A crash course in the theory of molecular computing

Damien Woods

Caltech

Overview

- Prediction
- Prediction and computation
- Computational universality
- Efficiency: sequential vs parallel computation
- Prediction

Prediction

Drew Berry

- Kinesin: a molecular walker
- Step size of 8 nm

Motility of kinesin

http://en.wikipedia.org/wiki/File:Motility_of_kinesin_en.png

- How long to walk a given distance?

Prediction

- Kinesin: a molecular walker
- Step size of 8 nm

http://en.wikipedia.org/wiki/File:Motility_of_kinesin_en.png
- How long to walk a given distance?
- time = time_per_step x distance / step_size

Prediction

$A \xrightarrow{1} B$

- Exponential decay
- How many A's do we expect there to be at time t?

Prediction

$$
A \xrightarrow{1} B
$$

- Exponential decay
- How many A's do we expect there to be at time t?

$$
\# A_{t}=\frac{\# A_{t-1}}{2}
$$

Prediction

$A \xrightarrow{1} B$

- Exponential decay
- How many A's do we expect there to be at time t?

$$
\# A_{t}=\frac{\# A_{t-1}}{2}
$$

Or

$\# A_{t}=\# A_{0} \frac{1}{2^{t}}$

Prediction

$$
A+C \xrightarrow{1} B+C
$$

- Catalytic conversion of A's to B's
- One C, and many A's
- How many A's do we expect there to be at time t?
$\# A_{t}=\# A_{t-1}-1$

Or
$\# A_{t}=\# A_{0}-t$

Prediction

- A pair of linear maps

$$
x_{t}= \begin{cases}x_{t-1} / 2 & \text { if } x \text { is even } \\ 3 x_{t-1}+1 & \text { if } x \text { is odd }\end{cases}
$$

Prediction

- A pair of linear maps

$$
x_{t}=\left\{\begin{array}{lll}
x_{t-1} / 2 & \text { if } x \equiv 0 & \bmod 2 \\
3 x_{t-1}+1 & \text { if } x \equiv 1 & \bmod 2
\end{array}\right.
$$

$$
g_{\mathrm{M}}(x)=\frac{a_{i}}{q}(x-i)+b_{i} \quad x \equiv i \quad \bmod q
$$

Prediction

- A pair of linear maps

$$
x_{t}=\left\{\begin{array}{lll}
x_{t-1} / 2 & \text { if } x \equiv 0 & \bmod 2 \\
3 x_{t-1}+1 & \text { if } x \equiv 1 & \bmod 2
\end{array}\right.
$$

- For all x_{0}, is there some t such that $x_{t}=1$?
"Mathematics is not yet ready for such problems"
Paul Erdős
- Maybe we'll learn a lot by trying to solve it!

THE COLLATZ CONJECTURE STATES THAT IF YOU PICK A NUMBER, AND IF ITSEVEN DIVIDE ITBY TWO AND IF IT'S OOD MULTIPLY IT BY THREE AND ADD ONE, AND YOU REPEAT THIS PROCEDURE LONG ENOUGH, EVENTUALUY YOUR FRIENDS WIL STOP CAUNNG TO SEE IF YOU WANT TO HANG OUT.
xkcd, \#710

$$
g_{\mathrm{M}}(x)=\frac{a_{i}}{q}(x-i)+b_{i} \quad x \equiv i \quad \bmod q
$$

Predicting physical systems

- Even very simple-looking systems can carry out arbitrarily complicated computations
- \Rightarrow There are very simple-looking systems whose dynamics is so complicated that we provably have no simple formula to predict them
- For almost all of these systems we can not even hope to simulate any faster than full explicit (and slow!) simulation. The best we can do is just watch it evolve over time
- Even with a quantum computer, molecular computer, or any kind of highly parallel computer!
- The good news is that these systems are all computers

Computation

- Computation is all about dynamics
- In 1936, Turing wanted to define a general model of instruction-based dynamics

http://www.computerhistory.org/revolution/calculators/1/56/225

Turing machine

- A simple form of computer

Read/write tape head

Program

Turing machine

- A simple form of computer

Read/write tape head

Instruction format:
state, read; next state, write, move

Turing machine

- A simple form of computer

Instruction format:
state, read; next state, write, move

Turing machine

- An implementation of a Turing machine

Turing machine

- An implementation of a Turing machine

Turing machine

- An implementation of a Turing machine

Anders Nissen, Martin Have, Mikkel Vester, Sean Geggie. Computer Science, Aarhus University 2009.

