A crash course Iin the theory of molecular computing
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Overview

* Prediction

* Prediction and computation

e Computational universality

» Efficiency: sequential vs parallel computation
* Prediction



Prediction
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e Kinesin: a molecular walker

e Step size of 8nm

http://en.wikipedia.org/wiki/File:Motility_of kinesin_en.png

 How long to walk a given distance?
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Prediction
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Kinesin: a molecular walker

Step size of 8nm
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How long to walk a given distance?

time = time_per_step x distance / step_size
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Prediction

A 1>B

 Exponential decay

* How many A's do we expect
there to be at time t?
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* How many A's do we expect
there to be at time t?
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Prediction

A 1>B

* Exponential decay

* How many A's do we expect .
there to be at time t?

# A1
2

Number of A's
H#A:

# A =

Or

1
#4, = #Ao;




Prediction

. B C

e Catalytic conversion of As to B's
* One C, and many A's

* How many A's do we expect there to
be at time t?

e Ay = e Al g ]
Or
#A = #Ag—t




Prediction

* A pair of linear maps

:
T i\ (2 if x is even

Tt = { e
\3%5—1 +1 1if z is odd




Prediction

* A pair of linear maps

<(:1:t_1/2 if r=0 mod 2
\Smt_l%—l itx=1 mod 2




Prediction

* A pair of linear maps

<(a:‘t_1/2 if r=0 mod 2
\3£Et_1—|—1 ifxr=1 mod 2

- For all xy, is there some ¢ such that x; =17

1 b
Mathematics is not yet ready for such problems

Paul Erdés

- Maybe we'll learn a lot by trying to solve it!
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THE COULATZ CONJECTURE STATES THAT IF YOU
PICK A NUMBER, AND IF ITSEVEN DIVIDE 1T B
TWO AND |F 1TS5 00D MULTIPLY IT BY THREE AND
ADD ONE, AND YoU REPEAT THIS PROCEDURE LONG
ENOUGH, EVENTUALLY YOUR FRIENDS WiLL SToP
CALUNG TO SEE IF YOU WANT TO HANG OUT.
xked, #710




Predicting physical systems

Even very simple-looking systems can carry out arbitrarily complicated
computations

:> There are very simple-looking systems whose dynamics is so complicated
that we provably have no simple formula to predict them

For almost all of these systems we can not even hope to simulate any faster than
full explicit (and slow!) simulation. The best we can do is just watch it evolve over

time

Even with a quantum computer, molecular computer, or any kind of highly parallel
computer!

The good news is that these systems are all computers



Computation

e Computation is all about dynamics

* In 1936, Turing wanted to define a general model of
instruction-based dynamics



http://www.computerhistory.org/revolution/calculators/1/56/225
http://www.computerhistory.org/revolution/calculators/1/56/225

Turing machine

* A simple form of computer

Tape

Read/write tape head

Instruction 1
instruction 2

State

Program

instruction &

|8|B|B[B[B[B|1]0|1]0[0[1]1]1]B|B]



Turing machine

* A simple form of computer

|8|B|B[B[B[B|1]0|1]0[0[1]1]1]B|B]

Tape

Read/write tape head

S1,1; S2,0,R
S1,1; S4,0, L

State

Program

S13,1; Se, 0, R Instruction format:

state, read; next state, write, move
N



Turing machine

* A simple form of computer

~-|B|B[B|B[B[BJ0JO]1]0[0[1]1]1]B|B]"

Tape

Read/write tape head

=]

S1,1: So,0,R
S1,1; S4,0, L

State

Program

S13,1; S6,0,R Instruction format:

state, read; next state, write, move
12



Turing machine

* An implementation of a Turing machine



Turing machine

* An implementation of a Turing machine




Turing machine

* An implementation of a Turing machine

Anders Nissen, Martin Have, Mikkel Vester, Sean Geggie.
Computer Science, Aarhus University 2009.



Universal computation

A mathematical idea that changed the world

e Turing showed that there is a Turing machine U that can
simulate any other Turing machine

—

\/



Universal Turing machine

s progan] # | ws ste| # | we ot | B| B| B| B| B[ B

U’s tape
(encodes the tape of M)

U’s state

instruction 1
Instruction 2

U’s program

Instruction format:
state, read; next state, write, move

instruction k&



e Almost all questions about the long term dynamics of Turing
machines are undecidable

* Universality uses the idea of simulation
e Lets use simulation to show that computation is ubiquitous

* There are ridiculously simple systems that are capable of
universal computation!



