
Four small universal Turing machines

Turlough Neary1 and Damien Woods2

1 TASS, Department of Computer Science,
National University of Ireland Maynooth, Ireland. tneary@cs.may.ie

2 Department of Computer Science,
University College Cork, Ireland. d.woods@cs.ucc.ie

Abstract. We present small polynomial time universal Turing machines
with state-symbol pairs of (5, 5), (6, 4), (9, 3) and (18, 2). These machines
simulate our new variant of tag system, the bi-tag system and are the
smallest known universal Turing machines with 5, 4, 3 and 2-symbols
respectively. Our 5-symbol machine uses the same number of instructions
(22) as the smallest known universal Turing machine by Rogozhin.

1 Introduction

Shannon [16] was the first to consider the problem of finding the smallest pos-
sible universal Turing machine. In 1962 Minsky [7] created a 7-state, 4-symbol
universal Turing machine that simulates Turing machines via 2-tag systems.
Minsky’s technique of 2-tag simulation was extended by Rogozhin [15] to create
small universal Turing machines with state-symbol pairs of (24, 2), (10, 3), (7, 4),
(5, 5), (4, 6), (3, 10) and UTM(2, 18). Subsequently some of these machines were
reduced in size to give machines with state-symbol pairs of (3, 9) [5], (19, 2) [1]
and (7, 4) [1]. Figure 1 is a state-symbol plot where the current smallest 2-tag
simulators of Rogozhin et al. are plotted as circles.

Here we present universal Turing machines with state-symbol pairs of (5, 5),
(6, 4), (9, 3) and (18, 2), the later two machine having previously appeared in [9].
These machines simulate Turing machines via bi-tag systems and are plotted
as triangles in Figure 1. These machines improve the state of the art in small
universal Turing machines and reduce the space between the universal and non-
universal curves. Our 5-symbol machine uses the same number of instructions
(22) as the current smallest known universal Turing machine (Rogozhin’s 6-
symbol machine [15]). Also, our 5-symbol machine has less instructions than
Rogozhin’s 5-symbol machines. Since 2-tag systems were first used by Minsky [7]
to construct his famous universal Turing machine with 7-states and 4-symbols, a
number of authors [1, 14, 15] have constructed 4-symbol machines. However our
4-symbol machine is the first reduction in the number of states.

Recently the simulation overhead of Turing machines by 2-tag systems was
improved from exponential [2] to polynomial [17, 18]. More precisely, if Z is a
single tape deterministic Turing machine that runs in time t, then the universal
Turing machines of Minsky and Rogozhin et al. now simulate Z in O(t8(log t)4)
time. It turns out that the time overhead can be improved to O(t4(log t)2) (this



�
: Our new universal machines

that simulate bi-tag systems

��
: smallest known machines that

directly simulate Turing Machines
��

: universal machines of Rogozhin et al.
that simulate 2-tag systems

Universal curve

Non-universal curve

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

states

symbols

�

�

�

�

	


��


�

��

��

��

��

��

��

��

��

� 

Fig. 1: Current state-symbol plot of small universal Turing machines.

result is as yet unpublished). In earlier work [11] we gave the smallest known
universal Turing machines that directly simulate Turing machines. These ma-
chines run in time O(t2) and are plotted as squares in Figure 1. Assuming a
single instruction is reserved for halting it is known that there are no univer-
sal Turing machine for the following state-symbol pairs: (2, 2) [4, 12], (3, 2) [13],
(2, 3) (Pavlotskaya, unpublished), (1, n) [3] and (n, 1) (trivial) for n > 1. These
results induce the non-universal curve in Figure 1.

Our universal Turing machines simulate bi-tag systems with a quadratic poly-
nomial increase in time. Hence from Theorem 1 our universal Turing machines
simulate Turing machines efficiently in time O(t6(n)). Information on alternative
small universal Turing machines can be found in [6, 19, 20].

1.1 Preliminaries

The Turing machines considered in this paper are deterministic and have one
tape. Our universal Turing machine in the class UTM(m, n) is denoted Um,n. We
write c1 ` c2 if a configuration c2 is obtained from c1 via a single computation
step. We let c1 `m c2 denote a sequence of m computation steps and let c1 `∗ c2

denote 0 or more computation steps. Also, we let 〈x〉 denote the encoding of x

and ε denote the empty word.

2 Bi-tag systems

The computation of a bi-tag system is similar to that of a tag system [8]. Bi-tag
systems are essentially 1-tag systems (and so they read and delete one symbol
per timestep) augmented with additional context sensitive rules that read, and
delete, two symbols per timestep.