Universal computation

- A mathematical idea that changed the world
- Turing showed that there is a Turing machine U that can simulate any other Turing machine

Universal Turing machine

- Almost all questions about the long term dynamics of Turing machines are undecidable
- Universality uses the idea of simulation
- Lets use simulation to show that computation is ubiquitous
- There are ridiculously simple systems that are capable of universal computation!

Cellular automata

- Grid of cells, in 1 or more dimensions
- Each cell has one of a finite number of states
- Synchronous updates of states based on current state and that of neighbors

-

r

Cellular automata

- Direct simulation of Turing machines is easy (if we have enough states)

Tiling

- Direct (tableau-style) simulations of Turing machines also show up in Wang tiling, DNA self-assembly, and Boolean circuits

TM step
0

2

Turing machine

Pic credit: Moore \& Mertens. The Nature of Computation. OUP 2012.

Pic credit: Scott M Summers. Universality in algorithmic self-assembly. PhD thesis, ISU 2010

Boolean circuits (one layer per TM step)
Pic credit: E. Gurari. An Introduction to the Theory of

Cellular automata

- Game of life

1. Any live cell with fewer than two live neighbours dies.
2. Any live cell with two or three live neighbours lives on to the next generation.
3. Any live cell with more than three live neighbours dies
4. Any dead cell with exactly three live neighbours becomes a live cell

John Conway, 1970s
Representation of TM program

- Simulation of a Turing machine
- So 2D, 2 state CA, with a small neighborhood, are universal!
- What about in 1D?

Rule 110

- A 2-state 1D cellular automaton

$0=\square$
$1=\square$

Rule 110

- A 2-state 1D cellular automaton

$0=\square$
$1=\square$

Initial configuration

Rule 110

- A 2-state 1D cellular automaton

$0=\square$
$1=\square$

Rule 110

- A 2-state 1D cellular automaton

$0=\square$
$1=\square$

Initial configuration

\downarrow

Rule 110

- What is going on here?

Rule 110

-What is going on here?

Universality and simulation: by the numbers

Baker's map

$$
f(x, y)= \begin{cases}(x / 2,2 y) & \text { if } y<1 / 2 \\ (x / 2+1 / 2,2 y-1) & \text { if } y \geq 1 / 2\end{cases}
$$

Pic: Beverley Henley

- A simple example of a chaotic dynamical system on the unit square

Baker's map

$$
f(x, y)= \begin{cases}(x / 2,2 y) & \text { if } y<1 / 2 \\ (x / 2+1 / 2,2 y-1) & \text { if } y \geq 1 / 2\end{cases}
$$

- A simple example of a chaotic dynamical system on the unit square

Baker's map

$$
f(x, y)= \begin{cases}(x / 2,2 y) & \text { if } y<1 / 2 \\ (x / 2+1 / 2,2 y-1) & \text { if } y \geq 1 / 2\end{cases}
$$

Pic: Beverley Henley

- A simple example of a chaotic dynamical system on the unit square
- Example values x and $y: \quad x=1 / 2+1 / 4+1 / 8 \quad y=1 / 4+1 / 16$

Baker's map

$$
f(x, y)= \begin{cases}(x / 2,2 y) & \text { if } y<1 / 2 \\ (x / 2+1 / 2,2 y-1) & \text { if } y \geq 1 / 2\end{cases}
$$

Pic: Beverley Henley

- A simple example of a chaotic dynamical system on the unit square
- Example values x and $y: \quad x=1 / 2+1 / 4+1 / 8 \quad y=1 / 4+1 / 16$
- Now write x and y in binary: $x=0.111$
$y=0.0101$

