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Molecular self-assembly, the formation of large
structures by small pieces of matter sticking together
according to simple local interactions, is a ubiquitous
phenomenon. A challenging engineering goal is to
design a few molecules so that large numbers of
them can self-assemble into desired complicated
target objects. Indeed we’d like to understand the
ultimate capabilities and limitations of this bottom-
up fabrication process. We look to theoretical models
of algorithmic self-assembly, where small square tiles
stick together according to simple local rules in order
to carry out a crystal growth process. In this survey
we focus on the use of simulation between such
models to classify and separate their computational
and expressive powers. Roughly speaking, one model
simulates another if they grow the same structures, via
the same dynamical growth processes.

Our journey begins with the result that there is
a single intrinsically universal tile set that, with
appropriate initialisation and spatial scaling, simulates
any instance of Winfree’s abstract Tile Assembly Model.
This universal tile set exhibits something stronger
than Turing universality: it captures the geometry and
dynamics of any simulated system in a very direct
way. From there we find that there is no such tile set
in the more restrictive noncooperative model, proving
it weaker than the full Tile Assembly Model. In the
two-handed model, where large structures can bind
together on one step, we encounter an infinite set of
infinite hierarchies of strictly increasing simulation
power. Towards the end of our trip, we find one tile
to rule them all: a single rotatable flipable polygonal
tile that simulates any tile assembly system. We find
another tile that aperiodically tiles the plane (but with
small gaps). These and other recent results show that
simulation is giving rise to a kind of computational
complexity theory for self-assembly. It seems this
could be the beginning of a much longer journey, so
directions for future work are suggested.
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Figure 1. An instance of the abstract Tile Assembly Model, and an example showing simulation and intrinsic universality.

(a) A tile assembly system T consists of a tile set, seed tile and a temperature τ ∈N. Coloured glues on the tiles’ sides

have a natural number strength (shown here as 0, 1 or 2 coloured tabs). (b) Growth begins from the seed with tiles sticking

to the growing assembly if the sum of the strengths of the matching glues is at least τ . (c) An intrinsically universal tile

set U . (d) When initialised with a seed assembly (that encodes T ) and at temperature 2, the intrinsically universal tile

set simulates the dynamics of T with each tile placement in T being simulated by the growth of an m×m block of tiles.

Single tile attachment is denoted by→ and
∗→ denotes multiple tile attachments. Note that both systems have many other

growth dynamics that are not shown.

1. Introduction
Molecular self-assembly, the formation of large structures by small pieces of matter sticking
together according to simple local interactions, is a ubiquitous phenomenon in nature. It is also a
phenomenon that we are beginning to learn how to control, or program, by designing molecules
and their local interaction rules. Since Seeman’s pioneering work on assembling 2D [25,58] lattices
from small artificially-synthesised DNA molecules, we have learned how to self-assemble various
kinds of shapes and patterns, such as Rothemund’s nanoscale squares, tiny maps and smiley
faces [54], as well as 3D lattices [66] and shapes [17] including spheres and vases [30], and Latin,
Arabic and Chinese characters [61]. These structures are hardcoded in the sense that for each
position a unique DNA molecule is synthesised; the larger the structure the more unique molecular
components we need to design. Thinking of Seeman’s periodic 2D DNA structures as lattices of
tiles, Winfree [62] asked if one could use smarter molecules, that exploit computation to come
together in such a way that individual tile types end up appearing in many different locations
in the target shape or pattern. Since then a number of examples of such algorithmic tile-based
structures have been self-assembled, including regular arrays of tiles [63], fractal structures [26,55],
bit-copying systems [5,6,57] and binary counters [5,22]. Given these experimental successes, it is
imperative to have a theory of self-assembly to guide this rapidly developing field of nanoscale
engineering. Models of algorithmic self-assembly are capable of Turing-universality, and so of an
infinite variety of computational behaviours, but yet distinct enough from existing computational
models to present interesting theoretical challenges.

