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Abstract

We prove computability and complexity results for an original model of computation called the
continuous spacemachine. Our model is inspired by the theory of Fourier optics.We prove our model
can simulate analog recurrent neural networks, thus establishing a lower bound on its computational
power. We also define a�(log2 n) unordered search algorithm with our model.
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1. Introduction

In this paper, we prove some computability and complexity results for an original contin-
uous space model of computation called the continuous space machine (CSM). The CSM
was developed for the analysis of (analog) Fourier optical computing architectures and al-
gorithms, specifically pattern recognition and matrix algebra processors[9,20,21,23]. The
functionality of the CSM is inspired by operations routinely performed by optical infor-
mation processing scientists and engineers. The CSM operates in discrete timesteps over
a finite number of two-dimensional (2D) complex-valued images of finite size and infinite
spatial resolution. A finite control is used to traverse, copy, and perform other optical oper-
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ations on the images. A useful analogy would be to describe the CSM as a random access
machine, without conditional branching and with registers that hold continuous complex-
valued images. It has recently been established[13,15] that the CSM can simulate Turing
machines and Type-2 machines[24]. However, the CSM’s exact computational power has
not yet been characterised.
In Section2,we define our opticalmodel of computation and give the data representations

that will be used subsequently. In Section3we demonstrate a lower bound on computational
power by proving that the CSM can simulate a type of dynamical system called analog
recurrent neural networks (ARNNs)[18,19]. This simulation result proves our analogmodel
can decide the membership problem for any language (of finite length words over a finite
alphabet) in finite time. InSection4, a�(log2 n)binary search algorithm that canbeapplied
to certain unordered search problems is presented.

2. CSM

Each instance of the CSM consists of a memory containing a program (an ordered list of
operations) and an input. Informally, the memory structure is in the form of a 2D grid of
rectangular elements, as shown in Fig.1(a). The grid has finite size and a scheme to address
each element uniquely. Each grid element holds a 2D image.There is a programstart address
staand two well-known addresses labelleda andb. The model has a number of operations
that effect optical image processing tasks. For example, two operations available to the
programmer,st andld (parameterised by two column addresses and two row addresses),
copy rectangular subsets of the grid out of and into imagea, respectively. Upon such load-
ing and storing the image contents are rescaled to the full extent of the target location
[as depicted in Fig.1(b)]. The other operations are image Fourier transform (FT), com-
plex conjugation, multiplication, addition, amplitude thresholding, and some control flow
operations.

2.1. CSM definition

Before defining the CSM we define its basic data unit and some of the functions it
implements.

Definition 1 (Complex-valued image). A complex-valued image (or simply, an image) is
a functionf : [0,1) × [0,1) → C, where[0,1) is the half-open real unit interval andC is
the set of complex numbers.

We letI be the set of all complex-valued images. We now define six functions that are
implemented in six of the CSM’s ten operations. Let eachf ∈ I be parameterised by
orthogonal dimensionsx andy; we indicate this by writingf asf (x, y). The function
h : I → I gives the one-dimensional (1D) Fourier transformation (in thex-direction) of
its 2D argument imagef . The functionh is defined as

h(f (x, y)) = h′(F (�, y)), (1)
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Fig. 1. Schematics of (a) the grid memory structure of the CSM, showing example locations for the ‘well-known’
addressesa, b, andsta, and (b) loading (and automatically rescaling) a subset of the grid into addressa. The
program ld 2 3 1 3 hlt instructs the machine to load into default addressa the portion of the grid addressed by
columns 2–3 and rows 1–3.

whereF(�, y) is the FT in thex-direction off (x, y), defined as[21,9]

F(�, y) =
∫ ∞

−∞
f (x, y) exp[i2��x]dx,

where i= √−1, andwhereh′(F (�, y)) = F(��, y). Here,h′ uses the constant� to linearly
rescale its argumentF so thatF is defined over[0,1) × [0,1). The functionv : I → I
gives the 1D Fourier transformation (in they-direction) of its 2D argument imagef , and
is defined as

v (f (x, y)) = v′ (F(x,�)
)
, (2)

whereF(x,�) is the FT in they-direction off (x, y), defined as[21,9]

F(x,�) =
∫ ∞

−∞
f (x, y) exp[i2��y]dy,

and wherev′(F (x,�)) = F(x, ��). The function∗ : I → I gives the complex conjugate
of its argument image,

∗ (f (x, y)) = f ∗(x, y) , (3)

wheref ∗ denotes the complex conjugate off . The complex conjugate of a scalarz = a+ib

is defined asz∗ = a − ib. The function· : I ×I → I gives the pointwise complex product
of its two argument images,

· (f (x, y), g(x, y)) = f (x, y)g(x, y). (4)

The function+ : I ×I → I gives the pointwise complex sum of its two argument images,

+ (f (x, y), g(x, y)) = f (x, y) + g(x, y). (5)

The function� : I × I × I → I performs amplitude thresholding on its first image
argument using its other two real valued (zl, zu : [0,1) × [0,1) → R) image arguments as
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lower and upper amplitude thresholds, respectively,

�(f (x, y), zl(x, y), zu(x, y)) =


zl(x, y) if |f (x, y)| < zl(x, y),

|f (x, y)| if zl(x, y)� |f (x, y)|�zu(x, y),

zu(x, y) if |f (x, y)| > zu(x, y).

(6)

The amplitude of an arbitraryz ∈ C is denoted|z| and is defined as|z| = √
z(z∗).

We letN be the set of nonnegative integers and for a given CSM we letN be a finite set
of images that encode that CSM’s addresses (see Section2.6for an example encoding).

Definition 2 (Continuous space machine). A continuous space machine is a quintuple
M = (D,L, I, P,O), where

D = (m, n), D ∈ N × N are the grid dimensions
L = ((s�, s�), (a�, a�), (b�, b�)) are the addressessta, a, andb
I = {(	1� , 	1�), . . . , (	k� , 	k�)} are the addresses of thek input images
P = {(
1, p1� , p1�), . . . , (
r , pr� , pr�)}, 
j ∈ ({h, v, ∗, ·, +,�, st, ld, br, hlt} ∪ N ) ⊂
I are ther programming symbols and their addresses
O = {(o1� , o1�), . . . , (ol� , ol�)} are the addresses of thel output images.

Also, (s�, s�), (a�, a�), (b�, b�), (	k′
�
, 	k′

�
), (pr ′

�
, pr ′

�
), (ol′� , ol′�)∈{0, . . . , m − 1} × {0, . . . ,

n − 1} for all k′
�, k

′
� ∈ {1, . . . , k}, r ′

�, r
′
� ∈ {1, . . . , r}, l′�, l′� ∈ {1, . . . , l}.

Addresses whose contents are not specified byP in a CSM definition are assumed to
contain the constant imagef (x, y) = 0.
We adopt a few notational conveniences. In a given CSM the addressesc and(�, �) are

both elements from the set{0, . . . , m−1}×{0, . . . , n−1}. For the remainder of the current
section,e,u, andw aresequencesofelements from thesetI×{0, . . . , m−1}×{0, . . . , n−1}.
In a CSM the image at addressc is denoted̂c. In the case wherêc represents an integer
from {0, . . . , |N | − 1}, that integer is denoted̂̂c.

Definition 3 (CSM configuration). A configuration of a CSMM is a pair〈c, e〉, wherec ∈
{0, . . . , m−1}×{0, . . . , n−1} is an address called the control. Also,e = ((i0 0,0,0), . . . ,
(im−1n−1,m − 1, n − 1)) is amn-tuple that containsM ’s mn images and each of their
addresses, withi� � ∈ I being the image at address(�, �). The elements of tuplee are
ordered first by each� then by each�.

An initial configurationofM is a configurationCsta= 〈csta, esta〉, wherecsta= (s�, s�)

is the address ofsta, andesta contains all elements ofP and elements(1, 	1� , 	1�), . . . ,

(k, 	k� , 	k�) (thek input images at the addresses given byI ). A final configurationof M
is a configuration of the formChlt = 〈(�, �), (u, (hlt, �, �), w)〉, whereu andw are given

above. Notice that̂(�, �) = hlt.
In Definition 4 we adopt the following notations. The function�((�, �)) = (� + 1, �)

advances thecontrol.Thenotation�k(c) is shorthand for functioncomposition, e.g.�2(c) =
�(�(c)). At a given configuration〈c, e〉 we letqk = ̂̂

�k(c), i.e. qk represents the integer
encoded by the image at address�k(c). We let the scaling relationships forst and ld be



D.Woods, T.J. Naughton / Theoretical Computer Science 334 (2005) 227–258 231

x′ = (x + � − q1)/(q2 − q1 + 1) andy′ = (y + � − q3)/(q4 − q3 + 1). We leta(x, y) be
the image stored in addressa. Recall that(a�, a�) is the address ofa.

Definition 4 (�M ). Let �M be a binary relation on configurations of CSMM containing
exactly the following 10 elements.