Baker's map

$$
f(x, y)= \begin{cases}(x / 2,2 y) & \text { if } y<1 / 2 \\ (x / 2+1 / 2,2 y-1) & \text { if } y \geq 1 / 2\end{cases}
$$

Pic: Beverley Henley

- A simple example of a chaotic dynamical system on the unit square
- Example values x and $y: \quad x=1 / 2+1 / 4+1 / 8 \quad y=1 / 4+1 / 16$
- Now write x and y in binary: $x=0.111$
- Mirror x :
$x=111.0$
$y=0.0101$
$y=0.0101$

Baker's map

$$
f(x, y)= \begin{cases}(x / 2,2 y) & \text { if } y<1 / 2 \\ (x / 2+1 / 2,2 y-1) & \text { if } y \geq 1 / 2\end{cases}
$$

Pic: Beverley Henley

- A simple example of a chaotic dynamical system on the unit square
- Example values x and $y: \quad x=1 / 2+1 / 4+1 / 8 \quad y=1 / 4+1 / 16$
- Now write x and y in binary: $x=0.111$
$y=0.0101$
- Mirror x:
$x=111.0$
$y=0.0101$
- Write as a bi-infinite sequence: ...000111.0101000...

Baker's map

$$
f(x, y)= \begin{cases}(x / 2,2 y) & \text { if } y<1 / 2 \\ (x / 2+1 / 2,2 y-1) & \text { if } y \geq 1 / 2\end{cases}
$$

- A simple example of a chaotic dynannical system on the unit square
- Example values x and y :

$$
\left.\begin{array}{ll}
x=1 / 2+1 \\
x=0.111 \\
x=111.0
\end{array}\right\}\left(\begin{array}{l}
y=1 / 4+1 / 16 \\
y=0.0101 \\
\\
y=0.0101
\end{array}\right.
$$

- Now write x and y in binary: $x=0.111$
- Mirror x:
- Write as a bi-infinite sequence: ...000111.0101000...
- Iterate f :
...0001110.101000...

Baker's map

$$
f(x, y)= \begin{cases}(x / 2,2 y) & \text { if } y<1 / 2 \\ (x / 2+1 / 2,2 y-1) & \text { if } y \geq 1 / 2\end{cases}
$$

Pic: Beverley Henley

- A simple example of a chaotic dynannical system on the unit square
- Example values x and $y: \quad x=1 / 2+1 \nmid 4+1 / 8 \quad y=1 / 4+1 / 16$
- Now write x and y in binary: $x=0.111$
- Mirror x:
$x=111.0$
$y=0.0101$
- Write as a bi-infinite sequence: ...000111.0101000...
- Iterate f :

$$
\begin{aligned}
& . . .0001110 .101000 \ldots \\
& \ldots . .00011101 .01000 \ldots \\
& \ldots . .000111010 .1000 \ldots \\
& . . .0001110101 .000 \ldots
\end{aligned}
$$

- Test on y reads most significant bit
- Moore saw that this map simulates right shift of a TM tape head

Generalized shift

deleting/writing a bit

deleting/writing many bits
 Generalized shift

$f(x, y)=\left(a_{i} x+b_{i}, c_{i} y+d_{i}\right) \quad$ if $e_{i} \leq y<h_{i}$

TM state TM head

$.000111 .110110101000 \ldots$

TM tape

test read MSBs of y: i.e., TM state and read symbol

Moore. Unpredictability and undecidability in dynamical systems. PRL. 1990
deleting/writing a bit

$$
f(x, y)= \begin{cases}(x / 2,2 y) & \text { if } y<1 / 2 \\ (x / 2+1 / 2,2 y-1) & \text { if } y \geq 1 / 2\end{cases}
$$

.. $000111.0101000 . .$.

deleting/writing many bits

Generalized shift

$$
f(x, y)=\left(a_{i} x+b_{i}, c_{i} y+d_{i}\right) \quad \text { if } e_{i} \leq y<h_{i}
$$

deleting/writing a bit

$$
f(x, y)= \begin{cases}(x / 2,2 y) & \text { if } y<1 / 2 \\ (x / 2+1 / 2,2 y-1) & \text { if } y \geq 1 / 2\end{cases}
$$

