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Abstract

We survey some work concerned with small universal Turing machines, cellular au-
tomata, tag systems, and other simple models of computation. For example it has
been an open question for some time as to whether the smallest known universal
Turing machines of Minsky, Rogozhin, Baiocchi and Kudlek are efficient (polyno-
mial time) simulators of Turing machines. These are some of the most intuitively
simple computational devices and previously the best known simulations were ex-
ponentially slow. We discuss recent work that shows that these machines are indeed
efficient simulators. As a related result we also find that Rule 110, a well-known
elementary cellular automaton, is also efficiently universal. We also mention some
old and new universal program-size results, including new small universal Turing
machines and new weakly, and semi-weakly, universal Turing machines. We then
discuss some ideas for future work arising out of these, and other, results.
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1 Introduction

In this short survey we explore results related to the time and size complexity
of universal Turing machines, and some related models. We also discuss results
for variants on the Turing machine model to give an idea of the many strands
of work in the area. Of course the choice of topics is incomplete and reflects the
authors’ interests, and there are other interesting surveys that may interest
the reader [29,21,27].

In 1956 Shannon [71] considered the question of finding the smallest possible
universal Turing machine, where size is the number of states and symbols.
In the early Sixties, Minsky and Watanabe had a running competition to
see who could find the smallest universal Turing machine [36,39,77,78]. Early
attempts [15,78] gave small universal Turing machines that efficiently (in poly-
nomial time) simulated Turing machines. In 1962, Minsky [39] found a small
7-state, 4-symbol universal machine. Minsky’s machine worked by simulating
2-tag systems, which where shown to be universal by Cocke and Minsky [6].
Rogozhin [65] extended Minsky’s technique of 2-tag simulation and found
small machines with a number of state-symbol pairs. Subsequently, some of
Rogozhin’s machines were reduced in size or improved by Robinson [63], Ro-
gozhin [68], Kudlek and Rogozhin [19], and Baiocchi [4]. All of the smallest
known 2-tag simulators are plotted as circles in Figure 1. Also, Table 1 lists a
number of these machines.

Unfortunately, Cocke and Minsky’s 2-tag simulation of Turing machines was
exponentially slow. The exponential slowdown was essentially caused by the
use of a unary encoding of Turing machine tape contents. Therefore, for many
years it was entirely plausible that there was an exponential trade-off between
program size complexity on the one hand, and time/space complexity on the
other; the smallest universal Turing machines seemed to be exponentially slow.

Figure 1 shows a non-universal curve. This curve is a lower bound that gives
the state-symbol pairs for which it is known that the halting problem is de-
cidable [45]. The 1-symbol case is trivial, and the 1-state case was shown by
Shannon [71] and, by using another method, Hermann [12]. Pavlotskaya [56]
and, via another method, Kudlek [18] have shown that there are no universal
2-state, 2-symbol machines, where one transition rule is reserved for halting.
Pavlotskaya [57] has also shown that there are no universal 3-state, 2-symbol
machines, and also claimed [56], without proof, there are no universal ma-
chines for the 2-state, 3-symbol case. Again, both of these cases assume that
a transition rule is reserved for halting.
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: universal, direct simulation, O(t2)
bc : universal, 2-tag simulation, O(t4 log2 t)
u : universal, bi-tag simulation, O(t6)
ld : semi-weakly universal, direct simulation, O(t2)
l : semi-weakly universal, cyclic-tag simulation, O(t4 log2 t)
r : weakly universal, Rule 110 simulation, O(t4 log2 t)
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Fig. 1. State-symbol plot of small universal Turing machines. The type of simulation
is given for each group of machines. Also we give the simulation overheads in terms
of simulating a single tape, deterministic Turing machine that runs in time t.

2 Time and size efficiency of universal machines

As mentioned above, some of the very earliest small Turing machines were
polynomial time simulators. Subsequently attention turned to the smaller, but
exponentially slower, 2-tag simulators given by Minsky, Rogozhin and others.

