
A crash course in the theory of molecular computing

Damien Woods

Caltech

Overview

• Prediction
• Prediction and computation
• Computational universality
• Efficiency: sequential vs parallel computation
• Prediction

2

Prediction

• Kinesin: a molecular walker

• Step size of 8nm

• How long to walk a given distance?

3

Drew Berry

http://en.wikipedia.org/wiki/File:Motility_of_kinesin_en.png

http://en.wikipedia.org/wiki/File:Motility_of_kinesin_en.png
http://en.wikipedia.org/wiki/File:Motility_of_kinesin_en.png

Prediction

• Kinesin: a molecular walker

• Step size of 8nm

• How long to walk a given distance?

3

Drew Berry

http://en.wikipedia.org/wiki/File:Motility_of_kinesin_en.png

• time = time_per_step x distance / step_size

http://en.wikipedia.org/wiki/File:Motility_of_kinesin_en.png
http://en.wikipedia.org/wiki/File:Motility_of_kinesin_en.png

Prediction

4

A
1�! B

A A

A

A B
B

• Exponential decay
• How many A’s do we expect

there to be at time t?

Prediction

4

A
1�! B

#At =
#At�1

2

A A

A

A B
B

• Exponential decay
• How many A’s do we expect

there to be at time t?

#At = #A0
1

2t

Or time t

N
um

be
r o

f A
’s

#A

t

Prediction

4

A
1�! B

#At =
#At�1

2

A A

A

A B
B

• Exponential decay
• How many A’s do we expect

there to be at time t?

Prediction

5

Or

A A

A

A B
B

• Catalytic conversion of A’s to B’s
• One C, and many A’s
• How many A’s do we expect there to

be at time t?

A+ C
1�! B + C

#At = #At�1 � 1

#At = #A0 � t

C

Prediction

• A pair of linear maps

6

For all x, is there some t such that xt =1?
xt =

(
xt�1/2 if x is even

3xt�1 + 1 if x is odd

Prediction

• A pair of linear maps

7

For all x, is there some t such that xt =1?
xt =

(
xt�1/2 if x ⌘ 0 mod 2

3xt�1 + 1 if x ⌘ 1 mod 2

gM(x) =

ai

q

(x� i) + bi x ⌘ i mod q ?

Prediction

• A pair of linear maps

7

For all x, is there some t such that xt =1?
xt =

(
xt�1/2 if x ⌘ 0 mod 2

3xt�1 + 1 if x ⌘ 1 mod 2

“Mathematics is not yet ready for such problems”
Paul Erdős

- For all x0, is there some t such that xt = 1?

- Maybe we’ll learn a lot by trying to solve it!
xkcd, #710

gM(x) =

ai

q

(x� i) + bi x ⌘ i mod q ?

• Even very simple-looking systems can carry out arbitrarily complicated
computations

• There are very simple-looking systems whose dynamics is so complicated
that we provably have no simple formula to predict them

• For almost all of these systems we can not even hope to simulate any faster than
full explicit (and slow!) simulation. The best we can do is just watch it evolve over
time

• Even with a quantum computer, molecular computer, or any kind of highly parallel
computer!

• The good news is that these systems are all computers

8

Predicting physical systems

)

Computation

• Computation is all about dynamics

• In 1936, Turing wanted to define a general model of
instruction-based dynamics

9

http://www.computerhistory.org/revolution/calculators/1/56/225

http://www.computerhistory.org/revolution/calculators/1/56/225
http://www.computerhistory.org/revolution/calculators/1/56/225

Turing machine

• A simple form of computer

10

Tape

1 1 1 1 1B 0BBBBB... ...B B0 0

Program

instruction 1
instruction 2

instruction k

...
Read/write tape head

s1State

Turing machine

• A simple form of computer

11

Tape

1 1 1 1 1B 0BBBBB... ...B B0 0

Program

S1, 1; S2, 0, R

...
Read/write tape head

s1State

S1, 1; S4, 0, L

S13, 1; S6, 0, R Instruction format:
state, read; next state, write, move

Turing machine

• A simple form of computer

12

Tape

0 1 1 1 1B 0BBBBB... ...B B0 0

Instruction format:
state, read; next state, write, move

Program

S1, 1; S2, 0, R

...

Read/write tape head

s2State

S1, 1; S4, 0, L

S13, 1; S6, 0, R

Turing machine

• An implementation of a Turing machine

13

Turing machine

• An implementation of a Turing machine

13

Turing machine

• An implementation of a Turing machine

13

Anders Nissen, Martin Have, Mikkel Vester, Sean Geggie.
Computer Science, Aarhus University 2009.

Universal computation

• A mathematical idea that changed the world

• Turing showed that there is a Turing machine U that can
simulate any other Turing machine

14

)

Universal Turing machine

15

U’s tape
(encodes the tape of M)

M’s program... ...B B

U’s program

instruction 1
instruction 2

instruction k

...

Instruction format:

s1U’s state

state, read; next state, write, move

M’s state M’s input B B BB##

• Almost all questions about the long term dynamics of Turing
machines are undecidable

• Universality uses the idea of simulation

• Lets use simulation to show that computation is ubiquitous

• There are ridiculously simple systems that are capable of
universal computation!