The abstract Tile Assembly Model, put forward by Winfree [62], is a kind of asynchronous
nondeterministic cellular automaton that models crystal growth processes. Put another way, the
abstract Tile Assembly Model restricts classical square Wang tiling [60] to use a mechanism for
crystal-like growth of a tiling, one tile at a time, starting from a special seed tile. Formally, an
instance of the abstract Tile Assembly Model [62] is called a tile assembly system and is a triple
T = (T, σ, τ) consisting of a finite set T of square tiles, a seed assembly σ (one or more tiles stuck
together), and a temperature τ ∈ {1, 2, 3, . . .}, as shown in Figure 1(a). Each side of a square tile
has a glue (or colour) g which in turn has a strength s∈ {0, 1, 2, . . .}. Growth occurs on the integer
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plane and begins from a seed assembly (or a seed tile) placed at the origin, as shown in Figure 1(b).
A tile sticks to a partially-formed assembly if it can be placed next to the assembly in such a way
that enough of its glues match the glues of the adjacent tiles on the assembly and the sum of
the matching glue strengths is at least the temperature. Intuitively, the tile sticks if its binding is
sticky enough to overcome thermal fluctuations in the environment. Growth proceeds one tile at a
time, asynchronously and nondeterministically. In this model tiles may not overlap nor rotate, and
unlike Wang tiling, adjacent glues (colours) may mismatch in an assembly. The model is capable of
Turing machine simulation [62], and indeed computation via Turing machine simulation can be
used to guide the process of self-assembly [59].

Of course individual tiles need not be square, models with triangles [28,38], hexagons [15,
28,38,64] and arbitrary polyominos and polygons [15,23,24,28] have been considered. Yet other
models of self-assembly allow for non-local rules and large-scale interactions. One such model is
the two-handed (or hierarchical) model [3,9,16,21] which allows large structures to stick together if
enough of their tiles’ edge colours match. Another is the Nubot model [64] of molecular robotics
where large assemblies of molecules can grow and then move relative to each other in a rigid-body
fashion. Although some self-assembly models can be thought of as generalizations of cellular
automata, or effectivisations of Wang tiling, these models are all quite distinct from each other in
terms of both questions that can be sensibly asked and results that can be obtained.

(a) Introduction to the use of simulation in self-assembly
In this survey we discuss the relative computational and expressive power of self-assembly models
using simulation as a method to compare these models. Our notion of simulation is specifically
designed to capture, in a formal and natural sense, both production (assemblies) and dynamics
(how those assemblies are built) of self-assembly systems. In the past few years quite a number of
results have come to fruition showing that simulation and the related notion of intrinsic universality
can be used to classify the power of self-assembly systems. Simulation provides one clean theory
to unify a wide range of self-assembly models including models that use different modes of
assembly (single-tile versus multi-tile assembly, with or without rotations and/or flips) and
various geometries (square tiles versus polyomino or polygonal tiles with information-encoding
geometries). Some of these results formally show that intrinsic universality is a distinct notion from
computational (Turing) universality while others show infinite hierarchies of tile assembly systems
with increasing simulation power as we move up the hierarchies. Some of the results mentioned in
this survey are summarised in Figure 2 which the reader should refer to throughout the text.

Tile assemblers have borrowed and generalised the powerful idea of intrinsic universality
from the cellular automata community where it has given rise to a rich theory [4,12,13,29,48,49].1

This short survey attempts to show that we are beginning to see this in self-assembly too. Tile
self-assembly systems are distributed, asynchronous and nondeterministic. Hence it should not be
surprising that our definition of simulation, and even some techniques used in proofs, use concepts
similar to those seen in concurrency control, database theory and the theory of asynchronous state
transition systems. For example, the definition of simulation is related, although with essential
differences, to some notions of weak bisimulation used in the study of asynchronous distributed
systems [45,46]. In particular, in the simulator system we interpret certain parts of assemblies as
representing empty space in the simulated system, and for a time many tiles can be added to such
regions before that region commits to encoding some specific tile in the simulated system. Hence
the simulator makes “hidden”, or “internal”, actions as is seen in weak bisimulation. However, our
notion of simulation is not an instance of weak bisimulation.2 Also, it should be noted that before
the study of intrinsic universality in self-assembly, some previous self-assembly papers [14,59]

1This notion has also been studied in the context of Wang tiling [40,41].
2In particular, our definition allows for simulator assembliesα′, that representα in the simulated system, to represent merely
a proper subset of the dynamics ofα; as long asα′ can be reached by an assembly from which the full set of dynamics is indeed
possible. Weak bisimulation forbids this as there is no way to consistently label the states, or assemblies, of such a simulator
by states in the simulated system.
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Figure 2. Classes of tile assembly systems, and their relationship with respect to simulation. There is an arrow from B to