Definition 1 (Bi-tag system). A bi-tag system is a tuple (A, E, eh, P ). Here
A and E are disjoint finite sets of symbols and eh ∈ E is the halt symbol. P is
the finite set of productions. Each production is of one of the following 3 forms:

P (a) = a, P (e, a) ∈ AE, P (e, a) ∈ AAE,

where a ∈ A, e ∈ E, and P is defined on all elements of {A∪ ((E −{eh})×A)}
and undefined on all elements of {eh} × A. Bi-tag systems are deterministic.

A configuration of a bi-tag system is a word of the form s = A∗(AE ∪ EA)A∗

called the dataword. In Definition 2 we let a ∈ A and e ∈ E.

Definition 2 (BTS computation step). A production is applied in one of
two ways:

(i) if s = as′ then as′ ` s′P (a),
(ii) if s = eas′ then eas′ ` s′P (e, a).

Theorem 1 ([10]). Given a deterministic single tape Turing machine Z that
runs in time t then there exists a bi-tag system that simulates the computation
of Z using space O(t(n)) and time O(t3(n)).

In earlier work [10] Theorem 1 is obtained by proving bi-tag systems simulate
Turing machines via clockwise Turing machines. A clockwise Turing machine is a
Turing machine with a tape head that moves in one direction only, on a circular
tape.

3 Universal Turing machines

In this section we give the input encoding to our universal Turing machines.
Following this we give each of our universal Turing machines and describe their
operation by explaining how they simulate bi-tag systems. Let R denote a bi-tag
system that is to be simulated. The encoding of R as a word is denoted 〈R〉. The
encodings of symbols a ∈ A and e ∈ E are denoted 〈a〉 and 〈e〉 respectively. The
encodings of productions P (a) and P (e, a) are denoted as 〈P (a)〉 and 〈P (e, a)〉
respectively. Let R = (A, E, eh, P ) be a bi-tag system where A = {a1, . . . , aq}
and E = {e1, . . . , eh}.

Definition 3. The encoding of a configuration of R is of the form

ωc〈R〉S∗(〈A〉M)∗
(

〈A〉M〈E〉 ∪ 〈E〉〈A〉M
)

(〈A〉M)∗Dcω (1)

where (〈A〉M)∗
(

〈A〉M〈E〉∪〈E〉〈A〉M
)

(〈A〉M)∗D encodes R’s dataword via Ta-

ble 2, cω = ccc . . ., ωc = . . . ccc, and 〈R〉 is given by Equation (2) and Tables 1
and 2.

〈R〉 =H〈P (eh−1, aq)〉V 〈P (eh−1, aq−1)〉 . . . V 〈P (eh−1, a1)〉

...

V 〈P (e1, aq)〉V 〈P (e1, aq−1)〉 . . . V 〈P (e1, a1)〉

V 2〈P (aq)〉V
2〈P (aq−1)〉 . . . V 2〈P (a1)〉V

3

(2)



In Equation (1) the position of the tape head is over the symbol immediately to
the right of 〈R〉S∗. The initial state is u1 and the blank symbol is c.

〈P (ej , ai)〉 〈P (ej , ai)〉

UTM 〈P (ai)〉 P (ej, ai) = akem P (ej, ai) = avakem

U5,5 δδd16i−6 δδLd16mqδd16k−6 δLd16mqδd16k−2δd16v−6

U6,4 δ5g12i−10δ δ4Lg12mqδδg12k−10δ δ2Lg12mqδδg12hq+12k−4δδg12v−10δ

U9,3 δδccδc8i δccδδc8mq+2δc8k δδc8mq+2δc8kδc8v

U18,2 cb(cc)2cb(cc)4i−2 (cb)2(cc)4qj+2cb(cc)4k−2 cb(cc)4qj+2cb(cc)4kcb(cc)4v−2

Table 1: Encoding of P productions. Here ai, ak, av ∈ A and ej , em ∈ E. If em 6= eh

then L = ε. If em = eh then L = g12q+8 for U6,4 and L = d10 for U5,5.

UTM 〈ai〉 〈ej〉 〈eh〉 S M D V H

U5,5 b4i−1 b4jq b4hq+2δ d2 δ ε δ cd

U6,4 b8i−5 b8jq b8q(h+1)+5δ g2 δ b δ H

U9,3 b4i−1 b4jq b4hq c2 δ ε δcc bccbc

U18,2 (bc)4i−1 (bc)4jq (bc)4hq c4 b2 (bc)2 cb cb

Table 2: Symbol values for Equations (1) and (2). If em 6= eh then M ′ = ε for U5,5 and
U6,4. The value of H for U6,4 is given in Equation (3) in Section 3.4.

