a)) and (P(e,a))
respectively. Let R = (A, E, ep, P) be a bi-tag system where A = {a1,...,aq}
and E ={ey,...,en}.

Definition 3. The encoding of a configuration of R is of the form

“e(R)S* ((A)M)* ((A)M(E) U (B)(A)M ) ({(A)M)* De (1)
where ((A)YM)* ((A}M(E) U <E><A>M) ((A)M)*D encodes R’s dataword via Ta-
ble 2, ¥ =ccc...,Yc=...ccc, and (R) is given by Equation (2) and Tables 1
and 2.

(R) =H(Plen-1,a,))V (P(en—1,a4-1)) ... V{(P(er-1,a1))

V(P(e1,aq))V(P(e1,a9-1)) ... V(P (e1,a1))
VAPV (Plag1)) . VAPV



In Equation (1) the position of the tape head is over the symbol immediately to
the right of (R)S*. The initial state is uy and the blank symbol is c.

(P(ej,ai)) (P(ej,ai))
UTM (P(as)) P(ej,a;) = arem P(ej,a;) = avarem
U575 55d16i76 56Ld16mq5d16k76 5Ld16mq5d16k725d16v76
U674 659121'—105 54Lg12mq56912k—106 52Lg12mq56912hq+12k—465g12v—106
Us.3 86ccdc™ Sceddc®mat25eBk 86Emat258k 5By
Uis 2 |eb(cc)?eb(ce)* 2 (cb)?(ce)* P+ 2 cb(cc)* 2 cb(ce)* P2 eb(ce)** eb(cc) V2

Table 1: Encoding of P productions. Here a;,ar,a, € A and ej, e, € E. If e # ey
then L = e. If e,, = e, then L = g'29™8 for Us 4 and L = d*° for Us 5.

UTM| (ai) (e;) (en) S M D 14 H
Uss | b¥ ! pie pihat2g & 4 € 5 cd
U6,4 b87,’—5 ijq b8q(h+1)+55 g2 5 b 5 H
Us,3 pri—1 ptia piha & ) € dcc  beebe
Uisz2| (be)*™1  (be)*? (be)*he v (be)® e ch

Table 2: Symbol values for Equations (1) and (2). If e, # e, then M’ = € for Us 5 and
Us,4. The value of H for Us,4 is given in Equation (3) in Section 3.4.

3.1 Universal Turing machine algorithm overview

Each of our universal Turing machines use the same basic algorithm. Here we give
a brief description of the simulation algorithm by explaining how our machines
locate and simulate a production. The encoded production to be simulated is
located using a unary indexing method. The encoded production (P(a;)) or
(P(ej,a;)) in Equation (2) is indexed (pointed to) by the number of symbols
contained in the leftmost encoded symbol or pair of symbols in the encoded
dataword (Equation (1)). For illustration purposes we will assume that we are
using Uy 3. If the leftmost encoded symbol is {a;) = b~ (Table 2) then the value
4i — 1 is used to index (P(a;)). If the leftmost encoded symbol is (e;) = b9,
and (a;) = b*~1 is adjacent, then the value 4jq+4i—1 is used to index (P(e;, a;)).
The number of b symbols in the encoded symbol, or pair of encoded symbols,
is equal to the number of dc* words between the leftmost encoded symbol and
the encoded production to be simulated. To locate this production, Ug 3 simply
changes each dc* to §b*, for each b in the leftmost encoded symbol or pair of
encoded symbols. This process continues until the § that separates two encoded
symbols in the dataword is read. Note from Equation (1) that there is no §
marker between each (e;) and the (a;) to its right, thus allowing (e;){a;) to be
read together during indexing. After indexing, our machines print the indexed
production immediately to the right of the encoded dataword. After the indexed
production has been read, then (R), the encoding of R, is restored to its original
value. This completes the simulation of the production.



3.2 Uz

Uy 3 U1 U2 us Uy us Ug ur ug Ug
c bRu1 cLus cLus bLug cRug bLus OLus cRury bLus
b clus cLus bLus bLuy bRug bRur cRug cRus
) ORus O6Lus ORui 8Lus O6Lugs ORug ORur ORus cRu

Table 3: Table of behaviour for Uy s.

Ezample 1 (Ugs simulating the execution of the production P(a1)). This ex-
ample is presented using three Cycles. The tape head of Uy 3 is given by an
underline. The current state of Uy 3 is given to the left in bold. The dataword
aie;a; is encoded via Equation (1) and Table 2 as bbb5b*9b4=1§ and P(ay) is
encoded via Table 1 as (P(a1)) = 6dccdc®. From Equation (1) we get the initial
configuration:

w1, ... (P(a2))(dcc)?55ccdc®decdecdcchbbsb 1bY 1 5ccc . . .