...000111.0101000...
TM state and read symbol

Moore. Unpredictability and undecidability in dynamical systems. PRL. 1990

F	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}
0	$0, s_{1}, L$	$0, s_{6}, L$	$0, s_{2}, R$	$1, s_{5}, R$	$1, s_{4}, L$	$1, s_{1}, L$
1	$1, s_{2}, L$	$0, s_{3}, L$	$1, s_{3}, L$	$0, s_{6}, R$	$1, s_{4}, R$	$0, s_{4}, R$

A small universal Turing machine...

$$
\text { Neary, Woods. Small weakly universal Turing machines. FCT } 2009
$$

B	Δ	H		K	Λ	Ξ	O	Σ
A	T							
A	E	Z	Θ	I	Φ	P		

... represented as a piecewise
 affine map on $[0,6] \times[0,1]$

Pic credit: Moore \& Mertens. The Nature of Computation. OUP 2012.

Generalized shift

$$
f(x, y)=\left(a_{i} x+b_{i}, c_{i} y+d_{i}\right) \quad \text { if } e_{i} \leq y<h_{i}
$$

deleting/writing a bit

$$
f(x, y)= \begin{cases}(x / 2,2 y) & \text { if } y<1 / 2 \\ (x / 2+1 / 2,2 y-1) & \text { if } y \geq 1 / 2\end{cases}
$$

test read MSBs of y: i.e., TM state and read symbol

Moore. Unpredictability and undecidability in dynamical systems. PRL. 1990
TM tape

F	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}
0	$0, s_{1}, L$	$0, s_{6}, L$	$0, s_{2}, R$	$1, s_{5}, R$	$1, s_{4}, L$	$1, s_{1}, L$
1	$1, s_{2}, L$	$0, s_{3}, L$	$1, s_{3}, L$	$0, s_{6}, R$	$1, s_{4}, R$	$0, s_{4}, R$

A small universal Turing machine...
Neary, Woods. Small weakly universal Turing machines. FCT 2009

.. represented as a piecewise affine map on $[0,6] \times[0,1]$

- These generalized shift maps are universal
- Prediction is impossible

Pic credit: Moore \& Mertens. The Nature of Computation. OUP 2012.

Collatz function

- Recall the Collatz function:
$g(x)=\left\{\begin{array}{lll}x / 2 & \text { if } x \equiv 0 & \bmod 2 \\ 3 x+1 & \text { if } x \equiv 1 & \bmod 2\end{array}\right.$
- For all x, is there some t such that $g^{t}(x)=1$?
- That is, does $g(g(g(\ldots . . g(x) \ldots)))=1$?

THE COLLATZ CONJECTURE STATES THAT IF YOU PICK A NUMBER, AND IF ITSEVEN DIVIDE ITBY TWO AND IF IT'S OOD MULTIPLY IT BY THREE AND ADD ONE, AND YOU REPEAT THIS PROCEDURE LONG ENOUGH, EVENTUALLY YOUR FRIENDS WILC STOP CAUING TO SEE IF YOU WANT TO HANG OUT.
http://xkcd.com/710/

- Lets look at some other Collatz-like functions

Generalized Collatz functions (2D)

The original Collatz function:

$$
g(x)=\left\{\begin{array}{lll}
x / 2 & \text { if } x \equiv 0 & \bmod 2 \\
3 x+1 & \text { if } x \equiv 1 & \bmod 2
\end{array}\right.
$$

Generalized Collatz functions (2D)

The original Collatz function:

$$
g(x)=\left\{\begin{array}{lll}
x / 2 & \text { if } x \equiv 0 & \bmod 2 \\
3 x+1 & \text { if } x \equiv 1 & \bmod 2
\end{array}\right.
$$

Generalized Collatz functions (2D)

 ...000111.0101000...

$$
x=\sum_{i=0}^{\infty} 2^{i} x_{i} \quad y=\sum_{i=0}^{\infty} 2^{i} y_{i}
$$

TM head
read LSBs of y : i.e., TM state and read symbol
deleting/writing to tape
$g_{\mathrm{M}}(x, y)=\left(\frac{a_{i}}{q}(x-i)+b_{i}, \frac{c_{i}}{q}(y-i)+d_{i}\right) \quad y \equiv i \quad \bmod q$