A if A contains B with respect to simulation: that is for each tile assembly system B ∈B there is a tile assembly system

AB ∈A that simulates B. Dashed arrows denote containment, solid arrows denote strict containment and a self-loop

denotes the existence of an intrinsically universal tile set for a class and its omission implies that the existence of such

a tile set is an open problem. aTAM: abstract Tile Assembly Model (growth from a seed assembly by single tile addition

in 2D), τ denotes “temperature”. 2HAM: Two-Handed Tile Assembly Model (assemblies of tiles stick together in 2D). A

2HAM temperature hierarchy is shown for some c∈ {2, 3, 4, . . .} and, in fact, for each such c the set of temperatures

{ci|i∈ {2, 3, . . .}} gives an infinite hierarchy of classes of strictly increasing simulation power in the 2HAM. Citations

proving the results are given in square brackets. Simulation results for a number of other models are described in the

main text.

made use of notions that can be seen as precursors to the definitions and results discussed here
which perhaps lends weight to the intuition that spatially-scaled dynamics-preserving simulation
is a natural way to compare self-assembly systems.

It is important to point out that besides simulation there are a number of other methods to
compare self-assembly models that also lead to interesting results and proof techniques. Examples
include computational power [11,62], efficiency in terms of the number of tile types needed to
build shapes or patterns [42,53], and computational complexity of verification of properties of tile
assembly systems [2]. See other surveys for more details [18,52].

In this informal survey we forgo formal definitions and proofs, which can be found in the cited
literature.
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2. Simulation and a result: The abstract Tile Assembly Model is
intrinsically universal

Intuitively, one self-assembly model simulates another if they grow the same structures, via the
same dynamical growth processes, possibly with some spatial scaling. In order to be a little more
precise, let S and T be tile assembly systems of the abstract Tile Assembly Model described above.
S is said to simulate T if the following conditions hold: (1) each tile of T is represented by one or
more m×m blocks of tiles in S called supertiles, (2) the seed assembly of T is represented by the
seed assembly of S (one or more connected m×m supertiles), and (3) via supertile representation
every sequence of tile placements in the simulated system T has a corresponding sequence of
supertile placements in the simulator system S, and vice versa. It is worth pointing out that
although the intuitive idea of one assembly system simulating another is fairly simple, the formal
definition gets a little technical as the filling out of supertiles in the simulator is an asynchronous
and nondeterministic distributed process with many supertiles growing independently and in
parallel in the simulator system. See, for example, [44] for a formal definition.

With our notion of simulation in hand we are ready to describe intrinsic universality. Figure 1(d)
illustrates the concept. A class of tile assembly systems C is said to be intrinsically universal if there
exists a single set of tiles U that simulates any instance of C. For each such simulation, U should
be appropriately initialised as an instance (i.e. a tile assembly system) of C itself. For example,
the abstract Tile Assembly Model has been shown to be intrinsically universal [19]. Specifically,
this means that there is a single set of tiles U that when appropriately initialised, is capable of
simulating an arbitrary tile assembly system T . To program such a simulation, tiles from T are
represented as m×m supertiles (built from tiles in U ) and the seed assembly of T is represented
as a connected assembly σT of such supertiles. Furthermore, the entire tile assembly system T (a
finite object) is itself encoded in the supertiles of σT of U . Then if we watch all possible growth
dynamics in both T = (T, σ, τ) and U = (U, σT , 2) we get that both systems produce the same set
of assemblies via the same dynamics where we use a supertile representation function to map from
supertiles over U to tiles from T . It is worth pointing out that in this particular construction [19] the
simulating system is always (merely) at temperature τ = 2 no matter how large the temperature
(τ ≥ 1) of the simulated system.

This intrinsically universal tile set has the ability to simulate both the geometry and growth
order of any tile assembly system. Modulo spatial rescaling, this universal tile set U represents the
full power and expressivity of the entire abstract Tile Assembly Model.