Cycle 1 (index next production). In Cycle 1 (Table 4), Ug 3 reads the left-
most encoded symbol and locates the next encoded production to execute. Ug 3
scans right until it reads b in state u;. Then Uy s scans left in states up and
usz until it reads the subword dc*. This subword is changed to 6b* as Ug 3 scans
right in states u; and wus. The process is repeated until Uy 3 reads b in state us.
This indicates that we have finished reading the leftmost encoded symbol, or
pair of encoded symbols, and that the encoded production to be executed has
been indexed. This signals the end of Cycle 1 and the beginning of Cycle 2.

U9,3 (25} (5) us U973 Ua us Uue ury us U9
c bRui1 cLus cLus c bLug cRue bLus O6Lus cRur bLus
b cLus cLus bLug b bLug bRus bRur
5 5RU3 5L’LL2 5Ru1 5 5LU4 5Lu8 5Ru6 5RU7 5Ru8
Table 4: Cycle 1 of Uy ,s. Table 5: Cycle 2 of Uy ,s.

F U, ... (P(az))(6cc)*d6cedcBccdecdecebbsb ¥ occc. . .
2 u3, ... (P(a2))(6cc)?65ccdc®ccdccdcechbsbib* ~scce . . .
F4 uy, ... (P(a2))(cc)?65ccdc®dccdccdbbbbbsb i 1b* ~scce . . .
a4 uy, ... (P(a2))(dcc)?65ccdc® 5bbsbbobbbbbob 16 ~Lscce . . .
-2 g, ... (P(a2))(6cc)?65ccdc®5bbsbbsbbbbbob 16 L scce . . .

In the configuration immediately above the encoded production (P(a1)) has been
indexed and we have entered Cycle 2.

Cycle 2 (Print production). Cycle 2 (Table 5) prints the encoded production,
that was indexed in Cycle 1, immediately to the right of the encoded dataword.
Uy 3 scans left in state us and records the next symbol of the encoded production
to be printed. If Uy 3 reads the subword ccc it enters state ug, scans right, and



prints b at the right end of the encoded dataword. A single b is printed for each cc
pair that does not have § immediately to its left. If Ug 3 reads the subword cdcc
it scans right in state uy and prints ¢ at the right end of the encoded dataword.
This process is repeated until the end of the encoded production is detected by
reading the subword ddcc which causes Uy 3 to enter Cycle 3.

13 g, ... (P(az))(6cc)?65cedcBec(obb)3bbbob™ b Secc . . .
3 us, - .. (P(az))(6cc)?65cedc®bb(5bb)3bbbsb* b~ 5ccc. . .
FAGat)FI4 e (P(ag))(8ce)?88cedcCbb(8bb)>bbbob*b% 1 5ece . . .
F ug, ... (P(az))(5cc)*56ccscPbb(5bb)>bbbsb* 164~ §bec . . .

In the configuration immediately above the first symbol of the encoded produc-
tion (P(a1)) has been printed. Following the printing of the last symbol of the
encoded production we get:

F* g, ... (P(a2))(6cc)?65ccob®(5bb)3bbbob* b 1503 scc . . .
3 ug, ... (P(a2))(dcc)?56bbob® (5bb)3bbbob b =1 5b35cc . . .

In the configuration immediately above we have finished printing the encoded
production (P(a1)) to the right of the dataword and we have entered Cycle 3.

Cycle 3 (restore tape). Cycle 3 (Table 6) restores (R) to its original value.
The tape head of Uy 3 scans right switching between states ug and ug changing b
symbols to ¢ symbols. This continues until Uy 3 reads the § marking the leftmost
end of the dataword in ug. Note from Table 1 and Equation (2) that there is
an even number of b symbols between each pair of § symbols in (R) hence each
0 symbol in (R) will be read in state us. Each a; symbol in the dataword is
encoded by an odd number of b symbols ({a;) = b*~1) and hence the first §
symbol in the dataword will be read in state wg. This § symbol marks the left
end of the new dataword and causes Uy 3 to enter state u; thus completing Cycle
3 and the production simulation.

Ug,3 ug Ug
b cRug cRus
) 0Rus cRuq

Table 6: Cycle 2 of Uy 3.

25 g, ... (P(a2))(6cc)?65cic® (Scc)®cccob™ ¥ =1 b35cc. . .
F U1, ... (P(a2))(6cc)?65cic® (Scc)®ceechb 111503 6cc . . .

In the configuration immediately above our example simulation of production
P(aq) is complete.