Cellular automata

e Grid of cells, in 1 or more dimensions
e Each cell has one of a finite number of states

* Synchronous updates of states based on current state and
that of neighbors




Cellular automata

* Direct simulation of Turing machines is easy (if we have
enough states)

Turing machine
time/space history (tableau)

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Step 1

Step 12
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CA rules encode
TM instructions



Tiling
e Direct (tableau-style) simulations of Turing machines also show
up in Wang tiling, DNA self-assembly, and Boolean circuits

TM step
™ painninwinwin
0 alblcla N S ;.'.'_'.'.'_'.'.55'.'_'.'.'_'.'.'1 T TR
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) Sl Ao Self-assembled DNA tiles
P PR A 5 b L b Pic credit: Scott M Summers. Universality in
2 algorithmic self-assembly. PhD thesis, ISU 2010
S//
Turing machine Wang tiles )
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Pic credit: Moore & Mertens. The Nature of Computation. OUP 2012. L : L P -
( MOVE, J
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Boolean circuits (one layer per TM step) | ]
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Pic credit: E. Gurari. An Introduction to the Theory of | == ‘

Computation. Comp Sci Press. 1989 19



Cellular automata

Representation |
of TM tape '

e Game of life

1. Any live cell with fewer than two live
neighbours dies.

2. Any live cell with two or three live
neighbours lives on to the next
generation.

3. Any live cell with more than three
live neighbours dies

4. Any dead cell with exactly three live
neighbours becomes a live cell .

Representation
of TM program

e Simulation of a Turing
machine

John Conway, 1970s
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e So 2D, 2 state CA,
with a small
neighborhood, are AL
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e \What about in 1D? : :
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Rule 110

e A 2-state 1D cellular automaton

U=
=—

Initial configuration B HE BEERER

time

2



Rule 110
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Initial configuration
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e A 2-state 1D cellular automaton
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=—

Initial configuration
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Rule 110

e A 2-state 1D cellular automaton
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Rule 110

e What is going on here?

Initial configuration

Time

Cook, Matthew. Universality in Elementary Cellular Automata. Complex systems (2004) 15(1):1-40 00



Rule 110

e What is going on here?

Initial configuration

Time

Cook, Matthew. Universality in Elementary Cellular Automata. Complex systems (2004) 15(1):1-40 00



Universality and simulation:
by the numbers
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Baker's map

(2/2,2y) if y < 1/2

WeTesl2 2y 1) il y > 1/2
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Baker's map

(2/2,2y) if y < 1/2
WeTesl2 2y 1) il y > 1/2
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Pi: ‘Beverley Henley

e A simple example of a chaotic dynamical system on the unit square

2%



Baker's map

(2/2,2y) if y < 1/2

fz,y) = <\(:13/2—|— 1/2,%y — 1) ify>1/2

. ::": B LY 3R | | }
! {3 i § 3 i f

Pic“: ‘Beve}rley Henley

e A simple example of a chaotic dynamical system on the unit square
e Example values xand y: z+=1/2+1/4+1/8 y=1/441/16

24



Baker's map

(2/2,2y) if y < 1/2
WeTesl2 2y 1) il y > 1/2

AL AR
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Pic”: Beverley Henley

e A simple example of a chaotic dynamical system on the unit square

e Example values xand y: z+=1/2+1/4+1/8 y=1/441/16
e Now write x and y in binary: = = 0.111 y = 0.0101

24



Baker's map

(2/2,2y) if y < 1/2
WeTesl2 2y 1) il y > 1/2

ALY 112

Pic”: Beverley Henley

e Y f
R b \ ,
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- R R

e A simple example of a chaotic dynamical system on the unit square

e Example values xand y: z+=1/2+1/4+1/8 y=1/441/16
e Now write x and y in binary: = = 0.111 y = 0.0101
e Mirror x: 7 = 110 y = 0.0101

24



Baker's map

(2/2,2y) if y < 1/2
WeTesl2 2y 1) il y > 1/2

i

1 l‘ 1

e A simple example of a chaotic dynamical system on the unit square

e Example values xand y: z+=1/2+1/4+1/8 y=1/441/16
e Now write x and y in binary: = = 0.111 y = 0.0101
e Mirror x: 7 = 110 y = 0.0101

e Write as a bi-infinite sequence: ...000111.0101000...