〈c, (u, (ia�a� , a�, a�), w)〉�M 〈�(c), (u, (h(ia�a�), a�, a�), w)〉 if ĉ = h (i)
〈c, (u, (ia�a� , a�, a�), w)〉�M 〈�(c), (u, (v(ia�a�), a�, a�), w)〉 if ĉ = v (ii )
〈c, (u, (ia�a� , a�, a�), w)〉�M 〈�(c), (u, (∗(ia�a�), a�, a�), w)〉 if ĉ = ∗ (iii )
〈c, (u, (ia�a� , a�, a�), w)〉�M 〈�(c), (u, (·(ia�a� , ib�b�), a�, a�), w)〉 if ĉ = · (iv)
〈c, (u, (ia�a� , a�, a�), w)〉�M 〈�(c), (u, (+(ia�a� , ib�b�), a�, a�), w)〉 if ĉ = + (v)

〈c, (u, (ia�a� , a�, a�), w)〉
�M 〈�(c), (u, (�(ia�a� , �̂(c),

̂�2(c)), a�, a�), w)〉 if ĉ = � (vi)

〈c, (u��, (i��(x, y), �, �), w��)〉
�M 〈�5(c), (u��, (a

(
x′, y′) , �, �), w��)〉

∀�, � s.t. q1���q2, q3���q4,∀(x, y) ∈ [0,1) × [0,1) if ĉ = st (vii )

〈c, (u, (a(x′, y′), a�, a�), w)〉
�M 〈�5(c), (u, (i��(x, y), a�, a�), w)〉
∀�, � s.t. q1���q2, q3���q4,∀(x, y) ∈ [0,1) × [0,1) if ĉ = ld (viii )

〈c, (u)〉�M 〈( ̂̂�(c),
̂̂
�2(c)), (u)〉 if ĉ = br (ix)

〈c, (u)〉�M 〈c, (u)〉 if ĉ = hlt. (x)

Elements (i)–(vi) of�M define the CSM’s implementation of the functions defined in
Eqs. (1)–(6). Notice that in each case the image at the well-known addressa is overwritten
by the result of applying one ofh, v, ∗, ·,+ or � to its argument (or arguments). The value
of the controlc is then simply incremented to the next address, as defined in Definition3.
Element (vii) of�M defines how the store operation copies the image at well-known address
a to a ‘rectangle’of images specifiedby thest parametersq1, q2, q3, q4. Element (viii) of�M

defines how the load operation copies a rectangle of images specified by theld parameters
q1, q2, q3, q4 to the image at well-known addressa. Elements (ix) and (x) of�M define
the control flow operations branch and halt, respectively. When the image at the address
specified by the controlc is br, the value ofc is updated to the address encoded by the two
br parameters. Finally, the hlt operation always maps a final configuration to itself.
Let �∗

M denote the reflexive and transitive closure of�M . A halting computation byM
is a finite sequence of configurations beginning in an initial configuration and ending in a
final configuration:Csta�∗

MChlt.
For convenience, we use an informal ‘grid’ notation when specifying programs for the

CSM, see for example Fig.1. In our grid notation the first and second elements of an address
tuple refer to the horizontal and vertical axes of the grid, respectively, and image(0,0) is at
the bottom left-hand corner of the grid. The images in a grid must have the same orientation
as the grid. Hence in a given imagef , the first and second elements of a coordinate tuple
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Fig. 2. The set of CSM operations, given in our informal grid notation. For formal definitions see Definition4.

refer to the horizontal and vertical axes off , respectively, and the coordinate(0,0) is
located at the bottom left-hand corner off . Fig.2 informally explains the elements of�M ,
as they appear in this grid notation. After giving some data representations in Section2.4
we will then define language membership deciding by CSM. First we suggest physical
interpretations for some of the CSM’s operations and then we give a number of complexity
measures.

2.2. Optical realisation

In this section, we outline how some of the elementary operations of our model could
be carried out physically. We do not intend to specify the definitive realisation of any of
the operations, but simply convince the reader that the model’s operations have physical
interpretations. Furthermore, although we concentrate on implementations employing vis-
ible light (optical frequencies detectable to the human eye) the CSM definition does not
preclude employing other portion(s) of the electromagnetic spectrum.
A complex-valued image could be represented physically by a spatially coherent optical

wavefront. Spatially coherent illumination (light of a single wavelength and emitted with
the same phase angle) can be produced by a laser. A spatial light modulator (SLM) could
be used to encode the image onto the expanded and collimated laser beam. One could write
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to a SLM offline (expose photographic film, or laser print or relief etch a transparency) or
online (in the case of a liquid–crystal display[14,22,25]or holographicmaterial[6,16]). The
functionshandv couldbeeffectedusing twoconvexcylindrical lenses,orientedhorizontally
and vertically, respectively[8,9,14,21]. A coherent optical wavefront will naturally evolve
into its own Fourier spectrum as it propagates to infinity. What we do with a convex lens
is simply image at a finite distance this spectrum at infinity. This finite distance is called
the focal length of the lens. The constant� used in the definitions ofh andv could be
effected using Fourier spectrum size reduction techniques[9,21] such as varying the focal
length of the lens, varying the separation of the lens and SLM, employing cascaded Fourier
transformation, increasing the dimensions/reducing the spatial resolution of the SLM, or
using light with a shorter wavelength. The function∗ could be implemented using a phase
conjugatemirror[7].The function· could be realisedbyplacingaSLMencodingan imagef

in the path of a wavefront encoding another imageg [9,20,21]. The wavefront immediately
behind the SLM would then be·(f, g). The function+ describes the superposition of
two optical wavefronts. This could be achieved using a 50:50 beam splitter[7,21,23]. The
function� could be implemented using an electronic camera or a liquid–crystal light valve
[22]. The parameterszl and zu would then be physical characteristics of the particular
camera/light valve used. Parameterzl corresponds to the minimum intensity value that the
device responds to, known as the dark current signal, andzu corresponds to the maximum
intensity (the saturation level).
A note will be made about the possibility of automating of these operations. If suitable

SLMs can be prepared with the appropriate 2D pattern(s), each of the operationsh, v, ∗, ·,
and+ could be effected autonomously and without user intervention using appropriately
positioned lenses and free space propagation. The time to effect these operations would
be the sum of the flight time of the image (distance divided by velocity of light) and
the response time of the analog 2D detector; both of which are constants independent of
the size or resolution of the images if an appropriate 2D detector is chosen. Examples of
appropriate detectors would be holographic material[6,16] and a liquid–crystal light valve
with a continuous (not pixellated) area[22]. Since these analog detectors are also optically-
addressed SLMs, we can very easily arrange for the output of one function to act as the
input to another, again in constant time independent of the size or resolution of the image.
A set of angled mirrors will allow the optical image to be fed back to the first SLM in the
sequence, also in constant time. It is not known, however, if� can be carried out completely
autonomously for arbitrary parameters. Setting arbitrary parameters might fundamentally
require offline user intervention (adjusting the gain of the camera, and so on), but at least for
a small range of values this can be simulated online using a pair of liquid–crystal intensity
filters.
We have outlined some optics principles that could be employed to implement the opera-

tions of the model. The simplicity of the implementations hides some imperfections in our
suggested realisations. For example, the implementation of the+ operation outlined above
results in an output image that has been unnecessarily multiplied by the constant factor 0.5
due to the operation of the beam splitter. Also, in our suggested technique, the output of the
� function is squared unnecessarily. However, all of these effects can be compensated for
with a more elaborate optical setup and/or at the algorithm design stage, and do not affect
the proofs presented in this paper.
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Table 1
Summary of complexity measures for characterising CSMs

Symbol Name Description

1. T TIME Number of timesteps
2. G GRID Number of grid images
3. RS SPATIALRES Spatial resolution
4. RA AMPLRES Amplitude resolution
5. RP PHASERES Phase resolution
6. RD DYRANGE Dynamic range
7. � FREQ Frequency of illumination

A more important issue concerns the quantum nature of light. According to our cur-
rent understanding, light exists as individual packets called photons. As such, in order to
physically realise the CSM one would have to modify it such that images would have dis-
crete, instead of continuous, amplitudes. The atomic operations outlined above, in particular
the FT, are not affected by the restriction to quantised amplitudes, as the many experiments
with electron interference patterns indicate. We would still assume, however, that in the
physical world space is continuous.
A final issue concerns how a theoretically infinite Fourier spectrum could be represented

by an image (or encoded by a SLM) of finite extent. This difficulty is addressed with the
FREQcomplexity measure in the next section.