Recently [49] we have given small machines that are efficient polynomial time
simulators. More precisely, if M is a deterministic single-tape Turing machine
that runs in time t, then there are machines, with state-symbol pairs given by
the squares in Figure 1, that directly simulate M in polynomial time O(t2).
These machines define a O(t2) curve. They are currently the smallest known
universal Turing machines that simulate Turing machines in O(t2) time

Given these efficient O(t2) simulators it still remained the case that the small-
est machines were exponentially slow. However we have recently shown [82]
that 2-tag systems are in fact efficient simulators of Turing machines. More
precisely, if M is a deterministic single-tape Turing machine that runs in
time t then there is a 2-tag system that simulates M and runs in polynomial
time O(t4 log2 t). The small machines of Minsky, Rogozhin, and others have a
quadratic time overhead when simulating 2-tag systems, hence by the result
in [82] they simulate Turing machines in time O(t8 log4 t). It turns out that
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the time overhead can be improved [45] to O(t4 log2 t), giving the O(t4 log2 t)
machines in Figure 1. Thus, there is currently little evidence for the claim
of an exponential trade-off between program size complexity, and time/space
complexity.

From the point of view of program size, Neary and Woods [45,46,50] have
recently given four Turing machines that are presently the smallest known
(standard) machines with 2, 3, 4 and 5 symbols. The 5-symbol machine im-
proves on the 5-symbol machine of Rogozhin [68] by one transition rule. The
remainder of these machines improve on the 2- and 4-symbol machines of
Baiocchi [4], and the 3-symbol machine of Rogozhin [68], by one state each.
They simulate our universal variant of tag systems called bi-tag systems [47].
These small machines simulate Turing machines in polynomial time O(t6) and
are illustrated as triangles in Figure 1. Bi-tag systems are essentially 1-tag
systems (and so they read and delete one symbol per timestep) augmented
with additional context sensitive rules that read, and delete, two symbols per
timestep. On the one hand bi-tag systems are universal, while on the other
hand they are sufficiently ‘simple’ to be simulated by such small machines.

Exponentially improving the time efficiency of 2-tag systems has implications
for a number of models of computation, besides small universal Turing ma-
chines. Following our result, the simulation efficiency of many biologically
inspired models of computation, including neural networks, H systems and
P systems, has been improved from exponential to polynomial. For example,
Siegelmann and Margenstern [72] give a neural network that uses only nine
high-order neurons to simulate 2-tag systems. Taking each synchronous up-
date of the nine neurons as a single parallel timestep, their neural network
simulates 2-tag systems in linear time. They note that “tag systems suffer a
significant slow-down ... and thus our result proves only Turing universality
and should not be interpreted complexity-wise as a Turing equivalent.” Our
work shows that their neural network is in fact efficiently universal. Rogozhin
and Verlan [70] give a tissue P system with eight rules that simulates 2-tag
systems in linear time, and thus we have improved its simulation time over-
head from exponential to polynomial. This system uses splicing rules (from H
systems) with membranes (from P systems) and is non-deterministic. Harju
and Margenstern [11] gave an extended H-system with 280 rules that gener-
ates recursively enumerable sets using Rogozhin’s 7-state, 4-symbol universal
Turing machine. Using our result from 2-tag systems, the time efficiency of
their construction is improved from exponential to polynomial, with a possible
small constant increase in the number of rules. The efficiency of Hooper’s [14]
small 2-tape universal Turing machine is also improved from exponential to
polynomial. The technique of simulation via 2-tag systems is at the core of
many of the universality proofs in Margenstern’s survey [29]. Our work expo-
nentially improves the time overheads in these simulations, such as Lindgren
and Nordahl’s cellular automata [20], Margenstern’s non-erasing Turing ma-

4



chines [23,25], and Robinson’s tiling [62].

3 Non-standard universal Turing machines; time efficiency and

program size

So far we have been discussing results for universal Turing machines that have
one tape, one tape head, and are deterministic (we often refer to this setup as
the standard model). Of course one can consider results for other variants of
the model. There are many generalised models, for example allowing multiple
tapes, multiple dimensions, or even coupling the Turing machine with a finite
automaton. Restricted models include non-erasing and reversible Turing ma-
chines, and machines with restricted instructions. In this section we explore
program size and time complexity results for a number of generalised and re-
stricted models. Table 2 contains program size results for a number of such
non-standard machines.

3.1 Weak universality and Rule 110

An interesting generalisation occurs when we stick to the standard conven-
tions, but we allow the blank portion of the tape to contain a word, that is
constant (independent of the input), and is repeated infinitely often in one
direction, say to the left of the input. We say that such Turing machines are
semi-weakly universal. Some of the earliest small universal Turing machines
were semi-weak [78,79]. Sometimes another word is also repeated infinitely
often to the right. Universal machines that use this setup are called weakly
universal [31].