24



Baker's map

(2/2,2y) if y < 1/2
WeTesl2 2y 1) il y > 1/2

“

test reads MSB of y Pic: Beverley Henley

e A simple example of a chaotic dynamical system on the unit square

e Example values xand y. z=1/2+1y4+1/8 y=1/441/16

e Now write x and y in binary: = = 0.111 y = 0.0101
e Mirror x: z=111.0 ) = (GO0

e Write as a bi-infinite sequence: ...000111.0101000...
e lterate 7 ...0001110.101000...
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Baker's map

)
(/2,2y) g 109 —

f(aj7 y) = ] » g x{,: '_v
\(213/2 +1/2,2y—1) ify>1/2 e

test reads MSB of y Pic: -Beverley Henley

e A simple example of a chaotic dynamical system on the unit square

e Example values xand y. z=1/2+1y4+1/8 y=1/441/16
e Now write x and y in binary: = =0.111 y = 0.0101

e Mirror x: e = 1110 y =0.0101

e Write as a bi-infinite sequence: ...000111.0101000...

* lterate f: .0001110.101000...

...00011101.01000...
...000111010.1000...
..0001110101.000...

e Test on y reads most significant bit

e Moore saw that this map simulates right shift of a TM tape head
Moore. Unpredictability and undecidability in dynamical systems. PRL. 1990 -4


http://www.seas.gwu.edu/~simhaweb/iisc/Moore.pdf
http://www.seas.gwu.edu/~simhaweb/iisc/Moore.pdf

Generalized shift

deleting/writing a bit

(x/2+1/2,2y—1) ify>1/2

...000111.0101000.../

test reads MSB of y

o {(x/2,2y) if y < 1/2

25



de'ritgli’“;{:;‘“g\ Generalized shift

RO 07 0. eyt d;) ife, <y<hy deleting/writing a bit

TM state TM head e (@220 b < 1%
\ / 0 4] T /2212, 2y = Tl RN
...000111.110110101000... testread MSBs of y:i.e.,  000111.0101000...
\ / TM state and read symbol N

test reads MSB of y

Moore. Unpredictability and undecidability

in dynamical systems. PRL. 1990
TM tape 4 4

25


http://www.seas.gwu.edu/~simhaweb/iisc/Moore.pdf
http://www.seas.gwu.edu/~simhaweb/iisc/Moore.pdf
http://www.seas.gwu.edu/~simhaweb/iisc/Moore.pdf
http://www.seas.gwu.edu/~simhaweb/iisc/Moore.pdf

deleting/writing

many bits \

flz,y) = (a;x + by, c;y + d;)

TM state TM head /

test read MSBs of y: i.e.,

...000111.110110101000...
TM state and read symbol

F

i@ < g

Moore. Unpredictability and undecidability
in dynamical systems. PRL. 1990

TM tape
F | S1 So S3 Sa S5 Se6
0 O,Sl,L O;SGyL O)SZyR 1)557R 1)34)L l,Sl,L Asma” universal

1 1,82,L O,Sg,L 1,83,L O,Sg,R 1,34,R 0,54,R

Neary, Woods. Small weakly universal Turing machines. FCT 2009

B A H KIAIZ|/O0|X|T

A r ([EIZ|O|I d P .. represented
I as a piecewise
<> T affine map on

VTR =1 [0,6] x [0,1]

Pic credit: Moore & Mertens. The Nature of Computation. OUP 2012.

o) = {(“”/ o

...000111.0101000...

Turing machine...