3.1 Universal Turing machine algorithm overview

Each of our universal Turing machines use the same basic algorithm. Here we give
a brief description of the simulation algorithm by explaining how our machines
locate and simulate a production. The encoded production to be simulated is
located using a unary indexing method. The encoded production 〈P (ai)〉 or
〈P (ej , ai)〉 in Equation (2) is indexed (pointed to) by the number of symbols
contained in the leftmost encoded symbol or pair of symbols in the encoded
dataword (Equation (1)). For illustration purposes we will assume that we are
using U9,3. If the leftmost encoded symbol is 〈ai〉 = b4i−1 (Table 2) then the value
4i − 1 is used to index 〈P (ai)〉. If the leftmost encoded symbol is 〈ej〉 = b4jq ,
and 〈ai〉 = b4i−1 is adjacent, then the value 4jq+4i−1 is used to index 〈P (ej , ai)〉.
The number of b symbols in the encoded symbol, or pair of encoded symbols,
is equal to the number of δc∗ words between the leftmost encoded symbol and
the encoded production to be simulated. To locate this production, U9,3 simply
changes each δc∗ to δb∗, for each b in the leftmost encoded symbol or pair of
encoded symbols. This process continues until the δ that separates two encoded
symbols in the dataword is read. Note from Equation (1) that there is no δ

marker between each 〈ej〉 and the 〈ai〉 to its right, thus allowing 〈ej〉〈ai〉 to be
read together during indexing. After indexing, our machines print the indexed
production immediately to the right of the encoded dataword. After the indexed
production has been read, then 〈R〉, the encoding of R, is restored to its original
value. This completes the simulation of the production.



3.2 U9,3

U9,3 u1 u2 u3 u4 u5 u6 u7 u8 u9

c bRu1 cLu3 cLu3 bLu9 cRu6 bLu4 δLu4 cRu7 bLu5

b cLu2 cLu2 bLu4 bLu4 bRu6 bRu7 cRu9 cRu8

δ δRu3 δLu2 δRu1 δLu4 δLu8 δRu6 δRu7 δRu8 cRu1

Table 3: Table of behaviour for U9,3.

Example 1 (U9,3 simulating the execution of the production P (a1)). This ex-
ample is presented using three Cycles. The tape head of U9,3 is given by an
underline. The current state of U9,3 is given to the left in bold. The dataword
a1ejai is encoded via Equation (1) and Table 2 as bbbδb4jqb4i−1δ and P (a1) is
encoded via Table 1 as 〈P (a1)〉 = δδccδc8. From Equation (1) we get the initial
configuration:

u1u1u1, . . . 〈P (a2)〉(δcc)
2δδccδc8δccδccδccbbbδb4jqb4i−1δccc . . .

Cycle 1 (index next production). In Cycle 1 (Table 4), U9,3 reads the left-
most encoded symbol and locates the next encoded production to execute. U9,3

scans right until it reads b in state u1. Then U9,3 scans left in states u2 and
u3 until it reads the subword δc∗. This subword is changed to δb∗ as U9,3 scans
right in states u1 and u3. The process is repeated until U9,3 reads b in state u3.
This indicates that we have finished reading the leftmost encoded symbol, or
pair of encoded symbols, and that the encoded production to be executed has
been indexed. This signals the end of Cycle 1 and the beginning of Cycle 2.

U9,3 u1 u2 u3

c bRu1 cLu3 cLu3

b cLu2 cLu2 bLu4

δ δRu3 δLu2 δRu1

Table 4: Cycle 1 of U9,3.

U9,3 u4 u5 u6 u7 u8 u9

c bLu9 cRu6 bLu4 δLu4 cRu7 bLu5

b bLu4 bRu6 bRu7

δ δLu4 δLu8 δRu6 δRu7 δRu8

Table 5: Cycle 2 of U9,3.

` u2u2u2, . . . 〈P (a2)〉(δcc)
2δδccδc8δccδccδcccbbδb4jqb4i−1δccc . . .

`2 u3u3u3, . . . 〈P (a2)〉(δcc)
2δδccδc8δccδccδcccbbδb4jqb4i−1δccc . . .

`4 u1u1u1, . . . 〈P (a2)〉(δcc)
2δδccδc8δccδccδbbbbbδb4jqb4i−1δccc . . .

`44 u1u1u1, . . . 〈P (a2)〉(δcc)
2δδccδc8δbbδbbδbbbbbδb4jqb4i−1δccc . . .