3. A complexity theory for self-assembly: the abstract Tile
Assembly Model

We’ve seen that the abstract Tile Assembly Model is intrinsically universal: a kind of completeness
for the model with respect to our notion of simulation. The class of all Turing machines also exhibits
a kind of completeness shown via the existence of a universal Turing machine, although typically
using a much weaker notion of simulation than ours that cares less about capturing the dynamics
of the simulated machine.3 Now that we know the abstract Tile Assembly Model is intrinsically
universal, and that this holds with a fairly strict notion of simulation, we can attempt to use

3It turns out that one can have a much tighter notion of simulation for Turing machines inspired by the constant spatial
scale factor simulations discussed in this survey, and furthermore it turns out that Turing machines are intrinsically universal
under this notion. As described on the final page of [47], it is possible to have a universal Turing machine that simulates any
Turing machine M with only a constant factor time overhead and a constant factor “spatial rescaling” of tape contents. This
universal machine stores the entire simulated program M (which is of constant size: i.e. independent of the input length) at
the simulated tape head position. Simulating a transition rule involves reading and copying information from the simulated
program, and simulating a move left or right involves moving the entire simulated program one step to the left or right.
Each step is simulated in time independent of the time and space of the simulated machine, and quadratic in the constant-
length simulated program. Intuition compels belief in this being the morally-correct notion of intrinsic universality for Turing
machines. The construction is particularly straightforward as the Turing machine model is both sequential and local.
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simulation to tease apart the power of different tile assembly models. Specifically we ask if natural
subclasses of the model can achieve the full expressive power of the model via spatially-scaled
dynamics-preserving simulation and/or if such subclasses can even simulate each other.

(a) Separating the power of cooperative and noncooperative tile assembly
systems

It has been known for some time that the abstract Tile Assembly Model at temperature 2, where
at least some of the tiles are required to match on two or more sides for correct binding, i.e.
cooperative binding, is capable to highly non-trivial behaviour. Turing machine simulation [53],
efficient production of n× n squares and other simple size-n shapes using Θ(logn/ log logn) tile
types [1], efficient production of arbitrary finite connected shapes using a number of tile types
within a logarithmic factor of the Kolmogorov complexity of the shape [59], and even intrinsic
universality [19] (as already discussed) can all be achieved with cooperative, or temperature 2,
growth.

The fact that the (full) abstract Tile Assembly Model is intrinsically universal means that there
is a subclass of the model, namely the class of systems that use the intrinsically universal tile set U ,
that is capable of simulating the full model. This suggests an obvious question: can we show that
some subclasses of the model are provably weaker than the full model, by showing that systems
from these subclasses can not simulate the full model?

The most notorious such subclass is called temperature 1. Despite its esoteric name, it models
a fundamental and ubiquitous form of growth: asynchronous growing and branching tips in
Euclidian space where each new tile is added if it matches on at least one side. Since temperature 1
binding does not require matching glues on multiple sides, it is called noncooperative binding. A
reasonable analogy is to think of cooperative binding as context sensitive, and noncooperative
binding as context free. In 2D, it’s like snakes on a plane.

Recently it has been shown that that the temperature 1 abstract Tile Assembly Model (i.e.
noncooperative binding) is provably weaker than the full model [44]: in particular, temperature 1
tile assembly is not capable of simulating arbitrary tile assembly systems. In fact, there is a very
simple cooperative tile assembly system, that uses cooperative binding on two sides in merely
one location, that can not be simulated by any noncooperative tile assembly system. This is the
first fully general negative result about temperature 1 that does not assume restrictions on the
model nor unproven hypotheses. The proof uses a simple pumping lemma (called the window
movie lemma) for self-assembly that gives a sufficient condition to modify assembly sequences and
swap parts of assemblies. It is used to fool any claimed noncooperative simulation of cooperative
binding. This lemma has since found use elsewhere and indeed has been generalised in various
ways [7,8,10,27,35]. An interesting aspect of the negative result is that it holds for 3D noncooperative
systems, they too can not simulate arbitrary tile assembly systems. This seems quite shocking, given
that 3D noncooperative systems are Turing-universal [11]! So in particular, 3D noncooperative
systems can simulate 2D (or 3D) cooperative systems by simulating a Turing machine that in
turn simulates the cooperative system, but this loose style of simulation ends up destroying the
geometry and dynamics of tile assembly by encoding everything as “geometry-less” strings.4

Hence, the negative result in [44] can be interpreted to mean that Turing-universal algorithmic
behaviour in self-assembly does not imply the ability to simulate, in a direct geometric fashion,
arbitrary algorithmic self-assembly processes. Despite this negative result, and a recent positive
result showing that noncooperative systems can be programmed to grow assemblies of size
larger than the number of tile types [43], it remains open whether 2D noncooperative systems are
intrinsically universal for themselves, or capable of Turing machine simulation in an error-free
way.