Generalized shift

deleting/writing a bit

if Gy
(x/2+1/2,2y—1) ify>1/2

oo

test reads MSB of y

“ Il

M 1‘1”‘\“‘ e 'ﬂ“ '
—

25
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de'ritglgy’“;{:;‘”g\ Generalized shift

jER—ox £ b,cy+d;) ife; <y<h; deleting/writing a bit

TM state TM head e (@220 b < 1%
\ / 0 8] T /2212, 2y = Tl RN
...000111.110110101000... testread MSBs of y:i.e.,  000111.0101000...
\ / TM state and read symbol N

Moore. Unpredictability and undecidability test reads MSB of y

in dynamical systems. PRL. 1990
TM tape 4 4

F| s S5 $3 S4 S5 S6
0 O,Sl,L O;SGyL OySZyR 1)857R 1)34)L l,Sl,L Asma” universal

1]|1,s,L O0,s3,L 1,s3,L 0,8¢,R 1,54, R 0,54, R . .
: ° ° . v ! Turing machine...
Neary, Woods. Small weakly universal Turing machines. FCT 2009

V”’ .

|‘J x>
8 |'\ M

B A H [K|A|Z|O|X|T
A ' [IEIZIO©|1| & P .. represented
T as a piecewise ® These generalized shift
e affine map on maps are universal
VRN =11 [0,6] x[0,1] e Prediction is impossible

Pic credit: Moore & Mertens. The Nature of Computation. OUP 2012. o
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Collatz function

e Recall the Collatz function:

f

77, if rt=0 mod 2

=" ¢
9(z) \3:1:'+1 ifx=1 mod 2

- For all x, is there some ¢ such that g/(x) = 17?

- That is, does g(g(g( ....2(x)...))) =17
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THE COULATZ CONJECTURE STATES THAT IF YQU
PICK A NUMBER, AND IF ITSEVEN DIVIDE 1T BY
TWO AND |F 1T5 00D MULTIPLY IT BY THREE AND
ADD ONE, AND YoU REPEAT THIS PROCEDURE LONG
ENOUGH, EVENTUALLY YOUR FRIENDS WILL SToP
CALUNG TO SEE IF YOU WANT TO HANG OUT.

http://xkecd.com/710/

e | ets look at some other Collatz-like functions


http://xkcd.com/710/
http://xkcd.com/710/

Generalized Collatz functions (2D)

.- L3 T2 L1 Lo Yo Y1 Y2 Y3 . - .
---10{0]O01(1]1]0(1]0]11{0{0O]O]---

W—/;f—/

x:i?azi y:iZiyi
i=0 i=0

The original Collatz function:
(
15,/ if rt=0 mod 2

= <
9(z) \3$—|—1 it z =1 oS’

DT



Generalized Collatz functions (2D)

.- L3 T2 L1 Lo Yo Y1 Y2 Y3 . - .

21,1y /2 Yy even
~lololol11111lol1lol1lololol--- gright(ﬂj,y){E2x+/1)(y1)/2) yOdd

N e e/ .000111.0101000...

o ©.@)
SR ZQiSUz' y = Z 27;% ...0001110.101000...
i=0 i=0 ...00011101.01000...

...000111010.1000...
...0001110101.000...

The original Collatz function:
(
15,/ if rt=0 mod 2

g(x):<\3x+1 it z =1 oS’

DT



Generalized Collatz functions (2D)

.- L3 L2 T1 Lo Yo Y1 Y2 Y3 - . -

ijy ) Yy even

N e e/ .000111.0101000...

o ©.@)
SR ZQ%@' y = Z 27;% ...0001110.101000...
i= 1=0

...00011101.01000...

...000111010.1000...
T™M statex TM head

¢ i ...0001110101.000...
...000111.110110101000... read LSBs of y: I.e., TM
/ state and read symbol
TM tape

deleting/writing to tape

a; l

: Ci : :
gm(T,y) = (g(ﬂj — i) + b, j(y —i)+d;) y=1i modq
A generalized 2D Collatz function that simulates some Turing machine

The original Collatz function:
(
15,/ if rt=0 mod 2

g(x):iS:c—l—l it z =1 oS’

DT



Generalized Collatz functions (2D)

.- L3 L2 T1 Lo Yo Y1 Y2 Y3 - . -

ijy ) Yy even

N e e/ .000111.0101000...

o ©.@)
SR ZT% y = Z 27;% ...0001110.101000...
i=0 i=0 ...00011101.01000...

...000111010.1000...