2.3. Complexity measures

Computational complexity measures are used to analyse CSMs. We define seven com-
plexity measures (summarised in Table1). TheTIME complexity of a CSMM is the number
of configurations in the computation sequence of an arbitrary instance ofM, beginning with
the initial configuration and ending with the first final configuration. TheGRID complexity
of a CSMM is the number of image elements inM ’s grid. In this paper theGRIDcomplexity
ofM is always a constant (independent of its input).
TheSPATIALREScomplexity of a CSMM is the minimum spatial resolution ofM ’s im-

ages necessary forM to compute correctly on all inputs. This is formalised as follows. Let
a pixel be a constant function� : [0,1/�) × [0,1/�) → z where�,� ∈ {1,2,3, . . .}
and[0,1/�), [0,1/�) ⊂ R andz ∈ C. Let araster imagebe an image composed entirely
of nonoverlapping pixels, each of the pixels are of width 1/�, height 1/�, identical orien-
tation, and arranged into� rows and� columns. (An image displayed on a monochrome
television screen or liquid crystal display panel would be an example of a raster image, if we
let its height andwidth equal 1.) Let thespatial resolutionof a raster image be��, the num-
ber of pixels in that image. Let the process ofrasterisingan image be the functionS : I ×
(N×N) → I, defined asS(f (x, y), (�,�)) = f ′(x, y), wheref ′(x, y) is a raster image,
with �� pixels arranged in� columns and� rows, that somehow approximatesf (x, y).
The details ofS are not important; it suffices to say that(�,�) can be regarded as defining
a sampling grid with uniform sampling both horizontally and vertically, although the sam-
pling rates in both directions can differ. Increasing the spatial resolution of the sampling
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(increasing� and/or�) results in a better approximation off (x, y). TheSPATIALREScom-
plexity of a CSMM is then defined as the minimum�� (the lowest resolution uniform
sampling) such that if each imagef��(x, y) in M is replaced withS(f��(x, y), (�,�))

thenM computes correctly on all inputs. If no such�� exists thenM has infiniteSPA-
TIALRES complexity. It can be seen that if the result ofM ’s computation is determined
solely by features within its images that are located at rational (respectively, irrational) co-
ordinates thenM would require finite (respectively, infinite)SPATIALRES. In optical image
processing terms, and given the fixed size of our images,SPATIALRES corresponds to the
space-bandwidth product of a detector or SLM.
TheAMPLREScomplexity of aCSMM is theminimumamplitude resolutionnecessary for

M to compute correctly on all inputs. This is formalised as follows. Consider the following
functionA : I × {1,2,3, . . .} → I defined as

A(f (x, y),�) = �|f (x, y)|� + 0.5��−1 exp(i × angle(f (x, y))) , (7)

where| · | returns the amplitudes of its image argument, angle(·) returns the phase angles
(in the range(−�,�]) of its image argument, and the floor operation is defined as operating
separately on each value in its image argument. The value� is the cardinality of the set of
discrete nonzero amplitude values that each complex value inA(f,�) can take, per half-
open unit interval of amplitude. (Zero will always be a possible amplitude value irrespective
of the value of�.) To aid in the understanding of Eq.7, note that the following equality
always holds

f (x, y) = |f (x, y)| exp(i × angle(f (x, y))).

Then, theAMPLRES complexity of a CSMM is defined as the minimum� such that if
each imagef��(x, y) in M is replaced byA(f��(x, y),�) thenM computes correctly on
all inputs. If no such� exists thenM has infiniteAMPLRES complexity. It can be seen
that if the result ofM ’s computation is determined solely by amplitude values within its
images that are rational (respectively, irrational), or by a finite (respectively, infinite) set
of rational amplitude values, thenM would require finite (respectively, infinite)AMPLRES.
The only two values forAMPLREScomplexity of interest in this paper are constantAMPLRES
and infiniteAMPLRES. CSM instances that only make use of unary and binary images (see
Section2.4) have constantAMPLRES of 1. Instances that use real number and real matrix
images (see Section2.4) have infiniteAMPLRES complexity. In optical image processing
termsAMPLREScorresponds to the amplitude quantisation of a signal.
ThePHASEREScomplexity of a CSMM is the minimum phase resolution necessary for

M to compute correctly on all inputs. This is formalised as follows. Consider the following
functionP : I × {1,2,3, . . .} → I defined as

P(f (x, y),�) = |f (x, y)| exp
(
i
⌊
angle(f (x, y))

�
2�

+ 0.5
⌋ 2�

�

)
.

The value� is the cardinality of the set of discrete phase values that each complex value in
P(f,�) can take. Then, thePHASEREScomplexity of a CSMM is defined as the minimum
� such that if each imagef��(x, y) inM is replaced byP(f��(x, y),�) thenM computes
correctly on all inputs. If no such� exists thenM has infinitePHASEREScomplexity. It can
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be seen that if the result ofM ’s computation is determined solely by phase values within
its images that are rational (respectively, irrational) modulo 2�, or by a finite (respectively,
infinite) set of rational phase values modulo 2�, thenM would require finite (respectively,
infinite) PHASERES. In optical image processing termsPHASEREScorresponds to the phase
quantisation of a signal.
TheDYRANGE complexity of a CSMM is defined as the maximum of all the amplitude

values stored in all ofM ’s images duringM ’s computation. In optical processing terms
DYRANGE corresponds to the dynamic range of a signal.
The seventh of our complexity measures isFREQ. TheFREQcomplexity of a CSMM

is the minimum optical frequency necessary forM to compute correctly. The concept of
minimum optical frequency is now explained. In optical implementations of theh andv
operations (such as our suggestions in Section2.2), one of the factors that determine the
dimensions of the Fourier spectrum off ∈ I is the frequency of the coherent illumination
employed. Increasing the frequency of the illumination results in a smaller Fourier spectrum
(components are spatially closer to the zero frequency point). In our definitions ofh and
v, we employ the constant� to rescale the Fourier spectrum off such that it fits into the
dimensions of an image:[0,1)×[0,1). In general, however, a Fourier spectrum of an image
will be infinite in extent. Therefore, according to the relationship between optical frequency
and Fourier spectrum dimensions[9,21], such a constant� only exists when the wavelength
of the illumination is zero, corresponding to illumination with infinite frequency. With a
finite optical frequency, theh andv operations will remove all Fourier components with a
spatial frequency higher than the cut-off imposed by�. This is called low-pass filtering in
signal processing terminology, and is equivalent to a blurring of the original signal. Given
particular rasterisation and quantisation functions for the images inM, and a particular�,
the blurring effect might not influence the computation. Formally, then, we define theFREQ

complexity of aCSMM to be theminimumoptical frequency that canbeemployed such that
M computes correctly on all inputs. If approximations of a FT are sufficient forM, or ifM
does not executeh or v, thenM requires finiteFREQ. If the original (unbounded) definitions
of h andv must hold thenM requires infiniteFREQ. Note also that using the traditional
optical methods outlined in Section2.2, any lower bound onSPATIALREScomplexity will
impose a lower bound onFREQcomplexity. In the context of traditional optical methods,
this imposition is referred to as the diffraction limit. (The optical wavelength should be
a constant times smaller than the smallest spatial feature that needs to be resolvable in
an image.) In order not to rule out the applicability of novel sub-wavelength resolution
techniques that go beyond the diffraction limit for our CSM algorithms we give eachFREQ

complexity as an upper bound [O(·)].
Finally, one might also consider energy a natural complexity measure. In fact, energy

is a function of all of the measures in Table1, with the exception ofPHASERES. Such an
interpretation is consistent with the quantum theory of light. This is explained in the case
of a single image initially. Letf (x, y) be an image with spatial resolutionRS , amplitude
resolutionRA, dynamic rangeRD, and encoded with illumination of frequency�. An up-
per bound on the energy required to represent (and to measure)f (x, y), denotedEf , is
defined as

Ef = h�dRSRA
2RD

2, (8)
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where h= 6.626. . . × 10−34Js is the fundamental physical constant called Planck’s con-
stant, andd (detector sensitivity) is the minimum number of photons required to trigger
a response in a detector element. (For example, for an isolated rod element in the human
retina,d is 10 or so, and for the detector element in a photomultiplier tubed can be 1.)
An upper bound on the energy required for a CSMM ’s computation can be determined
by considering the worst cost scenario that at every timestep the imagef with maximum
amplitude is written to every grid element, giving a total energyEM of

EM = Ef TG,

where theT andG areM ’s TIME andSPACEcomplexities, respectively.

2.4. Representing data as images

Unless otherwise stated let� = {0,1}.As is usual let�∗ = ⋃∞
i=0 �i , let�+ = ⋃∞

i=1 �i

and, unless otherwise stated, let a languageL ⊆ �+. There are many ways to represent ele-
ments of finite, countable, and uncountable sets as images.We give a number of techniques
that will be used later in the paper. The symbol 1 is represented by an image having value
one at its centre and value zero everywhere else. An image that has value zero everywhere
represents the symbol 0.

Definition 5 (Binary symbol image). The symbol� ∈ � is represented by the binary
symbol imagef�,

f�(x, y) =
{
1 if x, y = 0.5,� = 1,
0 otherwise.

We extend this representation scheme to binary words using ‘stack’ and ‘list’ images.

Definition 6 (Binary stack image). The wordw = w1w2 · · ·wk ∈ �+ is represented by
the binary stack imagefw,

fw(x, y) =
{
1 if x = 1− 3

2k−i+2 , y = 0.5, wi = 1,
0 otherwise,

wherewi ∈ �,1� i�k. Imagefw is said to have lengthk and the pair(fw, k) uniquely
representsw.