4Or as Paul W.K. Rothemund has put it, 3D noncooperative systems can dream about tile assembly, but can not actually do
tile assembly.
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It was also shown that in 3D there is a (cube) tile set that noncooperatively simulates all 2D
noncooperative systems [44].

(b) Separating the power of cooperative tile assembly systems
Besides the abstract Tile Assembly Model being intrinsically universal, it is also known that
a restricted sub-model, called the locally consistent Tile Assembly Model, is intrinsically
universal [20]. A locally consistent tile assembly system is one where tiles bind without mismatches,
and with binding strength of exactly 2. This sub-model is quite expressive: the standard methods
to simulate Turing machines with tile assembly systems are locally consistent, as are many systems
that have been implemented in the lab to date with DNA [5,6,22,26,55,57]. This begs the question:
are locally consistent systems capable of simulating the full model? Recent work by Becker and
Meunier shows that the answer is “no” [8]. In particular, their results show that any class of tile
assembly systems that has no mismatches, or disallows excess binding strength, can not simulate
the abstract Tile Assembly Model.5

The result tells us that at least some of the tricky aspects of the intrinsic universality simulation
in [19] are required. In particular, in that simulation binding mismatches occur in numerous places
(often as a mechanism to decide which of the competing parts of an m×m simulator supertile will
“win” a competition to decide which simulated tile the supertile encodes). The fact that systems
without mismatches can not simulate those with mismatches [8], tells us that this aspect of the
simulation is required. One of the key innovations in [8] is to generalise the window movie lemma
(a pumping lemma) from [44] so that it can be applied in significantly more complicated settings.
It will be interesting to see if this generalised “bisimulation lemma” finds use elsewhere. Finally,
Becker and Meunier show [8] shows that 3D mismatch-free tile assembly systems are intrinsically
universal and leaves open the question for 2D mismatch-free systems.

It remains as future work to further characterise the power of interesting subclasses of the
abstract Tile Assembly Model, and in particular, to separate such subclasses. Work in this direction
will enable us to understand exactly which of the model’s features are required for specific kinds
of global behaviour.

4. A complexity theory for self-assembly: comparing models of
self-assembly

What about other models of self-assembly besides the abstract Tile Assembly Model?

(a) Two-hands
It has been shown that the two-handed, or hierarchical, model of self-assembly (where large
assemblies of tiles may come together in a single step) is not intrinsically universal [16]. Specifically
there is no tile set that, in the two-handed model, can simulate all two-handed systems for all
temperatures. However, the same paper shows that for each temperature τ ∈ {2, 3, 4, . . .} there
is a tileset Uτ that is intrinsically universal for the class of two-handed systems that work at
temperature τ . Also, there is an infinite hierarchy of classes of such systems with each level strictly
more powerful (can assemble more complicated shapes) than the one below. In fact there are
an infinite set of such hierarchies, as described in the caption of Figure 2. These results give a
formalisation of the intuition that multiple long range interactions are more powerful than fewer
long range interactions in the two-handed model.

By combining results from [9] and [19], we get that there is a tile set for the two-handed model
that (at temperature 2) simulates any tile assembly system T of the abstract Tile Assembly Model.
Specifically, T is simulated using the intrinsically universal tile set U from [19] (which runs at

5Moreover, Becker and Meunier show [8] that mismatch-free and systems without excess binding strength can not simulate
each other.
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temperature 2) which in turn is simulated at temperature 2 using the two-handed construction
in [9].