T™M statex TM head

v i ...0001110101.000...
..000111.110110101000... read LSBs of y: i.e., TM
/ state and read symbol
TM tape
deleting/writing to tape
a; , C; . .
gm(z,y) = (g(ﬂj — i) + by, g(y —i)+d;) y=i modgq

A generalized 2D Collatz function that simulates some Turing machine

The original Collatz function:
(2/2  ifz=0 mod 2
\3$—|—1 if =1  meds

e Generalized 2D Collatz
functions are universal gll@) = «

DT



Generalized Collatz functions (2D)

.- L3 L2 T1 Lo Yo Y1 Y2 Y3 - . -
1010(O|111(1]011|(0[1]0]0(0O]--- gright(xay){

f

(2z,y/2)

T™M statex TM head

¢ i ...0001110101.000...
...000111.110110101000... read LSBs of y: I.e., TM
/ state and read symbol
TM tape

deleting/writing to tape

a; l

: Ci : :
gm(T,y) = (g(x — i) + b, j(y —i)+d;) y=1i modq
A generalized 2D Collatz function that simulates some Turing machine

, The original Collatz function:
* Generalized 2D Collatz

functions are universal gll@) = «

2z +1,(y—1)/2)

N e e/ .000111.0101000...

o ©.@)
SR ZT% y = Z Qiyi ...0001110.101000...
i=0 i=0 ...00011101.01000...

...000111010.1000...

Yy even

y odd

(2/2  ifz=0 mod 2

Conway. Unpredictable iterations. 1972 3xr+1 if z =1 o

Koiran, Moore. Closed form analytic maps in one and two dimensions can simula}e Turing machines. 1996

DT



Generalized Collatz functions (1D)

Lets simulate a 2D function g(L, R) with a 1D function g(x)
Combine 2 variables into 1 using an exponential pairing function: (L, R) — obaht — o

We can easily increment L or R: 21 = 2L+13R7 or 3r = olghitl
This can be used for addition and subtraction

Use another variable for temporary storage, which lets us do multiplication: x* = O

QM(Qf):%(QZ—i)—FbZ‘ r=1 mod q
q

A generalized 1D Collatz function that simulates some Turing machine

The original Collatz function:
75,/ if rt=0 mod 2
\3m—|—1 ifxr=1 mod 2

28

g(z) = 4




Generalized Collatz functions (1D)

Lets simulate a 2D function g(L, R) with a 1D function g(x)
Combine 2 variables into 1 using an exponential pairing function: (L, R) — obaht — o

We can easily increment L or R: 21 = 2L+13R7 or 3r = olghitl
This can be used for addition and subtraction

Use another variable for temporary storage, which lets us do multiplication: x* = O

QM(Qf):%(QZ—i)—FbZ‘ r=1 mod q
q

A generalized 1D Collatz function that simulates some Turing machine

e Generalized 1D Collatz The original Collatz function:
functions are universal L /2 ifz=0 mod 2
1 ) e
(although slow) ’ Bz +1 if o= 1 nedie

28



Generalized Collatz functions (1D)

Lets simulate a 2D function g(L, R) with a 1D function g(x)
Combine 2 variables into 1 using an exponential pairing function: (L, R) — obaht — o

We can easily increment L or R: 21 = 2L+13R7 or 3r = olghitl
This can be used for addition and subtraction

Use another variable for temporary storage, which lets us do multiplication: x* — gl

QM(SU):%(:E—Z')eri r=1 mod q
q

A generalized 1D Collatz function that simulates some Turing machine

e Generalized 1D Collatz The original Collatz function:
functions are universal o %)% if z=0 mod 2
0 St s,
(although slow) d 3z+1 ifz=1 mod2

Conway. Unpredictable iterations. 1972

Koiran, Moore. Closed form analytic maps in one and two dimensions can simulate Turing machines. 1996 28
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Too many numbers?

30



Something else ...

read & next read

delete G e site \
Y
Plasmid
(loop of DNA) » » »




read &

delete
\

Something else ...

next read

insert site A
B
Plasmid
(loop of DNA) » » »

e This Is universal!

S



Something else ...

read &

next_ read
delete \ e S|te\
B
Pl id
(Ioopasfm[;NA) = — —
* 2-tag systems: * This is universal!

* Read on the left, append on the right
* Delete 2 symbols

e Example:
aaa
a — be abc
cbc
b— a caad
c — aaaq aaaaa

De Mol. Tag systems and Collatz-like functions. TCS 2007

S



Something else ...

read &

next_ read
delete \ e S|te\
PN
Plasmid
(Ioopac?fm[;NA) = —> —
* 2-tag systems: e This Is universal!