A generalized 2D Collatz function that simulates some Turing machine
The original Collatz function:

$$
g(x)=\left\{\begin{array}{lll}
x / 2 & \text { if } x \equiv 0 & \bmod 2 \\
3 x+1 & \text { if } x \equiv 1 & \bmod 2
\end{array}\right.
$$

Generalized Collatz functions (2D)

A generalized 2D Collatz function that simulates some Turing machine

- Generalized 2D Collatz functions are universal

The original Collatz function:

$$
g(x)=\left\{\begin{array}{lll}
x / 2 & \text { if } x \equiv 0 & \bmod 2 \\
3 x+1 & \text { if } x \equiv 1 & \bmod 2
\end{array}\right.
$$

Generalized Collatz functions (2D)

A generalized 2D Collatz function that simulates some Turing machine

- Generalized 2D Collatz functions are universal
Conway. Unpredictable iterations. 1972
The original Collatz function:

$$
g(x)=\left\{\begin{array}{lll}
x / 2 & \text { if } x \equiv 0 & \bmod 2 \\
3 x+1 & \text { if } x \equiv 1 & \bmod 2
\end{array}\right.
$$

Koiran, Moore. Closed form analytic maps in one and two dimensions can simulate Turing machines. 1996

Generalized Collatz functions (1D)

Lets simulate a 2D function $g(L, R)$ with a 1D function $g(x)$
Combine 2 variables into 1 using an exponential pairing function: $(L, R) \rightarrow 2^{L} 3^{R}=x$
We can easily increment L or $R: \quad 2 x=2^{L+1} 3^{R}, \quad$ or $\quad 3 x=2^{L} 3^{R+1}$ This can be used for addition and subtraction

Use another variable for temporary storage, which lets us do multiplication: $x=2^{L} 3^{R} 5^{T}$

$$
g_{\mathrm{M}}(x)=\frac{a_{i}}{q}(x-i)+b_{i} \quad x \equiv i \quad \bmod q
$$

A generalized 1D Collatz function that simulates some Turing machine

$$
\begin{aligned}
& \text { The original Collatz function: } \\
& g(x)=\left\{\begin{array}{lll}
x / 2 & \text { if } x \equiv 0 & \bmod 2 \\
3 x+1 & \text { if } x \equiv 1 & \bmod 2
\end{array}\right.
\end{aligned}
$$

Generalized Collatz functions (1D)

Lets simulate a 2D function $g(L, R)$ with a 1D function $g(x)$
Combine 2 variables into 1 using an exponential pairing function: $(L, R) \rightarrow 2^{L} 3^{R}=x$
We can easily increment L or $R: \quad 2 x=2^{L+1} 3^{R}, \quad$ or $\quad 3 x=2^{L} 3^{R+1}$
This can be used for addition and subtraction
Use another variable for temporary storage, which lets us do multiplication: $x=2^{L} 3^{R} 5^{T}$

$$
g_{\mathrm{M}}(x)=\frac{a_{i}}{q}(x-i)+b_{i} \quad x \equiv i \quad \bmod q
$$

A generalized 1D Collatz function that simulates some Turing machine

- Generalized 1D Collatz functions are universal (although slow)

The original Collatz function:

$$
g(x)=\left\{\begin{array}{lll}
x / 2 & \text { if } x \equiv 0 & \bmod 2 \\
3 x+1 & \text { if } x \equiv 1 & \bmod 2
\end{array}\right.
$$

Generalized Collatz functions (1D)

Lets simulate a 2D function $g(L, R)$ with a 1D function $g(x)$
Combine 2 variables into 1 using an exponential pairing function: $(L, R) \rightarrow 2^{L} 3^{R}=x$
We can easily increment L or $R: \quad 2 x=2^{L+1} 3^{R}, \quad$ or $\quad 3 x=2^{L} 3^{R+1}$ This can be used for addition and subtraction