It is not difficult to see how this generalisation can help to reduce program
size. For example, it is typical of small universal Turing machine computations
that the program being simulated is stored on the tape. When reading an
instruction we often mark certain symbols. At a later time we then restore
marked symbols to their original values. If the simulated program is repeated
infinitely often, say to the left of the input, things may be much easier as we
can simply skip the ‘restore’ phase of our algorithm and access a new copy of
the program when simulating the next instruction, thus reducing the universal
program’s size.

This was the strategy used by Watanabe [78,79] to find the semi-weak, di-
rect Turing machine simulators shown in Figure 1 as hollow diamonds. Re-
cently [84] we have given two new semi-weakly universal machines and these
are shown as solid diamonds in Figure 1. These machines simulate cyclic tag
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systems [7,81]. It is interesting to note that our machines are symmetric with
those of Watanabe, despite the fact that we use a different simulation tech-
nique. Our 4-state, 5-symbol machine has only 17 transition rules, making
it the smallest known semi-weakly universal machine (Watanabe’s 5-state, 4-
symbol machine has 18 transition rules). The time overhead for these machines
is polynomial. More precisely, if M is a single-tape deterministic Turing ma-
chine that runs in time t, then M is simulated by either of our semi-weak
machines in time O(t4 log2 t). Watanabe’s semi-weak machines also ran in
polynomial time, with a very efficient overhead of O(t2).

Cook, Eppstein, and Wolfram [7,81] gave weakly universal Turing machines
that were significantly smaller than the existing semi-weak machines. These
were improved upon by Neary and Woods [51] to give the smallest known
weakly universal machines. In (states, symbols) notation their sizes are (2, 4),
(3, 3) and (6, 2), and they are illustrated in Figure 1. These machines work
by simulating Rule 110, a very simple kind of cellular automaton. Rule 110 is
an elementary cellular automaton, which means that it is a one-dimensional,
nearest neighbour, binary cellular automaton [80]. More precisely, it is com-
posed of a sequence of cells . . . p

−1p0p1 . . . where each cell has a binary state
pi ∈ {0, 1}. At timestep t + 1 the value of cell pi,t+1 = F (pi−1,t, pi,t, pi+1,t) is
given by the synchronous local update function F

F (0, 0, 0) = 0 F (1, 0, 0) = 0

F (0, 0, 1) = 1 F (1, 0, 1) = 1

F (0, 1, 0) = 1 F (1, 1, 0) = 1

F (0, 1, 1) = 1 F (1, 1, 1) = 0

Rule 110 was shown to be universal via an impressive and detailed simulation
of cyclic tag systems, the result is stated and described in [81] and the full proof
is given in [7]. In the proof, the Rule 110 instance has a special (constant) word
repeated infinitely to the left of the input, and another to the right. Rule 110
has a very simple update rule which facilitates the writing of very small weak
Turing machines that simulate it.

As noted, Rule 110 was shown to be universal by simulating cyclic tag systems,
which in turn simulate 2-tag systems. The chain of simulations included the
exponentially slow 2-tag algorithm of Cocke and Minsky, thus Rule 110, and
the weakly universal machines that simulate it, were exponentially slow. In a
recent paper [48] we have improved their simulation time overhead to poly-
nomial by showing that cyclic tag systems are efficient simulators of Turing
machines. This result has interesting implications for Rule 110. For example,
given an initial configuration of Rule 110, and a value t in unary, predicting t

timesteps of a Rule 110 computation is P-complete. Therefore, unless P = NC,
which is widely believed to be false, we cannot hope to quickly (in polyloga-
rithmic time) predict the evolution of this simple cellular automaton even if
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we have a polynomial amount of parallel hardware. Rule 110 is the simplest
(one-dimensional, nearest neighbour) cellular automaton that has been shown
to have a P-complete prediction problem. In particular Ollinger’s [53] intrinsic
universality result already shows that prediction for one dimensional nearest
neighbour cellular automata is P-complete for 6 states (later improved to 4
states by Richard [61]), and our result improves this to 2 states. The question
of whether Rule 110 prediction is P-complete has been, directly and indirectly,
asked in a number of previous works (for example [2,40,41]).

It is currently unknown whether all of the lower bounds in Figure 1 hold for
weak machines. For example, the non-universality results of Pavlotskaya were
proven for the case where one transition rule is reserved for halting, however
the smallest weak machines do not halt.

3.2 Other non-standard universal Turing machines

Weakness has not been the only generalisation on the standard model in the
search for ever smaller universal machines. We give some notable examples
here, many others are to be found in Table 2.