(b) The one polygon
Demaine, Demaine, Fekete, Patitz, Schweller, Winslow, and Woods [15] take the existence of an
intrinsically universal tile set for the abstract Tile Assembly Model [19] as merely the first in a
sequence of simulations that routes from squares tiles, to the intrinsically universal tile set, to
hexagons (with strength < τ , or weak, glues) to a single polygon that is translatable, rotatable and
flipable. Their fixed-sized polygon, when appropriately seeded, simulates any tile assembly system
from the abstract Tile Assembly Model. This polygon, The One, captures the power of the entire
abstract Tile Assembly Model: to simulate a tile assembly system T one simply puts together a
seed assembly of polygons that encodes T and just lets it go! Likewise, Turing machines can be
simulated with this single tile. It is also shown [15] that with translation only (i.e. no rotation),
such results are not possible with a small (size ≤ 3) seed (although with larger seeds a single
translation-only polyomino simulates the space-time diagram of a 1D cellular automaton). In the
simpler setting of Wang plane tilling, is is shown [15] how to take any tile set T (on the square or
hexagonal lattice) and “compile” it using a very simple proceedure to get a single regular polygon
that simulates exactly the tilings of T , except with tiny gaps between the polygons. In particular, if
one starts with any aperiodic square or hexagon tile set, that tile set can be complied to a single
regular polygonal tile, all of who’s tilings are aperiodic, with tiny gaps between the polygons.

(c) Signal tiles, negative glues, polyominos
Of course, one can imagine reasonable self-assembly models that are quite different from those
already discussed. For a number of such models simulation has been used as a method to compare
their power. These include the experimentally motivated [51] Signal-Passing [50], and Active [39],
Tile Assembly Models with tiles that have molecular (DNA) wires on their surface. Essentially
there is a use-once circuit sitting on the assembly itself! The circuit’s wires make use of Yurke et
al’s [65] beautiful toehold mediated DNA strand displacement mechanism. Recently, Hendricks,
Padilla, Patitz and Rogers [31] have shown that in the two-handed Tile Assembly Model model
there is a single 3D tile set, that can simulate any 2D signal-passing tile assembly system (that
does not have tile detachment). Their result shows that a constant number of planes (in the third
dimension) is sufficient to handle wire crossings and asynchronous signal passing. A number of
results on simulation using the (closely-related) Active Tile Assembly Model can be found in [39],
including simulation of the temperature 2 abstract Tile Assembly model with a spatial scale factor
of 2, and simulation of cellular automata.

Recent work [35] shows that the abstract Tile Assembly Model, and a noncooperative version of
it with both square or domino (or duple) tiles have incomparable power with respect to simulation.
Both models exhibit systems that can not be simulated by the other! Another paper [33] shows
that negative glues (glues that repel each other) on square and domino tiles can be used, at
temperature 1, to simulate the temperature 2 abstract Tile Assembly Model, and that the former
model is actually more powerful than the latter. The same paper points out that the landscape of
self-assembly simulation power versus computational simulation power is rather subtle in the
sense that there are a number of classes of computationally universal systems that are unable to
simulate the (algorithmic and geometric) process of self-assembly.

Fekete, Hendricks, Patitz, Rogers, and Schweller [23] define scale-free (or scale factor 1)
simulation and show that polyominoes which are “3-position limited”, meaning they have only
three perimeter locations where glues can be placed, can be simulated by the temperature 1 abstract
Tile Assembly Model. (Same for 4-position limited polyominoes where those positions have a
restriction called “uniquely paired”.) Appropriate future negative results on the temperature 1
abstract Tile Assembly Model will apply to these models. This result can be thought of as a
self-assembly analog to the computational complexity notion that a problem is likely to have an
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efficient algorithm if we can place it in a class of problems that are all strongly conjectured to have
efficient algorithms, but for which we can not prove it.

As mentioned above, the abstract Tile Assembly Model can be thought of as an asynchronous
and nondeterministic cellular automaton (CA) that has the notion of a crystal growth frontier.
Hendricks and Patitz [32] formally relate the abstract Tile Assembly Model and CA: they give a
single CA that simulates any tile assembly system, as well as a single tile set that simulates any
nondeterministic CA with a finite initial configuration. The methods of updating configurations
in both models are quite different (CA are infinite, synchronous and deterministic, while tile
assembly is finite, asynchronous and nondeterministic) and so their constructions need to handle
this. Jonoska and Karpenko [36] show that 1D cellular automata can be simulated by the Active
abstract Tile Assembly Model (mentioned above) at temperature 1 by storing the time-space history
in a large assembly. Further work shows that 1D and 2D cellular automata are simulated in this
active model, but where (by using the feature of tile detachment) the entire space-time history
does not need to be stored [37,39]. Together these pieces of work open the possibility of further
comparing and contrasting the CA and tile assembly models.