Use another variable for temporary storage, which lets us do multiplication: $x=2^{L} 3^{R} 5^{T}$

$$
g_{\mathrm{M}}(x)=\frac{a_{i}}{q}(x-i)+b_{i} \quad x \equiv i \quad \bmod q
$$

A generalized 1D Collatz function that simulates some Turing machine

- Generalized 1D Collatz functions are universal (although slow)

The original Collatz function:
$g(x)=\left\{\begin{array}{lll}x / 2 & \text { if } x \equiv 0 & \bmod 2 \\ 3 x+1 & \text { if } x \equiv 1 & \bmod 2\end{array}\right.$

Too many numbers?

Something else ...

Something else ...

- This is universal!

Something else ...

- 2-tag systems:
- This is universal!
- Read on the left, append on the right
- Delete 2 symbols
- Example:

\[

\]

Something else ...

- 2-tag systems:
- This is universal!
- Read on the left, append on the right
- Delete 2 symbols
- Example:

Simulates the Collatz function!

$$
g(x)=\left\{\begin{array}{lll}
x / 2 & \text { if } x \equiv 0 & \bmod 2 \\
(3 x+1) / 2 & \text { if } x \equiv 1 & \bmod 2
\end{array}\right.
$$

caaa
$a a a b c$
$\quad a b c$
$\quad c b c$
\quad caaa
\quad aaaaa

De Mol. Tag systems and Collatz-like functions. TCS 2007

The original Collatz

$$
g(x)=\left\{\begin{array}{lll}
x / 2 & \text { if } x \equiv 0 & \bmod 2 \\
3 x+1 & \text { if } x \equiv 1 & \bmod 2
\end{array}\right.
$$

Something else

- 2-tag systems:
- Read on the left, append on the right
- Delete 2 symbols
- Example:

	$a a a$
$a \rightarrow b c$	$a b c$
$b \rightarrow a$	$c b c$
$c \rightarrow a a a$	caaa
c	\quad aaaaa

De Mol. Tag systems and Collatz-like functions. TCS 2007

Simulates the Collatz function!

$$
g(x)=\left\{\begin{array}{lll}
x / 2 & \text { if } x \equiv 0 & \bmod 2 \\
(3 x+1) / 2 & \text { if } x \equiv 1 & \bmod 2
\end{array}\right.
$$

- 2-tag systems simulate Generalized 1D Collatz functions
- 2-tag systems are universal

Cocke, Minsky. Universality of tag systems with $P=2$. JACM 1964

- 2-tag systems are not so slow!

Woods, Neary. On the time complexity of 2-tag systems and small universal Turing machines. FOCS 2006

Rule 110

TMs \longrightarrow 2-tag systems \longrightarrow cyclic-tag systems \longrightarrow Rule 110

- Rule 110 simulates tag systems

Rule 110

TMs \longrightarrow 2-tag systems \longrightarrow cyclic-tag systems \longrightarrow Rule 110

- Rule 110 simulates tag systems

- Rule 110 is a pop star!

I WAS ABLE TO BUILD A COMPUTER. H: EACH NEW ROW OF STONES IS THE NEXT ITERATION OF THE COMPUTATION.

AFTER A WHILE, I PROGRAMMED ITTO BE A PHYSKS SIMOLATOR.

WITH ENOUGH TIME AND SPACE, I COULD FULLY SIMULATE TWO PARTICLES INTERACING.

ANOTHER INSTANT TICKS BY.

0

0

I'M SORRY. I MUST HAVE MISPLACED A ROCK

SOMETME IN THE LAST FEW BILLIONS AND BILLIONS OF MILLENNIA.

- How is all of this related to molecules?

Miles Kelly. Fotolibre

Universal molecules

- Molecular systems capable of universal computation:
- Chemical reactions networks

Soloveichik, Cook, Winfree, Bruck. Computation with Finite Stochastic Chemical Reaction Networks.