16

Cellular automata

• Grid of cells, in 1 or more dimensions

• Each cell has one of a finite number of states

• Synchronous updates of states based on current state and
that of neighbors

17

• Direct simulation of Turing machines is easy (if we have
enough states)

18

Cellular automata

Turing machine
time/space history (tableau) 1D CA time evolution

CA rules encode
TM instructions

1 1 1 =1... - 11
...

1 1 1 =1... - 1 ...
1

1 1 1 =1... - 11
...

1 1 1 =1... - 1 ...
1

0

1
2

3

Tiling
• Direct (tableau-style) simulations of Turing machines also show

up in Wang tiling, DNA self-assembly, and Boolean circuits

19

Pic credit: Moore & Mertens. The Nature of Computation. OUP 2012.

278 THE GRAND UNIFIED THEORY OF COMPUTATION

a b c d

s

a b ′ c d

s ′

a b ′ c ′ d

s ′′

a b , s c d

a b ′ c , s ′ d

a b ′ c , s ′ d

a b ′ c ′ d , s ′′

s ′ s ′

s ′′ s ′′

FIGURE 7.17: Simulating a Turing machine with Wang tiles. Plain tape symbols have gray on their sides,
and transmit their symbols from top to bottom. Tiles representing the head transmit its state to the left
or right, and also modify the tape symbol. The dashed lines show the head’s path.

left can tile the infinite plane, but the set on the right always produces a gap that cannot be filled. The
following problem asks which is which:

TILING

Input: A set of T Wang tiles

Question: Can we tile the infinite plane with tiles from T ?

Given a Turing machine, it’s easy to design a set of Wang tiles such that each row corresponds to a step
of the machine’s computation. As Figure 7.17 shows, the tiles correspond to tape symbols, with special
tiles marking the head’s location and state. Each color corresponds to a tape symbol a , a head state s , or a
pair (a , s). Matching these colors transmits a tape symbol from each tile to the one below it, and transmits
the head’s state to the left or right.

Now suppose that there are no tiles in our set colored with the Turing machine’s HALT state. In that case,
if the machine halts, there is no way to complete the tiling. If we specify the tiles on one row, starting the
machine in its initial state and giving it an input string, then we can fill in the tiles below that row, all the
way out to infinity, if and only if the machine never halts. In fact, since the Halting Problem is undecidable
even for blank tapes (see Exercise 7.20), it suffices to specify a single tile at the origin corresponding to
the machine’s head. This shows that the following variant of TILING is undecidable:

TILING COMPLETION

Input: A set T of Wang tiles, and specified tiles at a finite set of positions

Question: Can this tiling be completed so that it covers the infinite plane?

However, this construction doesn’t show that TILING is undecidable. After all, it’s easy to tile the plane
with the tiles in Figure 7.17—just fill the plane with tape symbols, with no Turing machine head around

Turing machine Wang tiles

TM
step

0

1

2 Pic credit: Scott M Summers. Universality in
algorithmic self-assembly. PhD thesis, ISU 2010

TM step

0

1

2

Self-assembled DNA tiles

Boolean circuits (one layer per TM step)
Pic credit: E. Gurari. An Introduction to the Theory of
Computation. Comp Sci Press. 1989

• Game of life

• Simulation of a Turing
machine

• So 2D, 2 state CA,
with a small
neighborhood, are
universal!

• What about in 1D?

20

Cellular automata
COMPUTATION EVERYWHERE 275

FIGURE 7.14: Constructing a Turing machine in the Game of Life. The head with its finite-state control
is on the lower left, and the stack stretches from upper left to lower right. When animated, it is a truly
impressive sight. We magnify one of its components, a glider gun, to give a sense of its scale.

Representation
of TM tape

Representation
of TM program

John Conway, 1970s

1. Any live cell with fewer than two live
neighbours dies.

2. Any live cell with two or three live
neighbours lives on to the next
generation.

3. Any live cell with more than three
live neighbours dies

4. Any dead cell with exactly three live
neighbours becomes a live cell

Rule 110
• A 2-state 1D cellular automaton

21

0 =
1 =

Initial configuration
time

0

Rule 110
• A 2-state 1D cellular automaton

21

0 =
1 =

Initial configuration
time

0
1

Rule 110
• A 2-state 1D cellular automaton

21

0 =
1 =

Initial configuration
time

0
1
2

Rule 110
• A 2-state 1D cellular automaton

21

0 =
1 =

Initial configuration
time

0
1
2
3
4
5
6
7

...

• What is going on here?

22Cook, Matthew. Universality in Elementary Cellular Automata. Complex systems (2004) 15(1):1–40

Rule 110

Initial configuration

Time

• What is going on here?

22Cook, Matthew. Universality in Elementary Cellular Automata. Complex systems (2004) 15(1):1–40

Rule 110

Computation!