Theorem 2. Given a bi-tag system (R) the computation of (R) is simulated
by U913.



Proof. In order to prove the correctness of Ug 3 we must prove that Uy 3 simulates
any possible P(a) or P(e,a) production of an arbitrary bi-tag system and, that
Uyg,3 also simulates halting when the encoded halt symbol (ej) is encountered.
In Example 1 Uy g simulates P(a1) for an arbitrary bi-tag system where a; is
the leftmost symbol in a fixed dataword. This example easily generalises to any
production P(a;) where a; is the leftmost symbol in an arbitrary dataword. When
some e € F is the leftmost symbol in the dataword then some production P(e, a)
must be executed. The simulation of P(a) in Example 1 is also used to verify the
simulation of P(e, a). Note from Equation (1) that there is no § marker between
each (e;) and the adjacent (a;) to its right, thus allowing (e;) and (a;) to be
read together during Cycle 1. Using the encoding in Defintion 3, the number of
b symbols in (e;)(a;) indexes (P(e,a)). Thus, the indexing of (P(e, a)) is carried
out in the same manner as the indexing of (P(a)). The printing of production
(P(e,a)) during Cycle 2 and the subsequent restoring of (R) during Cycle 3
proceed in the same manner as with P(aq).

If the encoded halt symbol (ey,) = b*"? is the leftmost symbol in the encoded
dataword, and {a;) is adjacent, this is encoded via Definition 3 as follows:

uy, becbe(P(en—1,a,))dce. .. (Pay))(5ce)?(ce) bbb = 15((A)d) c. ..

During Cycle 1, immediately after reading the (4hq -+ 3)*" b symbol in the data-
word, Uy 3 scans left in uy and we get the following:

F* g, beebe(P(en—1,a4))0cc. .. (P(ay))(dcc)®(ce)*cMat3pti=45((A)d)*c. . .
F* us, bbbbe(P(en—_1,aq))dcc. .. (P(a1))(dce)?(cc)* hat3pi=ts((A)d)c. ..

There is no transition rule in Table 3 for the case when in us read b hence the
computation halts. ]

The proof of correctness given for Uy 3 can be applied to the remaining machines
in a straightforward way, so we do not restate it.

3.3 Uss
Uss| w1 U2 us3 Ug us
g | bLur gRui bLus
b gLui gRuz dRus gRus dRus
) cRus cRus O6Rus cRus dRui
c 60Lui bLus O6Lus O0Lus
d bLui gRus bLus bLuz bLua

Table 7: Table of behaviour for Us s.

The dataword a; e;a; is encoded via Equation (1) and Table 2 as bbbdb*/b* 1§
and P(ay) is encoded via Table 1 as (P(a1)) = 6d'°. From Equation (1) we get
the initial configuration:

w1, ...0%(P(as))6206d 0 565bbb5b* b " " 5ccc. . .



Cycle 1 (index next production). In Cycle 1 (Table 8) when Us 5 reads b in
state u1, it changes it to g and scans left until it reads §. This § is changed to ¢
and Us 5 then enters state up and scans right until it reads g which causes it to
re-enter state w;. This process is repeated until Us 5 reads the § that separates a
pair of encoded symbols in the encoded dataword. This signals the end of Cycle 1
and the beginning of Cycle 2.

U5,5 ul U2 U575 Uu2 us U4 Uus
g | bLui gRui g bLus
b gLui gRus b | gRus gRu4
1) cRus cRus 6 | cRus ORus cRug Us s us us
c 0 Luy ¢ | bLus 6Lus 6Lus b dRus dRus
d bLuy d | gRus bLus bLus bLua 1) 0Rus dRu1
Table 8: Cycle 1 of Us 5. Table 9: Cycle 2 of Us 5. Table 10: Cycle 3 of Us 5.
3 Uy, ...0%(P(as))6%56d"56cgbbob™ b L sccc . . .
|18 Uy, ...0%(P(as))6%56d" cccgggdb™ b sccc. . .
[ Ug, ... 0%(P(as))6256d " cccgggebb™ I b* " secc . . .

Cycle 2 (Print production). Cycle 2 (Table 9) begins with Us s scanning
right and printing b to the right of the encoded dataword. Following this Us 5
scans left in state ug and records the next symbol of the encoded production to
be printed. If Us 5 reads the subword dddd it enters state ug, scans right, and
prints b at the right end of the encoded dataword. If Us 5 reads the subword ddd
it scans right in state u4 and prints § at the right end of the encoded dataword.
This process is repeated until the end of the encoded production is detected by
reading ¢ in state us causing Us 5 to enter Cycle 3.