`2 u4u4u4, . . . 〈P (a2)〉(δcc)
2δδccδc8δbbδbbδbbbbbδb4jqb4i−1δccc . . .

In the configuration immediately above the encoded production 〈P (a1)〉 has been
indexed and we have entered Cycle 2.

Cycle 2 (Print production). Cycle 2 (Table 5) prints the encoded production,
that was indexed in Cycle 1, immediately to the right of the encoded dataword.
U9,3 scans left in state u4 and records the next symbol of the encoded production
to be printed. If U9,3 reads the subword ccc it enters state u6, scans right, and



prints b at the right end of the encoded dataword. A single b is printed for each cc

pair that does not have δ immediately to its left. If U9,3 reads the subword cδcc

it scans right in state u7 and prints δ at the right end of the encoded dataword.
This process is repeated until the end of the encoded production is detected by
reading the subword δδcc which causes U9,3 to enter Cycle 3.

`13 u4u4u4, . . . 〈P (a2)〉(δcc)
2δδccδc6cc(δbb)3bbbδb4jqb4i−1δccc . . .

`3 u6u6u6, . . . 〈P (a2)〉(δcc)
2δδccδc6bb(δbb)3bbbδb4jqb4i−1δccc . . .

`4(jq+i)+14 u6u6u6, . . . 〈P (a2)〉(δcc)
2δδccδc6bb(δbb)3bbbδb4jqb4i−1δccc . . .

` u4u4u4, . . . 〈P (a2)〉(δcc)
2δδccδc6bb(δbb)3bbbδb4jqb4i−1δbcc . . .

In the configuration immediately above the first symbol of the encoded produc-
tion 〈P (a1)〉 has been printed. Following the printing of the last symbol of the
encoded production we get:

`∗ u4u4u4, . . . 〈P (a2)〉(δcc)
2δδccδb8(δbb)3bbbδb4jqb4i−1δb3δcc . . .

`3 u8u8u8, . . . 〈P (a2)〉(δcc)
2δδbbδb8(δbb)3bbbδb4jqb4i−1δb3δcc . . .

In the configuration immediately above we have finished printing the encoded
production 〈P (a1)〉 to the right of the dataword and we have entered Cycle 3.

Cycle 3 (restore tape). Cycle 3 (Table 6) restores 〈R〉 to its original value.
The tape head of U9,3 scans right switching between states u8 and u9 changing b

symbols to c symbols. This continues until U9,3 reads the δ marking the leftmost
end of the dataword in u9. Note from Table 1 and Equation (2) that there is
an even number of b symbols between each pair of δ symbols in 〈R〉 hence each
δ symbol in 〈R〉 will be read in state u8. Each ai symbol in the dataword is
encoded by an odd number of b symbols (〈ai〉 = b4i−1) and hence the first δ

symbol in the dataword will be read in state u9. This δ symbol marks the left
end of the new dataword and causes U9,3 to enter state u1 thus completing Cycle
3 and the production simulation.

U9,3 u8 u9

b cRu9 cRu8

δ δRu8 cRu1

Table 6: Cycle 2 of U9,3.

`25 u9u9u9, . . . 〈P (a2)〉(δcc)
2δδcδc8(δcc)3cccδb4jqb4i−1δb3δcc . . .

` u1u1u1, . . . 〈P (a2)〉(δcc)
2δδcδc8(δcc)3ccccbb4jq−1b4i−1δb3δcc . . .

In the configuration immediately above our example simulation of production
P (a1) is complete.

Theorem 2. Given a bi-tag system 〈R〉 the computation of 〈R〉 is simulated
by U9,3.



Proof. In order to prove the correctness of U9,3 we must prove that U9,3 simulates
any possible P (a) or P (e, a) production of an arbitrary bi-tag system and, that
U9,3 also simulates halting when the encoded halt symbol 〈eh〉 is encountered.
In Example 1 U9,3 simulates P (a1) for an arbitrary bi-tag system where a1 is
the leftmost symbol in a fixed dataword. This example easily generalises to any
production P (ai) where ai is the leftmost symbol in an arbitrary dataword. When
some e ∈ E is the leftmost symbol in the dataword then some production P (e, a)
must be executed. The simulation of P (a1) in Example 1 is also used to verify the
simulation of P (e, a). Note from Equation (1) that there is no δ marker between
each 〈ej〉 and the adjacent 〈ai〉 to its right, thus allowing 〈ej〉 and 〈ai〉 to be
read together during Cycle 1. Using the encoding in Defintion 3, the number of
b symbols in 〈ej〉〈ai〉 indexes 〈P (e, a)〉. Thus, the indexing of 〈P (e, a)〉 is carried
out in the same manner as the indexing of 〈P (a)〉. The printing of production
〈P (e, a)〉 during Cycle 2 and the subsequent restoring of 〈R〉 during Cycle 3
proceed in the same manner as with P (a1).