* Read on the left, append on the right
* Delete 2 symbols

* Example: Simulates the Collatz function!
e @) Jz/2 ifr=0 mod?2
g\r) — :
b—a Cbgaaa Bk D sl = 1L miocl 2
c — aaa aaaaa

De Mol. Tag systems and Collatz-like functions. TCS 2007

The original Collatz

/2 ifx =0 mod 2
g(fE)Z{/

3r+1 ifzr=1 mod 2 3]



Something else ...

read &

b next read
elete : ite
RN insert SN
\a
Pl id
(Ioopasfm[;NA) = — —
* 2-tag systems: * This is universal!

* Read on the left, append on the right
* Delete 2 symbols

* Example: Simulates the Collatz function!
e @) Jz/2 ifr=0 mod?2
g\r) — :
b— a Cbgaaa Bk D sl = 1L miocl 2
c — aaa aaaad

e 2-tag systems simulate Generalized 1D
De Mol. Tag systems and Collatz-like functions. TCS 2007 CO”atZ funCtionS

e 2-tag systems are universal

Cocke, Minsky. Universality of tag systems with P = 2. JACM 1964
The original Collatz

g(z) = {;;;/2 itz =0 mod 2 e 2-tag systems are not so slow!

Woods, Neary. On the time complexity of 2-tag systems and small

3c+1 itzxz=1 mod 2 universal Turing machines. FOCS 2006 3



Rule 110

TMs >2-tag systems >cyclic-tag systems > Rule 110

* Rule 110 simulates tag systems

Initial configuration

Time

Cook, Matthew. Universality in Elementary Cellular Automata. Complex systems (2004) 15(1):1-40 0



Rule 110

TMs >2-tag systems >cyclic-tag systems > Rule 110

* Rule 110 simulates tag systems

Initial configuration

Time

Cook, Matthew. Universality in Elementary Cellular Automata. Complex systems (2004) 15(1):1-40 0



* Rule 110 Is a pop star!

ONE DAY I STARTED EACH NEwW ROW WITH THE RIGHT I WAS ABLE TO
FOLLOWED FROM SET OF RULES AND ILD ,
'iA&lKNSG DWN ms OF THE LAS1- 'N A ENOUGH SPACE) ";&:)E-:’,:.:‘A-:’mﬁuﬂo
' SIMPLE PATERN. [ [, ... ) [EEESE TR
c ° q Jiertett L LTI et L
% o o» % |1° ACH NEW ROW OF
o ° STONES 1S THE NEXT
o 0 © © e °o [TERATION OF THE.
oo A° COMPUTRTION.

SURE, IT'S ROCKs
INSTEAD OF ELECTRIAITY,
BUT ITS THE SAME*
THING. JUST SUWER.

& TURING -COMPLETE

AFTER A WHILE, T

PROGRAMMED |T TO
BE A PHYSIES SIMO-

LATOR.

RUT I HAVE INFINITE
TIME AND SPACE.

EVERY PIECE OF
INFORMATION ABOUT

A PAR‘!’ICL%S \Z«ASSI'R WG
ENCODED

OF BITS WRITTEN
IN THE STONES.

. ‘—\
/' ocolei1010
oolejelo

WITH ENOUGH TI(ME AND
SPACE, T COULD FULLY

SMULATE TWO
PARTICLES INTERACTING,

SO I DECIDED TO SIMULATE A UNIVERSE-

THE EONS BLUR THE ROWS BLUR PAST TO AND IN THE ANOTHER INSTANT
PAST AS T WALK COMPUTE. A SINGLE STER. SIMULATION TICKS BY.
DO\JN A SlNGLE PO\J- ~' o R RO e R e g R
o° 0% | ' o :
o (®] e © "
&) ot
2 “| i °
o Q © o °
o 3 P

SO IF YOU SEE A MOTE OF DusT
VANISH FROM YOUR VISION IN A
LITTLE FLASH OR SOMETHING

@),

T™M SORRY. I MOST HAVE
MISPLACED A ROCK

SOMETIME N THE LAST

o FEW BILLIONS AND

° BILLIONS OF MILLENNIA. 3

xked, #505: A bunch of rocks




e How is all of this related to molecules?