- u3, ... 0% (P(a3))6%65d°ddddss5bbbsb b 1 5bec . . .
3 ug, ... 6% (P(as))5%65d° dbbbssobbbob  Ib* L sbec . . .
- u3, ...0%(P(as))6256ddb®565bbbsb* 1b* "~ sbbbec . . .
-2 Ug, ... 0%(P(as))6258bbbE556bbbob™ 1Y 1 bbbec . . .
- u3, ...0%(P(as))6236bbb®556bbbob™ 1Y 1 sbbbice . . .

Cycle 3 (restore tape). In Cycle 3 (Table 10) the tape head of Us s scans
right switching between states us and wus changing b symbols to d symbols.
This continues until Us 5 reads the 6 marking the leftmost end of the encoded
dataword in us. Note from Table 1 and Equation (2) that there is an even number
of d symbols between each pair of § symbols in (R) hence each ¢ symbol in (R)
will be read in state uz. Each a; symbol in the dataword is encoded by an odd
number of symbols ((a;) = b*~1) and hence the first § symbol in the dataword
will be read in in state us. This causes Us s to enter state u; thus completing
Cycle 3 and the production simulation.

19 w1, ...0%(P(as))6266d'°565ddddbb* 7~ b~ §bbbicc . . .



Halting for Uss. If the encoded halt symbol (e,) = b*"9+2§ is the leftmost
symbol in the encoded dataword then this is encoded via Definition 3 as follows:

w1, cd(P(en_1,aq))d ... 62(P(a1))0%(dd)* b+ s((A)8)"c. ..

The computation continues as before until Us 5 enters Cycle 2 and scans left
in u3. Immediately after Us 5 reads the leftmost d during this leftward scan we
get:

= us, cb(P'(en—1,0a4))0 ... 5% (P'(ay1))6%(dd)*b*"T25((A)6) be.. . .

In the configuration above, (P’) denotes the word in which all the d symbols in
(P) are changed to b symbols. There is no transition rule in Table 7 for the case
'when in us read ¢’ hence the computation halts.

3.4 Usga
Usa| w1 U2 u3 Ua Uus U
g bLui gRui bLus bRuz bLus bLus
b gLui gRuz bLus gRus gRus gRus
) cRus cRuz 6Lus cRus JdRus gRui
c 0Lur gRus O0Lus cRus bLus

Table 11: Table of behaviour for Us 4.

The dataword a;e;a; is encoded via Equation (1) and Table (2) as bbb3b®79b81=5§b.
From Equation (1) we get the initial configuration:

Uy, ... 0% (P(as))6?(P(ay))d65bbbsb¥ 165~ Sbec . . .

Cycle 1 (index next production). In Cycle 1 (Table 12) when Ug 4 reads
b in state w; it scans left until it reads a 6. This ¢ is changed to ¢ and Ug4
then enters state ue and scans right until it reads g which causes it to re-enter
state u;. This process is repeated until Ug 4 reads the § that separates a pair of
encoded symbols in the encoded dataword. This signals the end of Cycle 1 and
the beginning of Cycle 2.

Usa| w1 U Us,a| u2 us Ug us U
g | bLur gRwuy g bLus bRuz bLue bLua
b | gLu1 gRus2 b |gRuz bLus gRua Us,4 Uus U
1) cRuz cRus2 0 |cRus 6Lus cRus 6Rus b | gRus gRus
c | 6Lu ¢ |gRus 6Lus cRus bLus 0 | Rus gRuy
Table 12: Cycle 1 Table 13: Cycle 2 of Us 4. Table 14: Cycle 3
of U6,4~ of U6,4.

Cycle 2 (Print production). Cycle 2 (Table 13) begins with Us 4 scanning
right and printing bb to the right of the encoded dataword. Following this Us 4
scans left in state uz and records the next symbol of the encoded production to be



printed. If Us 4 reads the subword gggd or gggb it enters state us scans right and
prints bb at the right end of the encoded dataword. If Us 4 reads the subword
dggb it scans right in state uy and prints db at the right end of the encoded
dataword. This process is repeated until the end of the encoded production is
detected by reading J in state us causing Ug 4 to enter Cycle 3.

Cycle 3 (restore tape). In Cycle 3 (Table 14) the tape head of Ug 4 scans
right switching between states us and wug changing b symbols to g symbols.
This continues until Us 4 reads the 6 marking the leftmost end of the encoded
dataword in ug. Note from Table 1 and Equation (2) that there is an even number
of g symbols between each pair of § symbols in (R) hence each ¢ symbol in (R)
will be read in state us. Each a; symbol in the dataword is encoded by an odd
number of symbols ({a;) = b%~°) and hence the first § symbol in the dataword
will be read in state ug. This causes Us 4 to enter state u; thus completing
Cycle 3 and the production simulation.