Before Shannon’s famous paper, Moore [42] observed that 2-symbol machines
were universal as any Turing machine could be converted into a 2-symbol
machine by the (now) usual encoding. In the same paper Moore used this
observation to give a universal 3-tape machine with 15 states and 2 symbols.
Moore’s machine uses only 27 instructions, each instruction being a sextuple
that either moves one of its tape heads or prints a single symbol to one of its
tapes. One of the tapes in Moore’s 3-tape machine is circular and contains the
simulated program, therefore his machine also operates correctly if the circu-
lar tape is replaced with a semi-weak tape. Moore’s result has been largely
ignored in the literature despite being the first published small universal Tur-
ing machine. Interestingly, Moore’s paper cites unpublished work by Shannon
on the universality of non-erasing machines.

Hooper [13,14] gave universal machines with 2 states, 3 symbols and 2 tapes,
and with 1 state, 2 symbols and 4 tapes. One of the tapes in Hooper’s 4-
tape machine is circular and contains the simulated program, and so could be
replaced by a semi-weak tape. Priese [60] gave a 2-state, 4-symbol machine
with a 2-dimensional tape, and a 2-state, 2-symbol machine with a pair of
2-dimensional tapes. Margenstern and Pavlotskaya [32,33] gave a 2-state, 3-
symbol Turing machine that uses only 5 instructions and is universal when
coupled with a finite automaton. They also showed that the halting problem
is decidable for such machines with 4 instructions [33].
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3.3 Restricted universal Turing machines

If we restrict the standard Turing machine model the problem of finding very
small universal machines becomes more difficult. Over the years, a number of
authors have looked at non-erasing Turing machines which are permitted to
overwrite blank symbols only. Moore [42] mentions that Shannon had proved
that such non-erasing Turing machines simulate arbitrary Turing machines,
however Shannon’s work was never published. Shortly after, Shannon proved
that 2-symbol Turing machines are universal, and Wang [75] proved that 2-
symbol non-erasing Turing machines are universal. Later, Minsky proved the
same result as Wang, but using the technique of simulation via non-writing
Turing machines, yet another (universal) restriction [38]. More recently, Mar-
genstern [22–26,30] has constructed a number of small non-erasing universal
machines with further restrictions.

Fischer [9] gives a number of universality results for Turing machines that
use restricted forms of transition rules. In one result he proves that 3-state
Post machines are universal (Post machines are like Turing machines, but
they can not write and move in the same timestep). Interestingly, Aanderaa
and Fischer [1] show that the halting problem for 2-state Post machines is
decidable.

Bennett [5] has shown that 3-tape reversible Turing machines are universal.
Morita and others have since shown universality results for reversible Turing
machines with 1 tape and 2 symbols [43], and 17 states and 5 symbols [44].

4 Further work

There are many avenues for further work in this area, here we highlight a few
examples.

Applying computational complexity theory to the area of small universal Tur-
ing machines allows us to ask a number of questions that are more subtle
than the usual questions about program size. As we move towards the origin
in Figure 1, the universal machines have larger (but polynomial) time over-
heads. Can the time overheads in Figure 1 be further improved (lowered)?
Can we prove lower bounds on the simulation time of machines with a given
state-symbol pair? Proving non-trivial simulation time lower bounds seems
like a difficult problem. Such results could be used to prove that there is a
polynomial trade-off between simulation time and universal program size.

As we move away from the origin, the non-universal machines seem to have
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more power. For example Kudlek’s classification of 2-state, 2-symbol machines
shows that the sets accepted by these machines are regular, with the exception
of one context free language (anbn). Can we hope to fully characterise the sets
accepted by non-universal machines (e.g. in terms of complexity or automata
theoretic classes) with given state-symbol pairs or other program restrictions?

When discussing the complexity of small machines the issue of encodings be-
comes very important. For example, when proving that the prediction problem
for a small machine is P-complete [10], the relevant encodings should be in
logspace, and this is the case for all of the polynomial time machines in Fig-
ure 1.

Of course there are many models of computation that we have not mentioned
where researchers have focused on finding small universal programs. Post’s [59]
tag systems are an interesting example. Minsky [37,38] showed that tag sys-
tems are universal with deletion number 6. Cocke and Minsky lowered the
deletion number to 2, by showing that 2-tag systems were universal. They
used productions (appendants) of length at most 4. Wang [76] further lowered
the production length to 3. Recently, De Mol [8] has given a lowerbound by
showing that the reachability (and thus halting) problems are decidable for
2-tag systems with production length 2. It would be interesting to find the
smallest universal tag systems in terms of number of symbols, deletion length,
and production length.