Definition 7 (Binary list image). The wordw = w1w2 · · ·wk ∈ �+ is represented by the
binary list imagefw,

fw(x, y) =
{
1 if x = 2i−1

2k , y = 0.5, wi = 1,
0 otherwise,

wherewi ∈ �,1� i�k. Imagefw is said to have lengthk and the pair(fw, k) uniquely
representsw.

If � = {1} we replace the word “binary” with the word “unary” in Definitions5–7. In
Definitions6 and7each unary/binary symbol inw is represented by a corresponding value
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of 0 or 1 infw. Notice that in the unary/binary stack image,w’s leftmost symbolw1, is
represented by the rightmost value in the sequence of values representingw in fw, this
means thatwk is represented by the topmost stack element.We represent a single real value
r by an image with a single peak of valuer.

Definition 8 (Real number image). The real numberr ∈ R is represented by the real
number imagefr ,

fr(x, y) =
{

r if x, y = 0.5,
0 otherwise.

To represent aR ×C matrix of real values we defineRC peaks that represent the matrix
values and use both dimensions of a stack-like image. This matrix image representation is
illustrated in Fig.3(f).

Definition 9 (R × C matrix image). TheR × C matrix A, with real-valued components
aij ,1� i�R,1�j �C, is represented by theR × C matrix imagefA,

fA(x, y) =
{

aij if x = 1− 1+2k
2j+k , y = 1+2l

2i+l ,

0 otherwise,

where

k =
{
1 if j < C,

0 if j = C,
l =

{
1 if i < R,

0 if i = R.

The representations given in Definitions5–9 are conveniently manipulated in the CSM
using a programming technique called ‘rescaling’. Binary symbol images can be combined
using stepwise rescaling (creating a binary stack image) or with a single rescale operation
(creating a binary list image). A stack representation of the word 11 could be generated as
follows. Take the imagef0 (having value 0 everywhere), representing an empty stack, and a
unary symbol imagef1 that wewill ‘push’onto the stack.A push is accomplished by placing
the images side-by-side withf1 to the left and rescaling both into a single image location.
The image at this location is a (binary or unary) stack image representing the word 1. This
concept is illustrated in Fig.3(a); a unary symbol image is placed at addressaand an empty
stack image is placed at addressb. The commandld ab pushes the symbol onto the empty
stack, and by default the result is stored in addressa. Take another unary symbol imagef1,
place it to the left of the stack image, and rescale both into the stack image location once
again. The unary stack image contains two peaks at particular locations that testify that it
is a representation of the word 11, as illustrated in Fig.3(b). To remove a 1 from the stack
image, a ‘pop’ operation is applied. Rescale the stack image over any two image locations
positioned side-by-side. The image to the left will contain the symbol that had been at the
top of the stack image (f1) and the image to the right will contain the remainder of the
stack image, as illustrated in Fig.3(c). The stack image can be repeatedly rescaled over two
images popping a single image each time. Popping an empty stack [Fig.3(d)] results in the
binary symbol image representing 0 and the stack remaining empty.
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Fig. 3. Representing data by images through the positioning of peaks. The nonzero peaks are coloured black and
the white areas denote value 0. (a) Pushing a unary symbol image onto an empty stack image. (b) Pushing a unary
symbol image onto a stack image representing the word 1 to create the representation of 11. (c) Popping a stack
representing the word 1, resulting in a popped unary symbol image (ina) and an empty stack (inb). (d) Popping
an empty stack. (e) Rescaling three adjacent unary symbol images into a single unary list image (ina) representing
111. (f) 1× C, R × 1, andR × C matrix images whereR = C = 5.

We can interpret a unary stack image as a nonnegative integer. Push and pop can then
be interpreted as increment and decrement operations, respectively. As a convenient pseu-
docode,we use statements such asc.push(1) andc.pop() to increment and decrement
the unary word represented by the stack image at addressc. Binary representations of non-
negative integers would be represented in a similar manner. A unary stack representation of
the integer 2 could be regarded as a binary stack representation of the integer 3. Our con-
vention is to represent words with the rightmost symbol at the top of the stack. Therefore,
if the secondf1 in the preceding example had been insteadf0 the resulting push operation
would have created a stack image representing the word 10 (or alternatively, the binary rep-
resentation of the integer 2). Pushing (or popping)k binary or unary symbol images to (or
from) a binary or unary stack image requires�(k) TIME, constantGRID,�(2k) SPATIALRES,
1AMPLRES, 1 PHASERES, 1DYRANGE and O(2k) FREQ. For CSM algorithms that use stack
representations,SPATIALRES(and thereforeFREQ) are of critical concern.
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In the list image representation of a unary or binary word, each of the rescaled binary
symbol images are equally spaced (unlike the stack image representation). The binary
list image representation of a wordw ∈ �+, |w| = k, involves placingk symbol images
(representing thek symbols ofw) side-by-side ink contiguous image locations and rescaling
them into a single image in ald operation. For example inFig.3(e) a unary list representation
of the unary word 111 is accomplished by the commandld 3 5 7 7 . Rescalingk binary
or unary symbol images to form a binary or unary list image, or rescaling a binary or unary
list image to formk binary or unary symbol images both require constantTIME, constant
GRID,�(k) SPATIALRES, 1AMPLRES, 1 PHASERES, 1 DYRANGE and O(k) FREQ.
TheR×Cmatrix image representation canbemanipulatedusing image rescalingnot only

in the horizontal direction (as push and pop given above), but also in the vertical direction.
In the matrix representation an initial empty image (to push to) is not required. Pushing
(or popping)j real number images to (or from) aj × 1 or 1× j matrix image requires
�(j) TIME, constantGRID,�(2j−1) SPATIALRES, infiniteAMPLRES, constantPHASERES, 1
DYRANGE and O(2j−1) FREQ. Pushing (or popping)k of j × 1 matrix images ork of 1× j

matrix images to (or from) aj × k or k × j matrix image requires�(k) TIME, constant
GRID,�(2j+k−2) SPATIALRES, infiniteAMPLRES, 1PHASERES, 1DYRANGE and O(2j+k−2)
FREQ.

2.5. CSM deciding language membership

Definition 10 (CSM deciding language membership). CSMML decides the membership
problem forL ⊆ �+ if ML has initial configuration〈csta, esta〉 and final configuration
〈chlt, ehlt〉, and the following hold:
• sequenceesta contains the two input elements(fw, 	1� , 	1�) and(f1|w| , 	2� , 	2�)

• ehlt contains the output element(f1, o1� , o1�) if w ∈ L

• ehlt contains the output element(f0, o1� , o1�) if w /∈ L

• 〈csta, esta〉�∗
M 〈chlt, ehlt〉, for all w ∈ �+.

Here fw is the binary stack image representation ofw ∈ �+, f1|w| is the unary stack
image representation of the unary word 1|w|. Imagesf0 andf1 are the binary symbol image
representations of the symbols 0 and 1, respectively.

In this definition addresses(	1� , 	1�), (	2� , 	2�) ∈ I and address(o1� , o1�) ∈ O, whereI
andO are as given in Definition2. We use the stack image representation of words. The
unary input word 1|w| is necessary forML to determine the length of input wordw. (For
example the binary stack image representations of the words 00 and 000 are identical.)

2.6. Transformation from continuous image to finite address

Our model uses symbols from a finite set in its addressing scheme and employs an ad-
dress resolution technique to effect decisions (see Section2.7). Therefore, during branch-
ing and looping, variables encoded by elements of the uncountable set of continuous im-
ages must be transformed to the finite set of addresses. In one of the possible addressing
schemes available to us, we use symbols from the set{0,1}. We chooseB = {w : w ∈
{0,1}max(m,n), w has a single 1} as our underlying set of address words. Each of them
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column andn row addresses will be a binary word from the finite setB. An ordered pair of
such binary words identifies a particular image in the grid. Each element ofB will have a
unique image encoding.N is the set of encoded images, with|N | = max(m, n). In order to
facilitate an optical implementation of our model we cannot assume to know the particular
encoding strategy for the setN (such as the simple binary stack or list representations
of Section2.4). We choose a correlation based address resolution technique. The address
resolution technique chosen (the transformation fromI to B) must be general enough to
resolve addresses that use any reasonable encoding (see Section2.6.1).
Given an image� ∈ I we wish to determine which address word inB is encoded

by �. In general, comparing a continuous image� with the elements ofN to determine
membership is not guaranteed to terminate. However, for each� that our addressing scheme
will be presented with, and given a reasonable encoding forN , we can be sure of the
following restrictions onN : (i) � ∈ N , (ii) |N | is finite, and (iii)N contains distinct
images (no duplicates). Given these restrictions, we need only search for the single closest
match between� and the elements ofN . We choose a transformation based on cross-
correlation (effected through a sequence of FT and image multiplication steps) combined
with a thresholding operation.
The functiont : I × I → N is defined as

t (�, �) = �(�(�, �)), (9)

where� encodes the unknown addressing image to be transformed,� is a list image formed
by rescaling all the elements ofN (in some known order) into a single image using one
ld operation,� denotes the cross-correlation function, and� is a thresholding operation.
The cross-correlation function[9,21] produces an imagefcorr = �(�, �) where each point
(u, v) in fcorr is defined

fcorr(u, v) =
∫ 1

0

∫ 1

0
�(x, y)�∗(x + u, y + v)dx dy, (10)

where�∗ denotes the complex conjugate of�, where(x, y) specifies coordinates in� and�,
and where(+u,+v) denotes an arbitrary relative shift between� and� expressed in the
coordinate frame offcorr. In Eq.10, let� have value 0 outside of[0,1) × [0,1). Let image
fcorr be defined only over[0,1) × [0,1). In the CSM,fcorr(u, v) would be produced in
imageaby the code fragmentld � h v st b ld � ∗ h v · h v , where amultiplication in
the Fourier domain is used to effect cross-correlation[9,20,21]. According to Eq. (10), and
given a reasonable encoding forN (implying the three restrictions outlined above),fcorr
will contain exactly one well resolved maximum amplitude value. This point of maximum
amplitude will be a nonzero value at a position identical to the relative positioning of the list
element in� that most closely matches�. All other points infcorr will contain an amplitude
less than this value.
We define the thresholding operation of Eq. (9) for each point(u, v) in fcorr as