If the encoded halt symbol 〈eh〉 = b4hq is the leftmost symbol in the encoded
dataword, and 〈ai〉 is adjacent, this is encoded via Definition 3 as follows:

u1u1u1, bccbc〈P (eh−1, aq)〉δcc . . . 〈P (a1)〉(δcc)
3(cc)∗bb4hq−1b4i−1δ(〈A〉δ)∗c . . .

During Cycle 1, immediately after reading the (4hq + 3)th b symbol in the data-
word, U9,3 scans left in u2 and we get the following:

`∗ u2u2u2, bccbc〈P (eh−1, aq)〉δcc . . . 〈P (a1)〉(δcc)
3(cc)∗c4hq+3b4i−4δ(〈A〉δ)∗c . . .

`4 u5u5u5, bbbbc〈P (eh−1, aq)〉δcc . . . 〈P (a1)〉(δcc)
3(cc)∗c4hq+3b4i−4δ(〈A〉δ)∗c . . .

There is no transition rule in Table 3 for the case when in u5 read b hence the
computation halts. ut

The proof of correctness given for U9,3 can be applied to the remaining machines
in a straightforward way, so we do not restate it.

3.3 U5,5

U5,5 u1 u2 u3 u4 u5

g bLu1 gRu1 bLu3

b gLu1 gRu2 dRu5 gRu4 dRu3

δ cRu2 cRu2 δRu3 cRu4 dRu1

c δLu1 bLu3 δLu3 δLu3

d bLu1 gRu2 bLu5 bLu2 bLu4

Table 7: Table of behaviour for U5,5.

The dataword a1ejai is encoded via Equation (1) and Table 2 as bbbδb4jqb4i−1δ

and P (a1) is encoded via Table 1 as 〈P (a1)〉 = δδd10. From Equation (1) we get
the initial configuration:

u1u1u1, . . . δ2〈P (a2)〉δ
2δδd10δδδbbbδb4jqb4i−1δccc . . .



Cycle 1 (index next production). In Cycle 1 (Table 8) when U5,5 reads b in
state u1, it changes it to g and scans left until it reads δ. This δ is changed to c

and U5,5 then enters state u2 and scans right until it reads g which causes it to
re-enter state u1. This process is repeated until U5,5 reads the δ that separates a
pair of encoded symbols in the encoded dataword. This signals the end of Cycle 1
and the beginning of Cycle 2.

U5,5 u1 u2

g bLu1 gRu1

b gLu1 gRu2

δ cRu2 cRu2

c δLu1

d bLu1

Table 8: Cycle 1 of U5,5.

U5,5 u2 u3 u4 u5

g bLu3

b gRu2 gRu4

δ cRu2 δRu3 cRu4

c bLu3 δLu3 δLu3

d gRu2 bLu5 bLu2 bLu4

Table 9: Cycle 2 of U5,5.

U5,5 u3 u5

b dRu5 dRu3

δ δRu3 dRu1

Table 10: Cycle 3 of U5,5.

`3 u1u1u1, . . . δ2〈P (a2)〉δ
2δδd10δδcgbbδb4jqb4i−1δccc . . .

`18 u1u1u1, . . . δ2〈P (a2)〉δ
2δδd10cccgggδb4jqb4i−1δccc . . .

` u2u2u2, . . . δ2〈P (a2)〉δ
2δδd10cccgggcbb4jq−1b4i−1δccc . . .

Cycle 2 (Print production). Cycle 2 (Table 9) begins with U5,5 scanning
right and printing b to the right of the encoded dataword. Following this U5,5

scans left in state u3 and records the next symbol of the encoded production to
be printed. If U5,5 reads the subword dddd it enters state u2, scans right, and
prints b at the right end of the encoded dataword. If U5,5 reads the subword δdd

it scans right in state u4 and prints δ at the right end of the encoded dataword.
This process is repeated until the end of the encoded production is detected by
reading δ in state u3 causing U5,5 to enter Cycle 3.

`∗ u3u3u3, . . . δ2〈P (a2)〉δ
2δδd6ddddδδδbbbδb4jqb4i−1δbcc . . .

`3 u2u2u2, . . . δ2〈P (a2)〉δ
2δδd6dbbbδδδbbbδb4jqb4i−1δbcc . . .

`∗ u3u3u3, . . . δ2〈P (a2)〉δ
2δδddb8δδδbbbδb4jqb4i−1δbbbcc . . .