3

3 3 o
S A s o
re e A

3
ot

Sumazin et al. Cell 147(2). 2011

Miles Kelly. Fotolibre

54



Universal molecules

* Molecular systems capable of universal computation:

- Chemical reactions networks
Soloveichik, Cook, Winfree, Bruck. Computation with Finite Stochastic Chemical Reaction Networks.

: Natural Computing 2008
- DNA strand displacement systems &
Soloveichik, Seelig, Winfree. DNA as a Universal Substrate for Chemical Kinetics. PNAS 2010

- DNA tile self-assembly systems
Winfree. On the Computational Power of DNA Annealing and Ligation. DNA2. 1996

- DNA polymer + restriction enzymes
Rothemund. A DNA and restriction enzyme implementation of Turing Machines. DNA2. 1996
- DNA polymer + hypothetical Enzymes

Bennett. Thermodynamics of computation - A review. IJTP 1982
- Membrane systems e
Paun. Computing with Membranes. JCSS. 2000

&5



Prediction

e We saw that with very simple devices we get a kind of “maximal complexity”

e These systems are universal: they can run any algorithm

e Any (molecular) system that embeds/simulates even these simple systems is
Impossible to predict in the long term. E.g. does the system ever reach a given
configuration? Produce the right answer? Halt?

e But these questions are about behavior in the limit

e \What about short term prediction? That is, time-
bounded prediction?

e Can systems that carry out computations be predicted
using explicit simulations that run significantly faster
than the systems themselves?

e What about short term prediction? That is, time-
bounded prediction?

e For example, for a system that runs in time t, can we
simulate it in time O(log t)? O(logt)*?

36



Computational complexity

The complexity of problems can be measured by the
amount of resources needed to solve them

W\ \
’ ,l"'-' .

P is the class of problems solved by Turing machines
that run in time polynomial of their input length

\ 4':;{: 4 3 R
0 Rt ‘H !

Oh so famous!

Problems outside of P are said to be intractable

o - o k
NP is the class of problems that are solvable in P = | Turing machine time n

polynomial time on nondeterministic Turing machines =
P is contained in NP P NC = U parallel time O(log n)"
B keN

(and polynomial processors)

N Not so famous! 37



Computational complexity

P is the class of problems solved by Turing machines
that run in time polynomial of their input length

NC (“Nick’s class”) is the class of problems that are
solvable in polylogarithmic time on massively parallel
computers (massively parallel = polynomial number of
Processors)

(o U Turing machine time n~

NC is contained in P. kEN

Inherently sequential problems in P, believed not to lie

in NC P - '
P-complete: T ‘?'!
seem inherently ——
sequential B - e N
NG — U parallel time O(logn)”
keN
NC problems: (and polynomial processors)

parallelizable
38



Rule 110

e What is going on here?

Cook, Matthew. Universality in Elementary Cellular Automata. Complex systems (2004) 15(1):1-40
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Rule 110

Neary, Woods. P-completeness of cellular

* What is going on here? automaton Rule 110. ICALP 2006

Cook, Matthew. Universality in Elementary Cellular Automata. Complex systems (2004) 15(1):1-40

l.e. not a
lot
of junk!
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Conclusion |

* Almost all questions about the long term dynamics of universal
models of computation are undecidable

* \We saw various types of simulation that lead to computational
universality

* There are ridiculously simple systems that are capable of
universal computation!

e Universality => Long term prediction is impossible

 Efficient universality => Short term prediction (i.e. faster-than-
explicit simulation) is also impossible

* \We can use simulation to determine "how much computation” a

system is doing i



Conclusion |l

* Any system that efficiently simulates the following
Is efficiently universal, therefore they can be
predicted no better than by explicit simulation
(assuming P =/= NC):

- Turing machines, cellular automata, Rule 110, 2-tag

systems, 2D generalzed Collatz functions, 2D
generalized shifts, ...

e Systems that carry out little or no computation
(walker example, exponential decay reaction), or
that are provably inefficient® at certain tasks, can
be predicted much faster than by explicit
simulation

A



Recommended reading

e Recommended Reading
- Moore, Mertens. “The Nature of Computation” Oxford University Press, 2012

“Indeed, if the physics of our universe could not support computation,
it's doubtful that it could support life”

- Greenlaw, Hoover, Ruzzo. “Limits to parallel computation: P-completeness
theory” Oxford University Press, 1995
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Henley, Cris Moore, Niall Murphy, Moya Chen. Members of Erik
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