�(fcorr(u, v)) =
{
1 if |fcorr(u, v)| = max(|fcorr(u, v)|),
0 if |fcorr(u, v)| < max(|fcorr(u, v)|).



242 D.Woods, T.J. Naughton / Theoretical Computer Science 334 (2005) 227–258

This produces an image with a single nonzero value at coordinatesu = (2i + 1)/[2 ×
max(m, n)], v = 0.5 for some positive integeri in the range[0,max(m, n) − 1]. From
the definition of a binary list image (Definition7), we can see that these unique identi-
fiers are exactly the images that represent the binary words corresponding to the integers
{20,21,22, . . . ,2[max(m,n)−1]}. Therefore,t is a function from continuous images to the set
of image representations of the finite setB defined earlier.

2.6.1. Reasonable encodings ofN
A note is required on what constitutes a reasonable encoding forN , such thatt will

correctly transforms to an image representation of the appropriate element inB. There are
two considerations which one needs to bear in mind when designing an encoding forN .
Firstly, Eq. (10) is not a normalised cross-correlation. Therefore,N has to be chosen such
that the autocorrelation of each element ofN has to return a strictly larger maximum value
than the cross-correlation with each of the other elements ofN .
Secondly, one may wish to choosef0 (the image with zero everywhere) as an element of

N . We can see from Eq. (10) that this will result in a cross-correlation offcorr = f0 when
we try to matchs = f0 with �. If one choosesf0 as an element ofN , this special case
can be resolved (without the need for an explicit comparison withf0) with the following
rule. Given thatN is a reasonable encoding, if no single well-resolvedmaximum amplitude
value is generated from�, we assume that� = f0. (In all cases other than when� = f0,
fcorr will contain a well-resolved point of maximum amplitude, as explained above.)

2.7. Conditional branching from unconditional branching

Our model does not have a conditional branching operation as a primitive; it was felt
that giving the model the capability for equality testing of continuous images would rule
out any possible implementation. However, we can effect indirect addressing through a
combination of program self-modification and direct addressing. We can then implement
conditional branching by combining indirect addressing and unconditional branching. This
is based on a technique by Rojas[17] that relies on the fact that|N | is finite. Without
loss of generality, we could restrict ourselves to two possible symbols 0 and 1. Then, the
conditional branching instruction “if (k=1) then jump to addressX, else jump toY ” is
written as the unconditional branching instruction “jump to addressk”. We are required
only to ensure that the code corresponding to addressesX andY is stored at addresses 1
and 0, respectively. In a 2D memory (with an extra addressing coordinate in the horizontal
direction) many such branching instructions are possible in a single machine.

2.8. A general iteration construct

Our bounded iteration construct is based on the conditional branching instruction
outlined in Section2.7. Consider a loop of the following general form, written in some
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Fig. 4. CSM description of a while loop. Execution begins at location(0,2).

unspecified language,

SX
while (e > 0)

SY
e := e - 1

end while
SZ

where variablee contains a nonnegative integer specifying the number of remaining itera-
tions, andSX, SY, andSZ are arbitrary lists of statements. Without loss of generality, we
assume that statementsSYdo not write toe and do not branch to outside of the loop. Ife is
represented by a unary stack image (where the number of represented 1s equals the value
of e), this code could be rewritten as

SX
while (e.pop() = f1)

SY
end while
SZ

and compiled to a CSM as shown in Fig.4. In this CSM,e specifies the number of re-
maining iterations in unary and is represented by a unary stack image. A second address
d, unused by the statements in the body of the loop, holds the value popped frome and
must be positioned immediately to the left ofe. Addressa′ is used to store and restore
the contents of addressa before and after, respectively, decrementing the loop counter
e. The fragmentbr 0 d̂ is shorthand for a piece of indirect addressing code, and means
“branch to the address at the intersection of column 0 and the row specified by the image at
addressd”.
The while routine in Fig.4 hasTIME complexity 6+ i(s + 6), constantGRID complexity

andSPATIALREScomplexity max(2i , RS). Herei ∈ N is the number of times the body of
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the while loop is executed,s ∈ N is the number of operations in the body of the while
loop, and finallyRS ∈ N is the minimumSPATIALRES required during execution of the
body of the while loop. The value for each ofAMPLRES, PHASERESandDYRANGE is at least
constant, and possibly greater, depending on the operations performed and images accessed
in the body of the while routine. Finally, theFREQcomplexity is O(max(2i , RS)).

3. Computability results

In this section we prove the CSM can simulate ARNNs, which are neural networks that
compute over the set of real numbers. As an immediate corollary our model can decide the
membership problem for any languageL ⊆ �+, if we allow aribtrary real values as inputs.

3.1. Boolean circuits and ARNNs

Informally, a Boolean circuit, or simply a circuit, is a finite directed acyclic graph where
each node is an element of one of the following three sets:{∧,∨,¬} (calledgates, with
respective in-degrees of 2,2,1),{x1, . . . , xn} (xi ∈ {0,1}, inputs, in-degree 0),{0,1} (con-
stants, in-degree 0). A circuit family is a set of circuitsC = {cn : n ∈ N}. A language
L ⊆ �∗ is decided by the circuit familyCL if the characteristic function of the language
L ∩ {0,1}n is computed bycn, for eachn ∈ N. It is possible to encode a circuit as a finite
symbol sequence, and a circuit family by an infinite symbol sequence.When the circuits are
of exponential size (with respect to input word length and where circuit size is the number
gates in a circuit), for eachL ⊆ �∗ there exists a circuit family to decide the membership
problem forL. For a more thorough introduction to (nonuniform) circuits we refer the
reader to[1].
ARNNs are finite size feedback first-order neural networks with real weights[18,19].

The state of each neuron at timet + 1 is given by an update equation of the form

xi(t + 1) = �

(
N∑

j=1
aij xj (t) +

M∑
j=1

bijuj (t) + ci

)
, i = 1, . . . , N, (11)

whereN is the number of neurons,M is the number of inputs,xj (t) ∈ R are the states of the
neurons at timet , uj (t) ∈ �+ are the inputs at timet , andaij , bij , ci ∈ R are the weights.
An ARNN update equation is a function of discrete timet = 1,2,3, . . .. The network’s
weights, states, and inputs are often written in matrix notation asA,B andc, x(t), andu(t),
respectively. The function� is defined as

�(x) =

0 if x < 0,
x if 0�x�1,
1 if x > 1.

AsubsetP of theN neurons,P = {xk1, . . . , xkp },P ⊆ {x1, . . . , xN }, are called thep output
neurons. The output fromanARNNcomputation is defined as the states{xk1(t), . . . , xkp (t)}
of thesep neurons over timet = 1,2,3, . . ..
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3.2. Formal net deciding language membership

ARNN input/output (I/O) mappings can be defined in many ways[19]. In this paper, we
give a CSM that simulates the general form ARNN which has the update equation given
by Eq.11. We also present a CSM that simulates a specific type of ARNN called a formal
net[19]. Formal nets are ARNNs that decide the language membership problem and have
the following I/O encodings. A formal net has two binary input lines, called the input data
line (D) and the input validation line (V ), respectively. IfD is activeat a given timet then
D(t) ∈ �, otherwiseD(t) = 0. V (t) = 1 whenD is active, andV (t) = 0 thereafter
(whenD is deactivated it never again becomes active). An input to a formal net at time
t has the formu(t) = (D(t), V (t)) ∈ �2. The input wordw = w1 . . . wk ∈ �+ where
wi ∈ �,1� i�k, is represented byuw(t) = (Dw(t), Vw(t)), t ∈ N, where

Dw(t) =
{

wt if t = 1, . . . , k,
0 otherwise,

Vw(t) =
{
1 if t = 1, . . . , k,
0 otherwise.