Initial configuration

Time

Universality and simulation:
by the numbers

23

Baker’s map

• A simple example of a chaotic dynamical system on the unit square

24

f(x, y) =

(
(x/2, 2y) if y < 1/2

(x/2 + 1/2, 2y � 1) if y � 1/2
f

Pic: Beverley Henley

Baker’s map

• A simple example of a chaotic dynamical system on the unit square

24

f(x, y) =

(
(x/2, 2y) if y < 1/2

(x/2 + 1/2, 2y � 1) if y � 1/2
f

Pic: Beverley Henley

Baker’s map

• A simple example of a chaotic dynamical system on the unit square

24

f(x, y) =

(
(x/2, 2y) if y < 1/2

(x/2 + 1/2, 2y � 1) if y � 1/2
f

Pic: Beverley Henley

y = 1/4 + 1/16
x = 1/2 + 1/4 + 1/8• Example values x and y:

Baker’s map

• A simple example of a chaotic dynamical system on the unit square

24

f(x, y) =

(
(x/2, 2y) if y < 1/2

(x/2 + 1/2, 2y � 1) if y � 1/2
f

Pic: Beverley Henley

y = 1/4 + 1/16
x = 1/2 + 1/4 + 1/8• Example values x and y:
x = 0.111 y = 0.0101• Now write x and y in binary:

Baker’s map

• A simple example of a chaotic dynamical system on the unit square

24

f(x, y) =

(
(x/2, 2y) if y < 1/2

(x/2 + 1/2, 2y � 1) if y � 1/2
f

Pic: Beverley Henley

y = 1/4 + 1/16
x = 1/2 + 1/4 + 1/8• Example values x and y:

x = 111.0 y = 0.0101• Mirror x:
x = 0.111 y = 0.0101• Now write x and y in binary:

Baker’s map

• A simple example of a chaotic dynamical system on the unit square

24

f(x, y) =

(
(x/2, 2y) if y < 1/2

(x/2 + 1/2, 2y � 1) if y � 1/2
f

Pic: Beverley Henley

y = 1/4 + 1/16
x = 1/2 + 1/4 + 1/8• Example values x and y:

...000111.0101000...• Write as a bi-infinite sequence:
x = 111.0 y = 0.0101• Mirror x:
x = 0.111 y = 0.0101• Now write x and y in binary:

Baker’s map

• A simple example of a chaotic dynamical system on the unit square

24

f(x, y) =

(
(x/2, 2y) if y < 1/2

(x/2 + 1/2, 2y � 1) if y � 1/2
f

Pic: Beverley Henley

y = 1/4 + 1/16
x = 1/2 + 1/4 + 1/8• Example values x and y:

...000111.0101000...• Write as a bi-infinite sequence:
x = 111.0 y = 0.0101• Mirror x:
x = 0.111 y = 0.0101• Now write x and y in binary:

test reads MSB of y

...0001110.101000...• Iterate f :

Baker’s map

• A simple example of a chaotic dynamical system on the unit square

24

f(x, y) =

(
(x/2, 2y) if y < 1/2

(x/2 + 1/2, 2y � 1) if y � 1/2
f

Pic: Beverley Henley

y = 1/4 + 1/16
x = 1/2 + 1/4 + 1/8• Example values x and y:

Moore. Unpredictability and undecidability in dynamical systems. PRL. 1990

...00011101.01000...

...000111010.1000...

...0001110101.000...

• Test on y reads most significant bit
• Moore saw that this map simulates right shift of a TM tape head

...000111.0101000...• Write as a bi-infinite sequence:
x = 111.0 y = 0.0101• Mirror x:
x = 0.111 y = 0.0101• Now write x and y in binary:

test reads MSB of y

...0001110.101000...• Iterate f :

http://www.seas.gwu.edu/~simhaweb/iisc/Moore.pdf
http://www.seas.gwu.edu/~simhaweb/iisc/Moore.pdf

Generalized shift

25

f

f(x, y) =

(
(x/2, 2y) if y < 1/2

(x/2 + 1/2, 2y � 1) if y � 1/2

...000111.0101000...

test reads MSB of y

deleting/writing a bit

Generalized shift

25

...000111.110110101000...

TM state

TM tape

TM head

Moore. Unpredictability and undecidability
in dynamical systems. PRL. 1990

f(x, y) = (aix+ bi, ciy + di) if ei  y < hi

test read MSBs of y: i.e.,
TM state and read symbol

deleting/writing
many bits

f

f(x, y) =

(
(x/2, 2y) if y < 1/2

(x/2 + 1/2, 2y � 1) if y � 1/2

...000111.0101000...

test reads MSB of y

deleting/writing a bit

http://www.seas.gwu.edu/~simhaweb/iisc/Moore.pdf
http://www.seas.gwu.edu/~simhaweb/iisc/Moore.pdf
http://www.seas.gwu.edu/~simhaweb/iisc/Moore.pdf
http://www.seas.gwu.edu/~simhaweb/iisc/Moore.pdf

Generalized shift

25

COMPUTATION EVERYWHERE 283

A
T

Γ
∆

ZE
H

Θ I
K Λ

Φ
Ξ O

P
ΣB

BA Γ∆
E

Z H Θ

I

K

ΛΦΞ

O

P
Σ

T

F s1 s2 s3 s4 s5 s6

0 0, s1, L 0, s6, L 0, s2, R 1, s5, R 1, s4, L 1, s1, L
1 1, s2, L 0, s3, L 1, s3, L 0, s6, R 1, s4, R 0, s4, R

FIGURE 7.21: Above, an iterated map f on the rectangle [0, 6]× [0, 1] equivalent to a universal Turing ma-
chine with 6 states and 2 symbols. Each large square corresponds to one of the machine’s states, and the
current tape symbol is the most significant bit of y . Stretching vertically or squashing horizontally corre-
sponds to moving the machine’s head left or right on the tape. Below, the machine’s transition function.
Each triplet gives the new symbol, the new state, and whether the head moves left or right.