- DNA strand displacement systems

Natural Computing 2008
Soloveichik, Seelig, Winfree. DNA as a Universal Substrate for Chemical Kinetics. PNAS 2010

- DNA tile self-assembly systems

Winfree. On the Computational Power of DNA Annealing and Ligation. DNA2. 1996

- DNA polymer + restriction enzymes

Rothemund. A DNA and restriction enzyme implementation of Turing Machines. DNA2. 1996

- DNA polymer + hypothetical Enzymes

Bennett. Thermodynamics of computation - A review. IJTP 1982

- Membrane systems

Păun. Computing with Membranes. JCSS. 2000

-

Prediction

- We saw that with very simple devices we get a kind of "maximal complexity"
- These systems are universal: they can run any algorithm
- Any (molecular) system that embeds/simulates even these simple systems is impossible to predict in the long term. E.g. does the system ever reach a given configuration? Produce the right answer? Halt?
- But these questions are about behavior in the limit
- What about short term prediction? That is, timebounded prediction?
- Can systems that carry out computations be predicted using explicit simulations that run significantly faster than the systems themselves?
- What about short term prediction? That is, timebounded prediction?
- For example, for a system that runs in time t, can we
 simulate it in time $O(\log t)$? $O(\log t)^{k}$?

Computational complexity

- The complexity of problems can be measured by the amount of resources needed to solve them
- P is the class of problems solved by Turing machines that run in time polynomial of their input length
- Problems outside of P are said to be intractable
- NP is the class of problems that are solvable in polynomial time on nondeterministic Turing machines

$$
\mathrm{P}=\bigcup_{k \in \mathbb{N}} \text { Turing machine time } n^{k}
$$

$$
\mathrm{NC}=\bigcup_{k \in \mathbb{N}} \text { parallel time } O(\log n)^{k}
$$

(and polynomial processors)

Computational complexity

- P is the class of problems solved by Turing machines that run in time polynomial of their input length
- NC ("Nick's class") is the class of problems that are solvable in polylogarithmic time on massively parallel computers (massively parallel = polynomial number of processors)
- NC is contained in P.

$$
\mathrm{P}=\bigcup_{k \in \mathbb{N}} \text { Turing machine time } n^{k}
$$

- Inherently sequential problems in P, believed not to lie P-complete:
seem inherently
sequential

$$
\begin{array}{r}
\mathrm{NC}=\bigcup_{k \in \mathbb{N}} \text { parallel time } O(\log n)^{k} \\
\\
\\
(\text { and polynomial processors })
\end{array}
$$

Rule 110

- What is going on here?

Cook, Matthew. Universality in Elementary Cellular Automata. Complex systems (2004) 15(1):1-40

Rule 110

- What is going on here?

Neary, Woods. P-completeness of cellular automaton Rule 110. ICALP 2006

Cook, Matthew. Universality in Elementary Cellular Automata. Complex systems (2004) 15(1):1-40

Conclusion I

- Almost all questions about the long term dynamics of universal models of computation are undecidable
- We saw various types of simulation that lead to computational universality
- There are ridiculously simple systems that are capable of universal computation!
- Universality => Long term prediction is impossible
- Efficient universality => Short term prediction (i.e. faster-thanexplicit simulation) is also impossible
- We can use simulation to determine "how much computation" a system is doing

Conclusion II

- Any system that efficiently simulates the following is efficiently universal, therefore they can be predicted no better than by explicit simulation (assuming $\mathrm{P}=/=\mathrm{NC}$):
- Turing machines, cellular automata, Rule 110, 2-tag systems, 2D generalzed Collatz functions, 2D generalized shifts, ...
- Systems that carry out little or no computation (walker example, exponential decay reaction), or that are provably inefficient* at certain tasks, can be predicted much faster than by explicit simulation

Recommended reading

- Recommended Reading
- Moore, Mertens. "The Nature of Computation" Oxford University Press, 2012
"Indeed, if the physics of our universe could not support computation, it's doubtful that it could support life"
- Greenlaw, Hoover, Ruzzo. "Limits to parallel computation: P-completeness theory" Oxford University Press, 1995
- Thanks: DNA18 organizers \& steering committee, Beverley Henley, Cris Moore, Niall Murphy, Moya Chen. Members of Erik Winfree's and Shuki Bruck's research groups. NSF for funding.