A formal net has two output neuronsOd,Ov ∈ {x1, . . . , xN }, called the output data line and
output validation line, respectively. Given a formal netF with an input wordw and initial
statexi(1) = 0, 1� i�N , w is classifiedin time � if the output sequences have the form

Od = 0�−1�w0
�, Ov = 0�−110�,

where�w ∈ � and� = |N|. If �w = 1 thenw is accepted, if�w = 0 thenw is rejected.
We now give a definition of deciding language membership by ARNN (from[19]). Let
T : N → N be a total function.

Definition 11 (Formal net deciding language membership). The membership problem for
the languageL ⊆ �+ is decided in timeT by the formal netF provided that each word
w ∈ �+ is classified in time��T(|w|) and�w = 1 if w ∈ L and�w = 0 if w /∈ L.

In [19], Siegelmann and Sontag prove that for each languageL ⊆ �+ there exists a
formal netFL to decide the membership problem forL, hence proving the ARNN model
to be computationally more powerful than the Turing machine model.FL contains one
real weight. This weight encodes the (nonuniform) circuit familyCL that decidesL. Let
SCL

: N → N be the size ofCL. For a given input wordw ∈ �+,FL retrieves the encoding
of circuit c|w| from its real weight and simulates this encoded circuit on inputw to decide
membership inL, in time T(|w|) = O(|w|[SCL

(|w|)]2). Given polynomial time, formal
nets decide the nonuniform language classP/poly. Given exponential time, formal nets
decide the membership problem for all languages.

3.3. Statement of main result

Theorem 1. There exists a CSMM such that for each ARNNA, M computesA’s I/O
map, using our ARNN I/O representation.

Proof. The proof is provided by the ARNN simulation program for the CSM given in
Fig. 5. The simulation is written in a convenient shorthand notation. The expansions into
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Fig. 5. CSMM that simulates anyARNNA. The simulator is written in a convenient shorthand notation, (see Fig.6 for the expansions into sequences
of atomic operations). The simulation program is explained in Section3.7.
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sequences of atomic operations are given in Fig.6. The ARNN I/O representation is given
is Section3.4. The simulation program is explained in Sections3.5–3.7. A computational
complexity analysis of the simulation program is given in Section3.8. �

3.4. ARNN representation

As a convenient notation we let� be the image representation of�. We now give the
I/O representation used in Theorem1. The inputs toM fall into three categories: in-
puts that representA, inputs that representA’s input, and some constant inputs. Recall
that our representation of matrices by images was defined in Definition9 and illustrated
in Fig. 3(f).
The ARNN weight matricesA, B, andc are represented byN × N ,N × M, andN × 1

matrix imagesA, B, andc, respectively. The state vectorx is represented by a 1× N

matrix imagex. The set of output statesP are represented by the imageP (described be-
low). The valuesN − 1 andM − 1 need to be given as input to the simulator in order to
bound the loops. They are represented by unary stack imagesN − 1 andM − 1, represent-
ing the unary words 1(N−1) and 1(M−1), respectively. These seven input images define the
ARNN A. The constant imagesf (x, y) = 0 andf (x, y) = 1, denoted0 and1, respec-
tively, are also given as input. Images0 and1 are used to parameterise� (see Lemma2
below).
For an ARNN timestept , the ARNN input vectoru(t) is represented by a 1× M matrix

imageu. In an initial configuration of our simulation program we assume an input stack
imageI represents all input vectorsu(t) for all t = 1,2,3, . . . . At anARNN timestept , the
top element of stack imageI is a 1× M matrix image representing the input vectoru(t).
Thep output neurons are represented by a 1×N matrix imageP .We useP to extract our

representation of thep output states from theN neuron states represented byx. The image
x containsN (possibly nonzero) values at specific coordinates defined in Definition9. p of
thesevalues represent thepARNNoutput statesandhavecoordinates(x1, y1), . . . , (xp, yp)

in x. In the imageP , each of the coordinates(x1, y1), . . . , (xp, yp) has value 1 and all other
coordinates inP have value 0. We multiplyx by P . This image multiplication results in
an output imageo that has our representation of thep ARNN outputs at the coordinates
(x1, y1), . . . , (xp, yp). Imageo has value 0 at all other coordinates. The simulator then
pusheso to an output stack imageO. This output extraction process is carried out at the
end of each simulated state update.

3.5. ARNN simulation overview

From the neuron state update equation Eq. (11), eachxj (t) is a component of the state
vectorx(t). Fromx(t) we define theN × N matrixX(t) where each row ofX(t) is the
vectorx(t). ThereforeX(t) has componentsxij (t), and for eachj ∈ {1, . . . N} it is the
case thatxij = xi′j , ∀i, i′ ∈ {1, . . . N}. From u(t) we define theN × M matrix U(t)

where each row ofU(t) is the vectoru(t). ThereforeU(t) has componentsuij (t), and for
eachj ∈ {1, . . .M} it is the case thatuij = ui′j , ∀i, i′ ∈ {1, . . . N}. UsingX(t) andU(t)
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Fig. 6. Time-saving shorthand notation used in the simulator in Fig.5: (a) shows shorthand addresses, (b) branch
to beginning of row� − 1, where� is the current row, and (c) expands to initialisation instructions and the while
loop code given in Fig.4.



D.Woods, T.J. Naughton / Theoretical Computer Science 334 (2005) 227–258 249

we rewrite Eq. (11) as

xi(t + 1) = �

(
N∑

j=1
aij xij (t) +

M∑
j=1

bijuij (t) + ci

)
, i = 1, . . . , N. (12)

In the simulation we generateN × N andN × M matrix imagesX andU representing
X(t) andU(t), respectively. We then simulate the affine combination in Eq. (12) using our
model’s+ and· operators. We use the CSM’s amplitude filtering operation� to simulate
the ARNN� function.

Lemma 2. The CSM operation� simulates�(x) in constantTIME.

Proof. From the definition of� in Eq.6, we setzl(x, y) = 0 (denoted0) andzu(x, y) = 1
(denoted1) to give

�(f (x, y),0,1) =

0 if |f (x, y)| < 0,
|f (x, y)| if 0� |f (x, y)|�1,
1 if |f (x, y)| > 1.

Using our representation of ARNN state values by images,�(x,0,1) simulates�(x). Also,
� is a CSM operation hence simulating�(x) requires constantTIME. �

3.6. ARNN simulation algorithm

For brevity and ease of understanding we outline our simulation algorithm in a high-level
pseudocode, followed by an explanation of each algorithm step.

(i) u := I.pop()
(ii ) X := pushx onto itself verticallyN − 1 times
(iii ) AX := A · X
(iv) �AX := �N

i=1
(
AX.popi ()

)
(v) U := pushu onto itself verticallyN − 1 times
(vi) BU := B · U
(vii ) �BU := �M

i=1
(
BU.popi ()

)
(viii ) affine-comb:= �AX + �BU + c

(ix) x′ := �(affine-comb,0,1)
(x) x := (x′)T
(xi) O.push(P · x)
(xii ) goto step(i)

In step (i) we pop an image from input stackI and call the popped imageu. Imageu is
a 1× M matrix image representing the ARNN’s inputs at some timet . In step (ii) we
generate theN × N matrix imageX by vertically pushingN − 1 identical copies ofx
onto a copy ofx. In step (iii),X is point by point multiplied by matrix imageA. This
single multiplication step efficiently simulates (in constantTIME) the matrix multiplication
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aij xj for all i, j ∈ {1, . . . , N} (as described in Section3.5). Step (iv) simulates the ARNN
summation

∑N
j=1 aij xj (in linear TIME). Each of theN columns ofAX are popped and

added (using the+ operation), one at a time, to the previous popped image.
In step (v) we are treatingu in a similar way to our treatment ofx in step (ii). In step

(vi) we effectB · U , efficiently simulating (in constantTIME) the multiplicationbijuj for
all i ∈ {1, . . . , N}, j ∈ {1, . . . ,M}. Step (vii) simulates theARNN summation∑M

j=1 bijuj

using the same technique used in step (iv).
In step (viii) we simulate the addition of the three terms in theARNN affine combination.

In our simulator this addition is effected in two simple image addition steps. In step (ix) we
simulate theARNN’s� function by amplitude filtering using the CSM’s� function with the
lower and upper threshold images(0,1) (as given by Lemma2). The resultingN ×1matrix
image is transformed into a 1× N matrix image (we simply transpose the represented
vector) in step (x). We call the result of this amplitude filtering and transformationx; it
represents the ARNN state vectorx(t + 1). In step (xi) we multiplyx by the output mask
P (as described in Section3.4). The result, which represents the ARNN output at time
t + 1 is then pushed to the output stackO. The final step in our algorithm sends us back to
step (i). Notice that our algorithm never halts as ARNN computations are defined for time
t = 1,2,3, . . . .