To complete the simulation, let’s say that the tape symbol at the machine’s current location is y1, which
is 0 or 1 if we are in the lower or upper half of the square respectively. At each step, we can change y1 by
shifting up or down by 1/2. We then move the head left or right on the tape by stretching vertically or
squashing horizontally.

Finally, we define our function on a set of unit squares, one for each of the machine’s internal states,
and update the state by mapping pieces of one square to another. If the machine has s states, and we put
these squares next to each other, we get a piecewise-continuous function f from the rectangle [0, s]×[0, 1]
to itself. This function divides this rectangle into a finite number of pieces, stretches or squashes each one,
and maps it back somewhere inside the rectangle.

In Figure 7.21, we carry out this construction for a universal Turing machine with 6 states and 2 tape
symbols. This machine simulates cellular automaton rule 110, so the question of whether a particular
finite string of bits will ever appear on its tape, at its head’s current location, is undecidable. In our map,
this corresponds to x and y lying in a pair of finite intervals, where their binary expansions start out with
particular finite strings. Thus, given an initial point (x , y), the question of whether it will ever land in a
particular rectangle is undecidable.

As we discussed at the end of Section 7.6.4, the initial tape of this Turing machine is filled with periodic
patterns to the left and right of its input. Such a tape corresponds to an initial point (x , y) with rational
coordinates, since a real number is rational if and only if its binary expansion becomes periodic after a

COMPUTATION EVERYWHERE 283

A
T

Γ
∆

ZE
H

Θ I
K Λ

Φ
Ξ O

P
ΣB

BA Γ∆
E

Z H Θ

I

K

ΛΦΞ

O

P
Σ

T

F s1 s2 s3 s4 s5 s6

0 0, s1, L 0, s6, L 0, s2, R 1, s5, R 1, s4, L 1, s1, L
1 1, s2, L 0, s3, L 1, s3, L 0, s6, R 1, s4, R 0, s4, R

FIGURE 7.21: Above, an iterated map f on the rectangle [0, 6]× [0, 1] equivalent to a universal Turing ma-
chine with 6 states and 2 symbols. Each large square corresponds to one of the machine’s states, and the
current tape symbol is the most significant bit of y . Stretching vertically or squashing horizontally corre-
sponds to moving the machine’s head left or right on the tape. Below, the machine’s transition function.
Each triplet gives the new symbol, the new state, and whether the head moves left or right.

To complete the simulation, let’s say that the tape symbol at the machine’s current location is y1, which
is 0 or 1 if we are in the lower or upper half of the square respectively. At each step, we can change y1 by
shifting up or down by 1/2. We then move the head left or right on the tape by stretching vertically or
squashing horizontally.

Finally, we define our function on a set of unit squares, one for each of the machine’s internal states,
and update the state by mapping pieces of one square to another. If the machine has s states, and we put
these squares next to each other, we get a piecewise-continuous function f from the rectangle [0, s]×[0, 1]
to itself. This function divides this rectangle into a finite number of pieces, stretches or squashes each one,
and maps it back somewhere inside the rectangle.

In Figure 7.21, we carry out this construction for a universal Turing machine with 6 states and 2 tape
symbols. This machine simulates cellular automaton rule 110, so the question of whether a particular
finite string of bits will ever appear on its tape, at its head’s current location, is undecidable. In our map,
this corresponds to x and y lying in a pair of finite intervals, where their binary expansions start out with
particular finite strings. Thus, given an initial point (x , y), the question of whether it will ever land in a
particular rectangle is undecidable.

As we discussed at the end of Section 7.6.4, the initial tape of this Turing machine is filled with periodic
patterns to the left and right of its input. Such a tape corresponds to an initial point (x , y) with rational
coordinates, since a real number is rational if and only if its binary expansion becomes periodic after a

Pic credit: Moore & Mertens. The Nature of Computation. OUP 2012.

Neary, Woods. Small weakly universal Turing machines. FCT 2009

f

A small universal
Turing machine...

... represented
as a piecewise
affine map on
[0,6] x [0,1]

...000111.110110101000...