`2 u4u4u4, . . . δ2〈P (a2)〉δ
2δδbbb8δδδbbbδb4jqb4i−1δbbbcc . . .

`∗ u3u3u3, . . . δ2〈P (a2)〉δ
2δδbbb8δδδbbbδb4jqb4i−1δbbbδcc . . .

Cycle 3 (restore tape). In Cycle 3 (Table 10) the tape head of U5,5 scans
right switching between states u3 and u5 changing b symbols to d symbols.
This continues until U5,5 reads the δ marking the leftmost end of the encoded
dataword in u5. Note from Table 1 and Equation (2) that there is an even number
of d symbols between each pair of δ symbols in 〈R〉 hence each δ symbol in 〈R〉
will be read in state u3. Each ai symbol in the dataword is encoded by an odd
number of symbols (〈ai〉 = b4i−1) and hence the first δ symbol in the dataword
will be read in in state u5. This causes U5,5 to enter state u1 thus completing
Cycle 3 and the production simulation.

`19 u1u1u1, . . . δ2〈P (a2)〉δ
2δδd10δδδddddbb4jq−1b4i−1δbbbδcc . . .



Halting for U5,5. If the encoded halt symbol 〈eh〉 = b4hq+2δ is the leftmost
symbol in the encoded dataword then this is encoded via Definition 3 as follows:

u1u1u1, cd〈P (eh−1, aq)〉δ . . . δ2〈P (a1)〉δ
3(dd)∗bb4hq+1δ(〈A〉δ)∗c . . .

The computation continues as before until U5,5 enters Cycle 2 and scans left
in u3. Immediately after U5,5 reads the leftmost d during this leftward scan we
get:

` u5u5u5, cb〈P ′(eh−1, aq)〉δ . . . δ2〈P ′(a1)〉δ
3(dd)∗b4hq+2δ(〈A〉δ)∗bc . . .

In the configuration above, 〈P ′〉 denotes the word in which all the d symbols in
〈P 〉 are changed to b symbols. There is no transition rule in Table 7 for the case
’when in u5 read c’ hence the computation halts.

3.4 U6,4

U6,4 u1 u2 u3 u4 u5 u6

g bLu1 gRu1 bLu3 bRu2 bLu6 bLu4

b gLu1 gRu2 bLu5 gRu4 gRu6 gRu5

δ cRu2 cRu2 δLu5 cRu4 δRu5 gRu1

c δLu1 gRu5 δLu3 cRu5 bLu3

Table 11: Table of behaviour for U6,4.

The dataword a1ejai is encoded via Equation (1) and Table (2) as bbbδb8jqb8i−5δb.
From Equation (1) we get the initial configuration:

u1u1u1, . . . δ2〈P (a2)〉δ
2〈P (a1)〉δδδbbbδb

8jqb8i−5δbcc . . .

Cycle 1 (index next production). In Cycle 1 (Table 12) when U6,4 reads
b in state u1 it scans left until it reads a δ. This δ is changed to c and U6,4

then enters state u2 and scans right until it reads g which causes it to re-enter
state u1. This process is repeated until U6,4 reads the δ that separates a pair of
encoded symbols in the encoded dataword. This signals the end of Cycle 1 and
the beginning of Cycle 2.

U6,4 u1 u2

g bLu1 gRu1

b gLu1 gRu2

δ cRu2 cRu2

c δLu1

Table 12: Cycle 1
of U6,4.

U6,4 u2 u3 u4 u5 u6

g bLu3 bRu2 bLu6 bLu4

b gRu2 bLu5 gRu4

δ cRu2 δLu5 cRu4 δRu5

c gRu5 δLu3 cRu5 bLu3

Table 13: Cycle 2 of U6,4.

U6,4 u5 u6

b gRu6 gRu5

δ δRu5 gRu1

Table 14: Cycle 3
of U6,4.

Cycle 2 (Print production). Cycle 2 (Table 13) begins with U6,4 scanning
right and printing bb to the right of the encoded dataword. Following this U6,4

scans left in state u3 and records the next symbol of the encoded production to be