The space between the non-universal curve and the smallest non-weakly uni-
versal machines in Figure 1 contains some complicated beasts. These lend
weight to the feeling that finding new lower bounds on universal program
size is tricky. Most noteworthy are the weakly and semi-weakly universal ma-
chines discussed above. Table 2 highlights that the existence of general models
that have provably less states and symbols than the standard universal ma-
chines (for example the machines with (state, symbol, dimensions, tapes) of
(2,2,2,2) [60], (1,7,3,1) [17], and (1,2,1,4) [14]). Also of importance are the
small machines of Margenstern [28,29], Baiocchi [3], and Michel [34,35] that
live in this region and simulate iterations of the 3x + 1 problem. So it seems
that there are plenty of animals yet to be tamed.
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states symbols state-symbol product author

m 2 2m Shannon [71]

2 n 2n Shannon [71]

12 6 72 Takahashi [73] (mentioned in [78])

10 6 60 Ikeno [15] (also appears in [36])

8 6 48 Watanabe [77] (mentioned in [39])

7 6 42 Minsky [36]

8 5 40 Watanabe [78]

6 6 36 Minsky [39]

7 4 28 Minsky [39]

24 2 48 Rogozhin [64,65,68]

2 21 42 Rogozhin [64,65]

11 3 33 Rogozhin [64,65]

3 10 30 Rogozhin [64,65]

7 4 28 Rogozhin [64,65,68]

5 5 25 Rogozhin [64,65,68]

4 6 24 Rogozhin [64,65,68]

2 18 36 Rogozhin [68]

10 3 30 Rogozhin [66,68]

3 10 30 Rogozhin [67,68]*

22 2 44 Rogozhin [69]

19 2 38 Baiocchi [4]

7 4 28 Baiocchi [4]*

3 9 27 Kudlek & Rogozhin [19]

5 5 25 Neary & Woods [50]*

6 4 24 Neary & Woods [50]

9 3 27 Neary & Woods [50]

18 2 36 Neary & Woods [50]

Table 1
Small standard universal Turing machines. If there are multiple machines with the
same state-symbol pair, the machine with the smallest number of instructions is
denoted *.
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states symbols dimensions tape author

15 2 1 3 Moore [42]†

6 5 1 1 Watanabe [78]†

1 2 1 4 Hooper [13,14]†

2 3 1 2 Hooper [13,14]

7 3 1 1 Watanabe (mentioned in [79,52])†

5 4 1 1 Watanabe [79]†

8 4 2 1 Wagner [74]

2 7 2 1 Ottmann [54]‡

10 2 2 1 Ottmann [55,17]‡

6 3 2 1 Ottmann [55,17]‡

4 4 2 1 Ottmann [55,17]‡

2 6 2 1 Kleine-Büning & Ottmann [17]‡

1 7 3 1 Kleine-Büning & Ottmann [17]‡

2 5 2 1 Kleine-Büning & Ottmann [17]‡

2 3 2 1 Kleine-Büning & Ottmann [17]‡

4 5 2 1 Kleine-Büning & Ottmann [17]

3 6 2 1 Kleine-Büning & Ottmann [17]

10 2 2 1 Kleine-Büning [16]

2 5 2 1 Kleine-Büning [16]

2 4 2 1 Priese [60]

2 2 2 2 Priese [60]

4 7 1 1 Pavlotskaya [58]⋆

2 5 1 1 Margenstern & Pavlotskaya [32]⋆

2 3 1 1 Margenstern & Pavlotskaya [33]⋆

4 3 1 1 Cook [7] & Wolfram [81]‡

3 4 1 1 Cook [7] & Wolfram [81]‡

2 5 1 1 Cook [7] & Wolfram [81]‡

7 2 1 1 Eppstein (published by Cook [7])‡

3 7 1 1 Woods & Neary [84]†

4 5 1 1 Woods & Neary [84]†

6 2 1 1 Neary & Woods [51]‡

3 3 1 1 Neary & Woods [51]‡

2 4 1 1 Neary & Woods [51]‡

Table 2
Small non-standard universal Turing machines. Semi-weak machines are denoted
by †, weak machines by ‡, and machines coupled with a finite automaton by ⋆.
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