TM state

TM tape

TM head

Moore. Unpredictability and undecidability
in dynamical systems. PRL. 1990

f(x, y) = (aix+ bi, ciy + di) if ei  y < hi

test read MSBs of y: i.e.,
TM state and read symbol

deleting/writing
many bits

f

f(x, y) =

(
(x/2, 2y) if y < 1/2

(x/2 + 1/2, 2y � 1) if y � 1/2

...000111.0101000...

test reads MSB of y

deleting/writing a bit

http://www.seas.gwu.edu/~simhaweb/iisc/Moore.pdf
http://www.seas.gwu.edu/~simhaweb/iisc/Moore.pdf
http://www.seas.gwu.edu/~simhaweb/iisc/Moore.pdf
http://www.seas.gwu.edu/~simhaweb/iisc/Moore.pdf

Generalized shift

25

COMPUTATION EVERYWHERE 283

A
T

Γ
∆

ZE
H

Θ I
K Λ

Φ
Ξ O

P
ΣB

BA Γ∆
E

Z H Θ

I

K

ΛΦΞ

O

P
Σ

T

F s1 s2 s3 s4 s5 s6

0 0, s1, L 0, s6, L 0, s2, R 1, s5, R 1, s4, L 1, s1, L
1 1, s2, L 0, s3, L 1, s3, L 0, s6, R 1, s4, R 0, s4, R

FIGURE 7.21: Above, an iterated map f on the rectangle [0, 6]× [0, 1] equivalent to a universal Turing ma-
chine with 6 states and 2 symbols. Each large square corresponds to one of the machine’s states, and the
current tape symbol is the most significant bit of y . Stretching vertically or squashing horizontally corre-
sponds to moving the machine’s head left or right on the tape. Below, the machine’s transition function.
Each triplet gives the new symbol, the new state, and whether the head moves left or right.

To complete the simulation, let’s say that the tape symbol at the machine’s current location is y1, which
is 0 or 1 if we are in the lower or upper half of the square respectively. At each step, we can change y1 by
shifting up or down by 1/2. We then move the head left or right on the tape by stretching vertically or
squashing horizontally.

Finally, we define our function on a set of unit squares, one for each of the machine’s internal states,
and update the state by mapping pieces of one square to another. If the machine has s states, and we put
these squares next to each other, we get a piecewise-continuous function f from the rectangle [0, s]×[0, 1]
to itself. This function divides this rectangle into a finite number of pieces, stretches or squashes each one,
and maps it back somewhere inside the rectangle.

In Figure 7.21, we carry out this construction for a universal Turing machine with 6 states and 2 tape
symbols. This machine simulates cellular automaton rule 110, so the question of whether a particular
finite string of bits will ever appear on its tape, at its head’s current location, is undecidable. In our map,
this corresponds to x and y lying in a pair of finite intervals, where their binary expansions start out with
particular finite strings. Thus, given an initial point (x , y), the question of whether it will ever land in a
particular rectangle is undecidable.

As we discussed at the end of Section 7.6.4, the initial tape of this Turing machine is filled with periodic
patterns to the left and right of its input. Such a tape corresponds to an initial point (x , y) with rational
coordinates, since a real number is rational if and only if its binary expansion becomes periodic after a

COMPUTATION EVERYWHERE 283

A
T

Γ
∆

ZE
H

Θ I
K Λ

Φ
Ξ O

P
ΣB

BA Γ∆
E

Z H Θ

I

K

ΛΦΞ

O

P
Σ

T

F s1 s2 s3 s4 s5 s6

0 0, s1, L 0, s6, L 0, s2, R 1, s5, R 1, s4, L 1, s1, L
1 1, s2, L 0, s3, L 1, s3, L 0, s6, R 1, s4, R 0, s4, R

FIGURE 7.21: Above, an iterated map f on the rectangle [0, 6]× [0, 1] equivalent to a universal Turing ma-
chine with 6 states and 2 symbols. Each large square corresponds to one of the machine’s states, and the
current tape symbol is the most significant bit of y . Stretching vertically or squashing horizontally corre-
sponds to moving the machine’s head left or right on the tape. Below, the machine’s transition function.
Each triplet gives the new symbol, the new state, and whether the head moves left or right.

To complete the simulation, let’s say that the tape symbol at the machine’s current location is y1, which
is 0 or 1 if we are in the lower or upper half of the square respectively. At each step, we can change y1 by
shifting up or down by 1/2. We then move the head left or right on the tape by stretching vertically or
squashing horizontally.

Finally, we define our function on a set of unit squares, one for each of the machine’s internal states,
and update the state by mapping pieces of one square to another. If the machine has s states, and we put
these squares next to each other, we get a piecewise-continuous function f from the rectangle [0, s]×[0, 1]
to itself. This function divides this rectangle into a finite number of pieces, stretches or squashes each one,
and maps it back somewhere inside the rectangle.

In Figure 7.21, we carry out this construction for a universal Turing machine with 6 states and 2 tape
symbols. This machine simulates cellular automaton rule 110, so the question of whether a particular
finite string of bits will ever appear on its tape, at its head’s current location, is undecidable. In our map,
this corresponds to x and y lying in a pair of finite intervals, where their binary expansions start out with
particular finite strings. Thus, given an initial point (x , y), the question of whether it will ever land in a
particular rectangle is undecidable.

As we discussed at the end of Section 7.6.4, the initial tape of this Turing machine is filled with periodic
patterns to the left and right of its input. Such a tape corresponds to an initial point (x , y) with rational
coordinates, since a real number is rational if and only if its binary expansion becomes periodic after a

Pic credit: Moore & Mertens. The Nature of Computation. OUP 2012.