printed. If U6,4 reads the subword gggδ or gggb it enters state u2 scans right and
prints bb at the right end of the encoded dataword. If U6,4 reads the subword
δggb it scans right in state u4 and prints δb at the right end of the encoded
dataword. This process is repeated until the end of the encoded production is
detected by reading δ in state u5 causing U6,4 to enter Cycle 3.
Cycle 3 (restore tape). In Cycle 3 (Table 14) the tape head of U6,4 scans
right switching between states u5 and u6 changing b symbols to g symbols.
This continues until U6,4 reads the δ marking the leftmost end of the encoded
dataword in u6. Note from Table 1 and Equation (2) that there is an even number
of g symbols between each pair of δ symbols in 〈R〉 hence each δ symbol in 〈R〉
will be read in state u5. Each ai symbol in the dataword is encoded by an odd
number of symbols (〈ai〉 = b8i−5) and hence the first δ symbol in the dataword
will be read in state u6. This causes U6,4 to enter state u1 thus completing
Cycle 3 and the production simulation.
Special case for U6,4. If we are simulating a production of the form P (e, a) =
avakem we have a special case. Note from Table 2 and Cycle 2 that the simulation
of P (e, a) = avakem for U6,4 will result in the word b8v−5δb8hq+8k−3δb8mqb being
printed to to the right of the dataword. It is clear from Table 2 that ak is not
encoded in this word. However when U6,4 reads the subword b8hq+8k−3δ it will
index 〈P (ak)〉 in H which results in 〈ak〉 being printed to the dataword. To see
this, note that the value of H from Equation (2) for U6,4 is as follows:

H = cgbδδ〈P (aq)〉V
2〈P (aq−1)〉 . . . V 2〈P (a1)〉V

3 (3)

The halting condition for U6,4 occurs in a similar manner to that of U5,5. It
occurs during the first scan left in Cycle 2 when U6,4 reads c in state u6 at the
left end of 〈R〉.

3.5 U18,2

U18,2 u1 u2 u3 u4 u5 u6 u7 u8 u9

c bRu2 cRu1 cLu5 cLu5 cLu4 bRu2 cLu8 bRu12 bLu10

b bRu3 bRu1 bLu9 bLu6 cLu4 cLu4 bLu9 bLu7 bLu7

U18,2 u10 u11 u12 u13 u14 u15 u16 u17 u18

c cRu13 bLu7 cRu11 cLu15 cRu13 bLu9 cRu17 cRu15

b bRu15 bRu12 bRu11 bRu14 bRu13 cRu16 bRu15 cRu18 cRu1

Table 15: Table of behaviour for U18,2.

The dataword a1ejai is encoded via Equation (1) and Table (2) as bcbcbcbb(bc)4jq(bc)4i−1bb(bc)2.
From Equation (1) we get the initial configuration:

u1u1u1, . . . 〈P (a2)〉(cb)
2〈P (a1)〉cbcbcbbcbcbcbb(bc)

4jq(bc)4i−1bb(bc)2cc . . .

Cycle 1 (index next production). In Cycle 1 (Table 16) U18,2 scans right in
states u1, u2 and u3 until it reads the subword bc. Following this, it scans left
in states u4, u5 and u6 until it reads the subword cb. This cb is changed to bb



and U18,2 re-enters state u1 and scans right. This process is repeated until U18,2

reads the bb that separates a pair of encoded symbols in the encoded dataword
during a scan right. This signals the end of Cycle 1 and the beginning of Cycle 2.

U18,2 u1 u2 u3 u4 u5 u6

c bRu2 cRu1 cLu5 cLu5 cLu4 bRu2

b bRu3 bRu1 bLu9 bLu6 cLu4 cLu4

Table 16: Cycle 1 of U18,2.

Cycle 2 (Print production). In Cycle 2 (Table 17) U18,2 scans left in states
u7, u8 and u9 and records the next symbol of the encoded production to be
printed. If U18,2 reads the subword cc then it scans right in states u11and u12

and changes the cc immediately to the right of the encoded dataword to bc. If
U18,2 reads the subword ccb it scans right in states u13 and u14 and changes the
rightmost bc in the encoded dataword to bb. This process is repeated until the
end of the encoded production is detected by reading the subword bcb during
the scan left. This causes U18,2 to enter Cycle 3.

U18,2 u7 u8 u9 u10 u11 u12 u13 u14 u15

c cLu8 bRu12 bLu10 cRu13 bLu7 cRu11 cLu15 cRu13 bLu9

b bLu9 bLu7 bLu7 bRu15 bRu12 bRu11 bRu14 bRu13

Table 17: Cycle 2 of U18,2.

Cycle 3 (restore tape). In Cycle 3 (Table 18) the tape head of U18,2 scans
right in states u15, u16, u17 and u18 changing each bc to cc and each bb to cb. This
continues until U18,2 reads the bb marking the leftmost end of the dataword in
u17 and u18. Note from Table 1 and Equation (2) that the number of cc subwords
between each pair of δ symbols in 〈R〉 is even hence each bb pair will be read in
states u15 and u16 and restored to cb. Each ai symbol in the dataword is encoded
by an odd number of bc subwords (〈ai〉 = (bc)4i−1) and hence the first bb pair
in the dataword will be read in in state u17 and u18 causing U18,2 to enter state
u1 thus completing Cycle 3 and the production simulation.