Special case for Us 4. If we are simulating a production of the form P(e,a) =
ayake,n we have a special case. Note from Table 2 and Cycle 2 that the simulation
of P(e,a) = ayagen, for Us 4 will result in the word b3V =5 §b8ha+8k=35p8map heing
printed to to the right of the dataword. It is clear from Table 2 that ay is not
encoded in this word. However when Us 4 reads the subword p3hat+8k=35 it will
index (P(ay)) in H which results in {(a;) being printed to the dataword. To see
this, note that the value of H from Equation (2) for Us 4 is as follows:

H = cgbdd(P(ag))V*(P(ag—1)) ... V*(P(a))V? (3)

The halting condition for Us 4 occurs in a similar manner to that of Uss. It
occurs during the first scan left in Cycle 2 when Ug 4 reads c in state ug at the
left end of (R).

3.5 U18’2
Uis,2 Uy U2 u3 Ug us Ug w7 ug U
c bRus cRui cLus cLus cLus bRus cLugs bRui2 bLuig
b bRus bRu; bLug bLug cLus cLus bLug bLur bLur
Uig,2 u10 U11 U12 uU13 U14 uU15 U16 u17 u18
c cRuis bLu7 cRuii cLuis cRuis bLug cRuir cRus
b bRu15 bRU12 bRun bRU14 bRu13 CRule bRu15 CRU18 CRU1

Table 15: Table of behaviour for Uis, 2.

The dataword a1 e;a; is encoded via Equation (1) and Table (2) as bcbebebb(be) %79 (be) =1 bb(be)?.
From Equation (1) we get the initial configuration:

uy, ... (P(az2))(ch)*(P(a1))cbebebbebebebb(be) 1 (be)* 1 bb(be)cc . . .

Cycle 1 (index next production). In Cycle 1 (Table 16) U;g 2 scans right in
states w1, us and ug until it reads the subword be. Following this, it scans left
in states u4, us and ug until it reads the subword cb. This ¢b is changed to bb



and Uig o re-enters state uq and scans right. This process is repeated until Uig 2
reads the bb that separates a pair of encoded symbols in the encoded dataword
during a scan right. This signals the end of Cycle 1 and the beginning of Cycle 2.

Uis,2 Uy U2 u3 Ug us Ug
c bRus cRu1 cLus cLus cLus bRus
b bRus bRu; bLug bLusg cLus cLug

Table 16: Cycle 1 of Uis 2.

Cycle 2 (Print production). In Cycle 2 (Table 17) Uys 2 scans left in states
u7, ug and ug and records the next symbol of the encoded production to be
printed. If Uig 2 reads the subword cc then it scans right in states ujjand uj2
and changes the cc immediately to the right of the encoded dataword to be. If
Uig,2 reads the subword ccb it scans right in states 113 and u14 and changes the
rightmost bc in the encoded dataword to bb. This process is repeated until the
end of the encoded production is detected by reading the subword bcb during
the scan left. This causes Ujg 2 to enter Cycle 3.

U18,2 u7 us U9 u1o0 U11 U12 U13 U14 U1s
C CLUS bRu12 bLum cRu13 bLU7 cRun cLu15 CRU13 bLUQ
b bLUQ bLU7 bLU7 bRu15 bRu12 bRun bRu14 bRU13

Table 17: Cycle 2 of Uis 2.

Cycle 3 (restore tape). In Cycle 3 (Table 18) the tape head of Usg o scans
right in states w15, u16, w17 and u1s changing each be to cc and each bb to cb. This
continues until Ujg 2 reads the bb marking the leftmost end of the dataword in
u17 and u1g. Note from Table 1 and Equation (2) that the number of cc subwords
between each pair of ¢ symbols in (R) is even hence each bb pair will be read in
states u15 and u1¢ and restored to cb. Each a; symbol in the dataword is encoded
by an odd number of be subwords ({a;) = (bc)*~1) and hence the first bb pair
in the dataword will be read in in state u;7 and uig causing Uig 2 to enter state
uy thus completing Cycle 3 and the production simulation.

Uig,2| uis U16 U7 u1s
c cRu17 cRu1s
b CRU16 bRU15 cRu18 cRu1

Table 18: Cycle 3 of Uis 2.

There is no halting condition for Uiz and as such Ujg 2 simulates bi-tag
systems that have no halting symbol e;. Such bi-tag systems simulate halting
by entering a simple repeating sequence of configurations.
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