Neary, Woods. Small weakly universal Turing machines. FCT 2009

f

A small universal
Turing machine...

... represented
as a piecewise
affine map on
[0,6] x [0,1]

...000111.110110101000...

TM state

TM tape

TM head

Moore. Unpredictability and undecidability
in dynamical systems. PRL. 1990

f(x, y) = (aix+ bi, ciy + di) if ei  y < hi

test read MSBs of y: i.e.,
TM state and read symbol

deleting/writing
many bits

f

f(x, y) =

(
(x/2, 2y) if y < 1/2

(x/2 + 1/2, 2y � 1) if y � 1/2

...000111.0101000...

test reads MSB of y

deleting/writing a bit

• These generalized shift
maps are universal

• Prediction is impossible

http://www.seas.gwu.edu/~simhaweb/iisc/Moore.pdf
http://www.seas.gwu.edu/~simhaweb/iisc/Moore.pdf
http://www.seas.gwu.edu/~simhaweb/iisc/Moore.pdf
http://www.seas.gwu.edu/~simhaweb/iisc/Moore.pdf

Collatz function

• Recall the Collatz function:

• Lets look at some other Collatz-like functions
26

g(x) =

(
x/2 if x ⌘ 0 mod 2

3x+ 1 if x ⌘ 1 mod 2

- For all x, is there some t such that gt(x) = 1?

- That is, does g(g(g(....g(x)...))) = 1?

http://xkcd.com/710/

http://xkcd.com/710/
http://xkcd.com/710/

Generalized Collatz functions (2D)

27

1 1 0 1 00 100... ...0 00 1

x =
1X

i=0

2ixi y =
1X

i=0

2iyi

. . . x3 x2 x1 x0 y0 y1 y2 y3 . . .{ {
g(x) =

(
x/2 if x ⌘ 0 mod 2

3x+ 1 if x ⌘ 1 mod 2

The original Collatz function:

Generalized Collatz functions (2D)

27

1 1 0 1 00 100... ...0 00 1

x =
1X

i=0

2ixi y =
1X

i=0

2iyi

. . . x3 x2 x1 x0 y0 y1 y2 y3 . . .{ { ...000111.0101000...
...0001110.101000...

...00011101.01000...

...000111010.1000...

...0001110101.000...

gright(x, y) =

(
(2x, y/2) y even

(2x+ 1, (y � 1)/2) y odd

g(x) =

(
x/2 if x ⌘ 0 mod 2

3x+ 1 if x ⌘ 1 mod 2

The original Collatz function:

Generalized Collatz functions (2D)

27

1 1 0 1 00 100... ...0 00 1

x =
1X

i=0

2ixi y =
1X

i=0

2iyi

. . . x3 x2 x1 x0 y0 y1 y2 y3 . . .{ { ...000111.0101000...
...0001110.101000...

...00011101.01000...

...000111010.1000...

...0001110101.000...

gright(x, y) =

(
(2x, y/2) y even

(2x+ 1, (y � 1)/2) y odd

g(x) =

(
x/2 if x ⌘ 0 mod 2

3x+ 1 if x ⌘ 1 mod 2

The original Collatz function:

gM(x, y) = (

ai

q

(x� i) + bi,
ci

q

(y � i) + di) y ⌘ i mod q

A generalized 2D Collatz function that simulates some Turing machine

deleting/writing to tape

read LSBs of y: i.e., TM
state and read symbol

...000111.110110101000...

TM state

TM tape

TM head

Generalized Collatz functions (2D)

• Generalized 2D Collatz
functions are universal

27

1 1 0 1 00 100... ...0 00 1

x =
1X

i=0

2ixi y =
1X

i=0

2iyi

. . . x3 x2 x1 x0 y0 y1 y2 y3 . . .{ { ...000111.0101000...
...0001110.101000...

...00011101.01000...

...000111010.1000...

...0001110101.000...

gright(x, y) =

(
(2x, y/2) y even

(2x+ 1, (y � 1)/2) y odd

g(x) =

(
x/2 if x ⌘ 0 mod 2

3x+ 1 if x ⌘ 1 mod 2

The original Collatz function:

gM(x, y) = (

ai

q

(x� i) + bi,
ci

q

(y � i) + di) y ⌘ i mod q

A generalized 2D Collatz function that simulates some Turing machine

deleting/writing to tape

read LSBs of y: i.e., TM
state and read symbol

...000111.110110101000...

TM state

TM tape

TM head

Generalized Collatz functions (2D)

• Generalized 2D Collatz
functions are universal

27

1 1 0 1 00 100... ...0 00 1

x =
1X

i=0

2ixi y =
1X

i=0

2iyi

. . . x3 x2 x1 x0 y0 y1 y2 y3 . . .{ { ...000111.0101000...
...0001110.101000...

...00011101.01000...

...000111010.1000...

...0001110101.000...

gright(x, y) =

(
(2x, y/2) y even

(2x+ 1, (y � 1)/2) y odd

g(x) =

(
x/2 if x ⌘ 0 mod 2

3x+ 1 if x ⌘ 1 mod 2

The original Collatz function:

gM(x, y) = (

ai

q

(x� i) + bi,
ci

q

(y � i) + di) y ⌘ i mod q

A generalized 2D Collatz function that simulates some Turing machine

deleting/writing to tape

read LSBs of y: i.e., TM
state and read symbol

...000111.110110101000...