U18,2 u15 u16 u17 u18

c cRu17 cRu15

b cRu16 bRu15 cRu18 cRu1

Table 18: Cycle 3 of U18,2.

There is no halting condition for U18,2 and as such U18,2 simulates bi-tag
systems that have no halting symbol eh. Such bi-tag systems simulate halting
by entering a simple repeating sequence of configurations.

References

1. C. Baiocchi. Three small universal Turing machines. In M. Margenstern and
Y. Rogozhin, editors, Machines, Computations, and Universality, volume 2055 of
LNCS, pages 1–10, Chişinău, Moldova, May 2001. MCU, Springer.



2. J. Cocke and M. Minsky. Universality of tag systems with P = 2. Journal of the
ACM, 11(1):15–20, Jan. 1964.

3. G. Hermann. The uniform halting problem for generalized one state Turing ma-
chines. In Proceedings, Ninth Annual Symposium on Switching and Automata
Theory, pages 368–372, New York, Oct. 1968. IEEE.

4. M. Kudlek. Small deterministic Turing machines. TCS, 168(2):241–255, Nov. 1996.
5. M. Kudlek and Y. Rogozhin. A universal Turing machine with 3 states and 9

symbols. In W. Kuich, G. Rozenberg, and A. Salomaa, editors, Developments in
Language Theory, volume 2295 of LNCS, pages 311–318. Springer, May 2002.

6. M. Margenstern and L. Pavlotskaya. On the optimal number of instructions for
universality of Turing machines connected with a finite automaton. International
Journal of Algebra and Computation, 13(2):133–202, Apr. 2003.

7. M. Minsky. Size and structure of universal Turing machines using tag systems.
In Recursive Function Theory, Symposium in Pure Mathematics, volume 5, pages
229–238, Provelence, 1962. AMS.

8. M. Minsky. Computation, finite and infinite machines. Prentice-Hall, 1967.
9. T. Neary. Small polynomial time universal Turing machines. In T. Hurley, A. Seda,

et al., editors, 4th Irish Conference on the Mathematical Foundations of Computer
Science and Information Technology, pages 325–329, Cork, Ireland, Aug. 2006.

10. T. Neary and D. Woods. A small fast universal Turing machine. Technical Report
NUIM-CS-TR-2005-12, National university of Ireland, Maynooth, 2005.

11. T. Neary and D. Woods. Small fast universal Turing machines. TCS, 362(1–
3):171–195, Oct. 2006.

12. L. Pavlotskaya. Solvability of the halting problem for certain classes of Turing
machines. Mathematical Notes (Springer), 13(6):537–541, June 1973.

13. L. Pavlotskaya. Dostatochnye uslovija razreshimosti problemy ostanovki dlja
mashin T’juring. Problemi kibernetiki, pages 91–118, 1978. (Sufficient conditions
for the halting problem decidability of Turing machines) (in Russian).

14. R. Robinson. Minsky’s small universal Turing machine. International Journal of
Mathematics, 2(5):551–562, 1991.

15. Y. Rogozhin. Small universal Turing machines. TCS, 168(2):215–240, Nov. 1996.
16. C. E. Shannon. A universal Turing machine with two internal states. Automata

Studies, Annals of Mathematics Studies, 34:157–165, 1956.
17. D. Woods and T. Neary. On the time complexity of 2-tag systems and small

universal Turing machines. In In 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 132–143, Berkeley, California, Oct. 2006. IEEE.

18. D. Woods and T. Neary. Remarks on the computational complexity of small
universal Turing machines. In T. Hurley, A. Seda, et al., editors, Fourth Irish Con-
ference on the Mathematical Foundations of Computer Science and Information
Technology, pages 334–338, Cork, Ireland, Aug. 2006. MFCSIT.

19. D. Woods and T. Neary. The complexity of small universal Turing machines.
In S. B. Cooper, B. Lowe, and A. Sorbi, editors, Computability in Europe 2007,
volume 4497 of LNCS, pages 791–798, Sienna,Italy, June 2007. CIE, Springer.

20. D. Woods and T. Neary. Small semi-weakly universal Turing machines. In
J. Durand-Lose and M. Margenstern, editors, Machines, Computations, and Uni-
versality, LNCS, Orelans, France, Sept. 2007. MCU, Springer. This Volume.