3.7. Explanation of Figs.5 and6

TheARNNsimulationwith ourmodel is shown in Fig.5. Numerals (i)–(xii) are present to
assist the reader in understanding the program; they correspond to steps (i)–(xii) in the high-
level pseudocode in Section3.6. In our ARNN simulator program addresses are written in
a shorthand notation that are expanded using Fig.6. Before the simulator begins executing,
a simple preprocessor or compiler could be used to update the shorthand addresses to the
standard long-form notation.
Addressest1, t2, andt3 are used as temporary storage locations during a run of the simu-

lator [note: addresst3 is located at grid coordinates(11,14)]. In the simulator our� notation
not only denotes the image representation of�, but also acts as an address identifier for the
image representing�. Addressesx andu are used to store our representation of the neu-
rons’states and inputs, respectively, during a computation. The temporary storage addresses
�AX and�BU are used to store the results of steps (iv) and (vii), respectively. Addresses
N − 1 andM − 1 store our representation of the dimensions ofx andu, respectively (nec-
essary for bounding the while loops). The address identifiersA, B, andc store the image
representation of the corresponding ARNN matrices, andP stores our mask for extracting
thep output states from theN neuron states, as described in Section3.4. Code fragments
of the formwhl i . . . end are shorthand for code to initialise and implement the while loop
given in Section2.8. The instructions betweeni andend are executedi times. The notation
0̂ is shorthand for the “image at address0”.
At ARNN timestept , our representation of the ARNN inputu(t) is at the top of the

input stack imageI . This input is popped off the stack and placed in addressu. The
computation then proceeds as described by the high-level pseudocode algorithm in
Section3.6. The output memory addressO stores the sequence of outputs as described
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in Section3.4. Program execution begins at well-known addressstaand proceeds accord-
ing to the rules for ourmodel’s programming language defined inDefinition4and explained
in Fig. 2.

3.8. Complexity analysis of simulation algorithm

The following is a worst case analysis of the ARNN simulation algorithm. If the ARNN
being simulated is defined for timet = 1,2,3, . . ., hasM as the length of the input vector
u(t) and hasN neurons, andk is the number of stack image elements used to represent the
active input to our simulator, thenM requiresTIME T linear inN ,M, andt , and independent
of k,

T (N,M, t, k) = (49N + 11M + 42)t + 1.

M requires constantGRID, and exponentialSPATIALRES

RS(N,M, t, k) = max(2(k+M−1),2(2N−2),2(N+M−2),2(t+N−1)).

M requires infiniteAMPLRES in order to represent real-valued ARNN weight matrices.
M requires constantPHASERESof 1 and linearDYRANGE equal to max(1,maxAin), where
maxAin is themaximumamplitudevalueof all the input images.Finally, theFREQcomplexity
is O(RS(·)), whereRS(·) is theSPATIALREScomplexity ofM.

3.9. CSM deciding language membership by formal net simulation

Corollary 3. There exists aCSMD that decides themembership problem for eachL ⊆ �+.

Proof. The proof relies on two facts. Firstly, for eachL ⊆ �+ there exists a formal net
FL that decides the membership problem forL [19]. Secondly there exists a CSMM that
simulates each ARNN (Theorem1). CSMD is given in Fig.7, its I/O format and a brief
complexity analysis are given in the remainder of the current section.�
To decide membership ofw ∈ �+ in L, D simulates formal netFL on inputw. D is a

languagemembership deciding CSM, henceD’s I/O format is consistent with Definition10
(CSM deciding language membership). In Fig.7, rows 2–13 are exactly rows 2–13 from
CSMM in Fig. 5, the remaining extra functionality is necessary to properly format the
I/O. The shorthand notation follows the format given in Fig.6. Given the problem instance
of deciding membership ofw ∈ �+ in L, CSMD has 13 input images and a single output
image. Input imagesfw andf1|w| are the binary and unary stack image representations of
the wordsw and 1|w|, respectively. Images0 and1 are the constant imagesf (x, y) = 0
andf (x, y) = 1, respectively. Formal netFL is completely defined by the following seven
input images:A,B, c, P , x,N − 1, andM − 1. These images have the format described
above in Section3.4. When simulating a formal net the input imagesM − 1 andx are
constant (asM = 2 andx(1) is a vector of zeros). ImagesOd andOv are unary stack
images representing the unary words 1d and 1v, respectively. Here d and v are the indices
of the output data and output validation neurons, respectively, in theN vector of neurons.
ImagesOd andOv are used to extract the output ‘decision’ ofFL. There is one output
image denotedf�w

.
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Fig. 7. CSMD that decides language membership by ARNN simulation. Shorthand notation follows the format given in Fig.6. Rows 2–13 are exactly
rows 2–13 from CSMM in Fig. 5.
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The following is a worst case analysis of CSMD simulating a formal netFL that decides
membership of languageL in timeT. On input wordw ∈ �+, FL decides ifw is in L in
t timesteps for somet �T(|w|). When deciding a language from the classP/poly, in the
worst case the functionT is polynomial in input word length. When deciding an arbitrary
language, in the worst caseT is exponential in input word length[19]. LetN ,M, d, andv
be as given above. CSMD requires linearTIME

T (N,M,T(|w|), |w|, d, v) = (49N + 7v + 81)T(|w|) + 12|w| + 7d + 24,

constantGRID, and exponentialSPATIALRES

RS(N,M,T(|w|), |w|, d, v) = max
(
2|w|,2(2N−2)) ,

todecidemembershipofw inL.D requires infiniteAMPLRES,asoneofFL’sweightmatrices
contains a real-valued weight that encodes the (possibly nonuniform) circuit familyCL.D
requiresconstantPHASERESof1and linearDYRANGEequal tomax(1,maxAin)wheremaxAin
is the maximum amplitude value of all the input images. Finally, theFREQcomplexity is
O(RS(·)), whereRS(·) is theSPATIALREScomplexity ofD. By way of formal net simulation
the CSMdecides themembership problem for any languageL ⊆ �+ with these complexity
bounds.

4. Unordered search

Sorting and searching[11] provide standard challenges to computer scientists in the field
of algorithms, computation, and complexity. In this paper, we focus on a binary search
algorithm. With our model this algorithm can be applied to unordered lists. Consider an
unordered list ofn elements. For a given propertyP , the list could be represented by an
n-tuple of bits, where the bit key for each element denotes whether or not that element
satisfiesP . If, for a particularP , only one element in the list satisfiesP , the problem of
finding its index becomes one of searching an unordered binary list for a single 1. The
problem is defined formally as follows.

Definition 12 (Needle in haystack problem). Let L = {w : w ∈ 0∗10∗}. Let w ∈ L be
written asw = w0w1 . . . wn−1 wherewi ∈ {0,1}. Given such aw, the needle in haystack
(NIH) problem asks what is the index of the symbol 1 inw. The solution to NIH for a given
w is the indexi, expressed in binary, wherewi = 1.

This problem was posed by Grover in[10]. His quantum computer algorithm requires
O(

√
n) comparison operations on average. Bennett et al.[2] have shown the work of Grover

is optimal up to a multiplicative constant, and that in fact any quantum mechanical system
will require�(

√
n) comparisons. Algorithms for conventional models of computation re-

quire�(n) comparisons in the worst case to solve the problem. We present an algorithm
that requires�(log2 n) comparisons, in the worst case, with a model of computation that
has promising future implementation prospects.
Our search algorithm is quite simple. A single bright point is somewhere in an otherwise

dark image. If we block one half of the image we can tell in a single step if the other
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Fig. 8. Pseudocode algorithm to search for a single 1 in a list otherwise populated with 0s. Line numbers give
addresses of the corresponding piece of code in the CSM machine in Fig.9. Imagesf0 andf1 were defined in
Definition5.

half contains the bright point or not. This forms the basis of a binary search algorithm to
determine the precise location of the bright point.
Before presenting a CSM instance of the algorithm, we give a pseudocode version (see

Fig. 8). This pseudocode algorithm consists of a single loop. It is formatted to conform to
the iteration construct presented in Section2.8. The algorithm takes two arguments, one is
a list image and the other is a stack image. (Stack images and list images were defined in
Definitions6and7.) The first argument,i1, is a binary list image representingw.We assume
thatn is a power of 2. The second argument,i2, is a unary stack image of length log2 n,
and is used to bound the iteration of the algorithm’s loop. The algorithm uses addressc as
it constructs, one binary symbol image at a time, a binary stack image of length log2 n. At
halt, the binary stack image at addressc represents the indexi of the 1 inw. This index is
returned through addressa when the algorithm terminates. To aid the reader, each line of
the pseudocode algorithm in Fig.8 is prepended with a pair of coordinates that relate the
pseudocode to the beginning of the corresponding code in theCSMversion of the algorithm.
The CSM version of the algorithm is given in Fig.9.

Definition 13 (Comparison in CSM). A comparison in a CSM computation is defined as a
conditional branching instruction.

Theorem 4. There exists a CSM that solves NIH in�(log2 n) comparisons for a list of
lengthn, wheren = 2k, k ∈ N, k�1.