TM state

TM tape

TM head

Conway. Unpredictable iterations. 1972
Koiran, Moore. Closed form analytic maps in one and two dimensions can simulate Turing machines. 1996

28

Generalized Collatz functions (1D)

A generalized 1D Collatz function that simulates some Turing machine

gM(x) =

ai

q

(x� i) + bi x ⌘ i mod q

g(x) =

(
x/2 if x ⌘ 0 mod 2

3x+ 1 if x ⌘ 1 mod 2

The original Collatz function:

(L,R) ! 2L3R = x

Combine 2 variables into 1 using an exponential pairing function:

We can easily increment L or R: 2x = 2

L+1
3

R
, or 3x = 2

L
3

R+1

Use another variable for temporary storage, which lets us do multiplication:

This can be used for addition and subtraction

x = 2L3R5T

Lets simulate a 2D function with a 1D functiong(L,R) g(x)

28

Generalized Collatz functions (1D)

• Generalized 1D Collatz
functions are universal
(although slow)

A generalized 1D Collatz function that simulates some Turing machine

gM(x) =

ai

q

(x� i) + bi x ⌘ i mod q

g(x) =

(
x/2 if x ⌘ 0 mod 2

3x+ 1 if x ⌘ 1 mod 2

The original Collatz function:

(L,R) ! 2L3R = x

Combine 2 variables into 1 using an exponential pairing function:

We can easily increment L or R: 2x = 2

L+1
3

R
, or 3x = 2

L
3

R+1

Use another variable for temporary storage, which lets us do multiplication:

This can be used for addition and subtraction

x = 2L3R5T

Lets simulate a 2D function with a 1D functiong(L,R) g(x)

28

Generalized Collatz functions (1D)

• Generalized 1D Collatz
functions are universal
(although slow)

A generalized 1D Collatz function that simulates some Turing machine

gM(x) =

ai

q

(x� i) + bi x ⌘ i mod q

g(x) =

(
x/2 if x ⌘ 0 mod 2

3x+ 1 if x ⌘ 1 mod 2

The original Collatz function:

(L,R) ! 2L3R = x

Combine 2 variables into 1 using an exponential pairing function:

We can easily increment L or R: 2x = 2

L+1
3

R
, or 3x = 2

L
3

R+1

Use another variable for temporary storage, which lets us do multiplication:

This can be used for addition and subtraction

x = 2L3R5T

Lets simulate a 2D function with a 1D functiong(L,R) g(x)

Conway. Unpredictable iterations. 1972
Koiran, Moore. Closed form analytic maps in one and two dimensions can simulate Turing machines. 1996

29

Too many numbers?

30

Something else ...

Plasmid
(loop of DNA)

read &
delete

insert

next read
site

31

Something else ...

• This is universal!

Plasmid
(loop of DNA)

read &
delete

insert

next read
site

31

Something else ...

• This is universal!

Plasmid
(loop of DNA)

read &
delete

insert

next read
site

a ! bc
b ! a
c ! aaa

• 2-tag systems:
• Read on the left, append on the right
• Delete 2 symbols
• Example:

aaa
abc
cbc
caaa
aaaaa

De Mol. Tag systems and Collatz-like functions. TCS 2007

31

Something else ...

• This is universal!

Plasmid
(loop of DNA)

read &
delete

insert

next read
site

g(x) =

(
x/2 if x ⌘ 0 mod 2

3x+ 1 if x ⌘ 1 mod 2

The original Collatz

g(x) =

(
x/2 if x ⌘ 0 mod 2

(3x+ 1)/2 if x ⌘ 1 mod 2

Simulates the Collatz function!

a ! bc
b ! a
c ! aaa

• 2-tag systems:
• Read on the left, append on the right
• Delete 2 symbols
• Example:

aaa
abc
cbc
caaa
aaaaa

De Mol. Tag systems and Collatz-like functions. TCS 2007

31

Something else ...

• This is universal!

Plasmid
(loop of DNA)

read &
delete

insert

next read
site

g(x) =

(
x/2 if x ⌘ 0 mod 2

3x+ 1 if x ⌘ 1 mod 2

The original Collatz

g(x) =

(
x/2 if x ⌘ 0 mod 2

(3x+ 1)/2 if x ⌘ 1 mod 2

Simulates the Collatz function!

a ! bc
b ! a
c ! aaa

• 2-tag systems:
• Read on the left, append on the right
• Delete 2 symbols
• Example:

aaa
abc
cbc
caaa
aaaaa

De Mol. Tag systems and Collatz-like functions. TCS 2007
• 2-tag systems simulate Generalized 1D

Collatz functions
• 2-tag systems are universal

• 2-tag systems are not so slow!
Cocke, Minsky. Universality of tag systems with P = 2. JACM 1964

Woods, Neary. On the time complexity of 2-tag systems and small
universal Turing machines. FOCS 2006 31

32

Rule 110

• Rule 110 simulates tag systems

Cook, Matthew. Universality in Elementary Cellular Automata. Complex systems (2004) 15(1):1–40

Initial configuration

Time

TMs 2-tag systems Rule 110cyclic-tag systems

32

Rule 110

Computation!

• Rule 110 simulates tag systems

Cook, Matthew. Universality in Elementary Cellular Automata. Complex systems (2004) 15(1):1–40

Initial configuration

Time

TMs 2-tag systems Rule 110cyclic-tag systems

• Rule 110 is a pop star!

33xkcd, #505: A bunch of rocks

• How is all of this related to molecules?

34
 Sumazin et al. Cell 147(2). 2011

?

Miles Kelly. Fotolibre

Universal molecules

• Molecular systems capable of universal computation:
- Chemical reactions networks

- DNA strand displacement systems

- DNA tile self-assembly systems

- DNA polymer + restriction enzymes

- DNA polymer + hypothetical Enzymes

- Membrane systems

-

35

Rothemund. A DNA and restriction enzyme implementation of Turing Machines. DNA2. 1996

Winfree. On the Computational Power of DNA Annealing and Ligation. DNA2. 1996

Soloveichik, Seelig, Winfree. DNA as a Universal Substrate for Chemical Kinetics. PNAS 2010

Soloveichik, Cook, Winfree, Bruck. Computation with Finite Stochastic Chemical Reaction Networks.
Natural Computing 2008

Bennett. Thermodynamics of computation - A review. IJTP 1982

Păun. Computing with Membranes. JCSS. 2000

Prediction
• We saw that with very simple devices we get a kind of “maximal complexity”
• These systems are universal: they can run any algorithm
• Any (molecular) system that embeds/simulates even these simple systems is

impossible to predict in the long term. E.g. does the system ever reach a given
configuration? Produce the right answer? Halt?

• But these questions are about behavior in the limit

36

• What about short term prediction? That is, time-
bounded prediction?

• Can systems that carry out computations be predicted
using explicit simulations that run significantly faster
than the systems themselves?

O(log t) O(log t)k

• What about short term prediction? That is, time-
bounded prediction?

• For example, for a system that runs in time t, can we
simulate it in time ? ?

Computational complexity
• The complexity of problems can be measured by the

amount of resources needed to solve them

• P is the class of problems solved by Turing machines
that run in time polynomial of their input length

• Problems outside of P are said to be intractable

• NP is the class of problems that are solvable in
polynomial time on nondeterministic Turing machines

• P is contained in NP

37

P
P =

[

k2N
Turing machine time nk

NC =

[

k2N
parallel time O(log n)k

(and polynomial processors)

NC

Oh so famous!

Not so famous!

NP

P

NC

Computational complexity
• P is the class of problems solved by Turing machines

that run in time polynomial of their input length

• NC (“Nick’s class”) is the class of problems that are
solvable in polylogarithmic time on massively parallel
computers (massively parallel = polynomial number of
processors)

• NC is contained in P.

• Inherently sequential problems in P, believed not to lie
in NC

38

P
P =

[

k2N
Turing machine time nk

NC =

[

k2N
parallel time O(log n)k

(and polynomial processors)

NCP

NC

P-complete:
seem inherently

sequential

NC problems:
parallelizable

• What is going on here?

39

Rule 110

Cook, Matthew. Universality in Elementary Cellular Automata. Complex systems (2004) 15(1):1–40

• What is going on here?

39

Rule 110

Cook, Matthew. Universality in Elementary Cellular Automata. Complex systems (2004) 15(1):1–40

Efficient Computation!

I.e. not a
lot

of junk!

Neary, Woods. P-completeness of cellular
automaton Rule 110. ICALP 2006

40

• Almost all questions about the long term dynamics of universal
models of computation are undecidable

• We saw various types of simulation that lead to computational
universality

• There are ridiculously simple systems that are capable of
universal computation!

• Universality => Long term prediction is impossible

• Efficient universality => Short term prediction (i.e. faster-than-
explicit simulation) is also impossible

• We can use simulation to determine “how much computation” a
system is doing

Conclusion I

Conclusion II
• Any system that efficiently simulates the following

is efficiently universal, therefore they can be
predicted no better than by explicit simulation
(assuming P =/= NC):
- Turing machines, cellular automata, Rule 110, 2-tag

systems, 2D generalzed Collatz functions, 2D
generalized shifts, ...

• Systems that carry out little or no computation
(walker example, exponential decay reaction), or
that are provably inefficient* at certain tasks, can
be predicted much faster than by explicit
simulation

41

Recommended reading

• Recommended Reading
- Moore, Mertens. “The Nature of Computation” Oxford University Press, 2012

- Greenlaw, Hoover, Ruzzo. “Limits to parallel computation: P-completeness
theory” Oxford University Press, 1995

• Thanks: DNA18 organizers & steering committee, Beverley
Henley, Cris Moore, Niall Murphy, Moya Chen. Members of Erik
Winfree’s and Shuki Bruck’s research groups. NSF for funding.

42

f i n

“Indeed, if the physics of our universe could not support computation,
it’s doubtful that it could support life”