Proof. The proof is provided by the algorithm in Fig.9. Correctness: the correctness
is most easily seen from the pseudocode algorithm in Fig.8 and the following inductive
argument. (Fig.8 contains a mapping from pseudocode statements to the CSM statements
of Fig.9.) The two inputs are a binary list image representation ofw (imagei1) and a unary
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stack image of length log2 n (imagei2). During the first iteration of the loop, a single image
f1 is popped fromi2, andi1 is divided equally into two list images (a left-hand image and a
right-hand image). The nonzero peak (representing the 1 inw) will be either in the left-hand
list image or the right-hand list image. In order to determine which list image contains the
peak in a constant number of steps, the left-hand list image is transformed such that its centre
will contain a weighted sum of all of the values over the whole list image. Effectively, the
list image is transformed to an element of the binary image set{f0, f1} (see Definition5).
If the left-hand list image is transformed tof1 (if the centre of this transformed list image
contains a nonzero amplitude) then the left-hand list image contained the peak. In this case,
the right-hand image is discarded, andf0 is pushed onto stack imagec. Otherwise, the
right-hand list image contained the peak, the left-hand list image is discarded, andf1 is
pushed ontoc. After the first iteration of the loop, the most significant bit of the solution to
the problem is represented by the top of stack imagec, andi1 has been reduced to half its
length. For the second iteration of the loop, a second imagef1 is popped from counteri2,
the list image is divided in two, and the appropriate half discarded. The algorithm continues
in this binary search fashion until the image popped fromi2 is f0. Imagec is copied into
a and the algorithm halts. At halt, the index (in binary) of the 1 inw is represented by the
stack image ina of length log2 n.
Complexity: The loop in the algorithm makes exactly log2 n iterations, corresponding

to log2 n + 1 evaluations of the loop guard. Inside the loop, there is a single compari-
son. In total, the CSM algorithm makes 2 log2 n + 1 comparisons to transform the binary
list image representation ofw (of lengthn) into the binary stack image representation of
indexi. �
Theorem4 states computational complexity in terms of number of comparisons, so that

the result can be directly compared with the lower bound analyses from classical algorithm
theory and quantum complexity theory. This simplification hides linearSPATIALRES and
FREQoverheads, as the following corollary shows.

Corollary 5. There exists a CSM that solves NIH in�(log2 n) TIME, constantGRID,�(n)

SPATIALRES, constantDYRANGE, constantAMPLRES, constantPHASERES, andO(n) FREQ,
for a list of lengthn, wheren = 2k, k ∈ N, k�1.

Proof. The proof is provided by the algorithm in Fig.9. Correctness: The correctness
follows from Theorem4.

Complexity: Each iteration of the loop requires constantTIME. The totalTIME from
problem instance to solution is 23 log2 n + 11. From Section2.3, all CSMs require con-
stantGRID. The maximum length required of any stack image during the computation is
log2 n + 1 (for imagec). This results inSPATIALREScomplexity of 2n. The CSM requires
constantAMPLRES, PHASERESandDYRANGE, because all input values will be binary. Even
after the FT operation, only the binarised zero frequency component is relevant to the
computation so we do not need to preserve the amplitudes or phases of any of the other
spatial frequency components. Finally, the CSM requires an upper bound of O(n) FREQ

to accompany the linearSPATIALRES (assuming traditional diffraction limited resolution
techniques). �
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5. Conclusion

We have presented the CSM, an analog model of computation inspired by the field of
optical information processing. We have given some insight into the computational power
of the CSM by proving it can simulate ARNNs (this simulation includes linear time matrix
multiplication), and by giving a�(log2 n) unordered search algorithm that does not make
useofarbitrary real/complexconstants.Themodel doesnot support arbitraryequality testing
of images, and so in this sense is closer in spirit to models found in[5,12,19]than (say) the
Blum, Shub, and Smale model[3,4]. However, allowing arbitrary real/complex constants
gives the model a lot of computational power. For future work it would be interesting to
classify the computational power of discrete variants of the CSM.

Acknowledgements

Wewish to acknowledge Maurice Margenstern and the anonymous reviewers for helpful
advice.

References

[1] J.L. Balcázar, J. Díaz, J. Gabarró, Structural complexity, EATCS Monographs on Theoretical Computer
Science, vols. I and II, Springer, Berlin, 1988.

[2] C.H. Bennett, E. Bernstein, G. Brassard, U. Vazirani, Strengths and weaknesses of quantum computing,
SIAM J. Comput. 26 (5) (1997) 1510–1523.

[3] L. Blum, F. Cucker, M. Shub, S. Smale, Complexity and Real Computation, Springer, NewYork, 1997.
[4] L. Blum, M. Shub, S. Smale, A theory of computation and complexity over the real numbers: NP-

completeness, recursive functions and universal machines, Bull. Amer. Math. Soc. 21 (1989) 1–46.
[5] M.L. Campagnolo, Computational complexity of real valued recursive functions and analog circuits, Ph.D.

Thesis, Instituto Superior Técnico, Universidade Técnica de Lisboa, 2001.
[6] F.S. Chen, J.T. LaMacchia, D.B. Fraser, Holographic storage in lithium niobate, Appl. Phys. Lett. 13 (7)

(1968) 223–225.
[7] A.E. Chiou, Photorefractive phase-conjugate optics for image processing, trapping, and manipulation of

microscopic objects, Proc. IEEE 87 (12) (1999) 2074–2085.
[8] J.W. Goodman, Operations achievable with coherent optical information processing systems, Proc. IEEE 65

(1) (1977) 29–38.
[9] J.W. Goodman, Introduction to Fourier Optics, second ed., McGraw-Hill, NewYork, 1996.
[10] L.K. Grover, A fast quantum mechanical algorithm for database search, in: Proc. 28th Annu. ACM Symp.

Theory of Computing,1996, pp. 212–219.
[11] D. Knuth, Sorting and Searching, TheArt of Computer Programming,Vol. 3,Addison-Wesley, Reading, MA,

1973.
[12] C. Moore, Recursion theory on the reals and continuous-time computation, Theoret. Comput. Sci. 162 (1)

(1996) 23–44.
[13] T.J. Naughton, A model of computation for Fourier optical processors, in: R.A. Lessard, T. Galstian (Eds.),

Optics in Computing 2000, Proc. SPIE, Vol. 4089, Quebec, Canada, 2000, pp. 24–34.
[14] T. Naughton, Z. Javadpour, J. Keating, M. Klíma, J. Rott, General-purpose acousto-optic connectionist

processor, Opt. Eng. 38 (7) (1999) 1170–1177.
[15] T.J. Naughton, D.Woods, On the computational power of a continuous-space optical model of computation,

M. Margenstern,Y. Rogozhin (Eds.), Machines, Computations and Universality; 3rd Internat. Conf., Lecture
Notes in Computer Science, Vol. 2055, Springer, Berlin, 2001, pp. 288–299.



258 D.Woods, T.J. Naughton / Theoretical Computer Science 334 (2005) 227–258

[16] A. Pu, R.F. Denkewalter, D. Psaltis, Real-time vehicle navigation using a holographic memory, Opt. Eng. 36
(10) (1997) 2737–2746.

[17] R. Rojas, Conditional branching is not necessary for universal computation in von Neumann computers, J.
Universal Comput. Sci. 2 (11) (1996) 756–768.

[18] H.T. Siegelmann, Neural networks and analog computation: beyond the Turing limit, Progress in Theoretical
Computer Science, Birkhäuser, Boston, 1999.

[19] H.T. Siegelmann, E.D. Sontag, Analog computation via neural networks, Theoret. Comput. Sci. 131 (2)
(1994) 331–360.

[20] A. VanderLugt, Signal detection by complex spatial filtering, IEEE Trans. Inform. Theory IT-10 (1964)
139–145.

[21] A. VanderLugt, Optical Signal Processing,Wiley Series in Pure andApplied Optics,Wiley, NewYork, 1992.
[22] P.-Y. Wang, M. Saffman, Selecting optical patterns with spatial phase modulation, Opt. Lett. 24 (16) (1999)

1118–1120.
[23] C.S. Weaver, J.W. Goodman, A technique for optically convolving two functions, Appl. Opt. 5 (7) (1966)

1248–1249.
[24] K. Weihrauch, Computable Analysis: An Introduction, Texts in Theoretical Computer Science, Springer,

Berlin, 2000.
[25] F.T.S.Yu, T. Lu, X.Yang, D.A. Gregory, Optical neural network with pocket-sized liquid–crystal televisions,

Opt. Lett. 15 (15) (1990) 863–865.


	An optical model of computation
	Introduction
	CSM
	CSM definition
	Optical realisation
	Complexity measures
	Representing data as images
	CSM deciding language membership
	Transformation from continuous image to finite address
	Reasonable encodings of N

	Conditional branching from unconditional branching
	A general iteration construct

	Computability results
	Boolean circuits and ARNNs
	Formal net deciding language membership
	Statement of main result
	ARNN representation
	ARNN simulation overview
	ARNN simulation algorithm
	Explanation of Figs. 5 and 6
	Complexity analysis of simulation algorithm
	CSM deciding language membership by formal net simulation

	Unordered search
	Conclusion
	Acknowledgements
	References