5. Conclusions and future work
The results cited in this survey show that simulation between self-assembly models can be used as a
method to classify their relative power. It is worth pointing out that our notion of simulation seems
to strike a nice balance between being loose enough so that we can find intrinsically universal
systems of various kinds but restricted enough that negative results separating the power of
a various systems can actually be shown. As Figure 2 shows, we are beginning to see a kind
of complexity theory for self-assembly. Indeed gaps in the figure (i.e. missing solid arrows and
missing models) suggest a variety of open questions.

It is an open question whether or not the hexagonal Tile Assembly Model [15], various polygonal
Tile Assembly Models [15,28], the Nubot model [64] and Signal-Passing Tile Assembly Model [31,
36] are intrinsically universal. And independent of whether or not these models turn out to be
intrinsicly universal, we suggest that simulation can be used to tease apart their computational and
expressive power, as well as the power of subclasses of these models. For example, Gilbert,
Hendricks, Patitz, and Rogers [28] investigate the computational power of various kinds of
polygonal tile assembly systems, showing that regular polygon tiles with > 6 sides simulate
Turing machines. What is the relationship between tile geometry and simulation power? Do more
sides give strictly more simulation power?

A desirable feature of a simulator is not only that it simulates all possible dynamics of some
simulated system, but that this is done in a probabilistically fair manner. Probabilities come into
play when we think about the assembly process as a continuous time Markov process where tile
placement is a random event (chosen uniformly from the set of possible placements) that occurs
after an amount of time that is also a random variable, and in particular when we consider the
number of tiles and order of their placement to assemble a given structure. Is there an intrinsically
universal tile set that simulates a wide class of systems in a probabilistically fair manner? Here, the
probability of seeing a given dynamics or assembly in a simulator should be close to that of the
simulated system, where “close” means, say, within a factor proportional to the spatial scaling. In
particular, can the intrinsically universal simulations in [19,20] be improved to have this property?

Does there exist a tile set U for the abstract Tile Assembly Model, such that for any (adversarially
chosen) seed assembly σ, at temperature 2, this tile assembly system simulates some tile assembly
system T ? Moreover, U should be able to simulate all such members T of some non-trivial class S.
U is a tile set that can do one thing and nothing else: simulate tile assembly systems from the
class S. This question about U is inspired by the factor simulation question in CA [13], although it
differs in the details.

Many algorithmic tile assembly systems use cooperative self-assembly to simulate Turing
machines in a “zig-zag” fashion, as do a number of experimentally implemented systems [5,6,56,57].
Can the negative result of [44] be extended to show 2D temperature 1 abstract Tile Assembly Model
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systems do not simulate zig-zag tile assembly systems? This would be a non-trivial extension as
the negative result in [44] holds for the 3D temperature 1 model, which can indeed simulate zig-zag
systems, and would show that no deterministic 2D temperature 1 system can simulate Turing
machines in the “usual way”. Furthermore, Fekete, Hendricks, Patitz, Rogers, Schweller [23] show
that a certain, rather general, class of “geometric bit-reading gadgets” can not be built in the 2D
temperature 1 model, which gives some evidence that the standard method of simulating Turing
machines in the abstract Tile Assembly Model is impossible in 2D at temperature 1.

There are a number of future research directions for the two-handed model. One open
question [16] asks whether or not temperature τ two-handed systems can simulate temperature
τ − 1 two-handed systems. (We know that in this model temperature τ systems can not simulate
temperature τ + 1 systems and that temperature τ systems can simulate temperature τ ′ systems
where τ/τ ′ ∈N [16]. Also, it is conjectured that temperature τ systems can not simulate all
temperature τ − 1 systems [16], even though they seem, at least nävely, to have sufficient
cooperative capabilities. Hendricks, Patitz and Rogers show progress on this question by proving
that for certain simulators the answer depends on the exact notion of simulation used [34]). Another
direction involves finding which aspects of the model (e.g. mismatches, excess binding strength,
geometric blocking) are required for intrinsic universality at a given temperature, in order to tease
apart and better understand the intricacies of this very powerful, but natural, model.

Of course, there are many other ways to compare the power of self-assembly models, for details
see for example two other surveys on the theory of algorithmic tile assembly [18,52]. Researchers
have looked at shape and pattern building, tile complexity, time complexity, determinism versus
nondeterminism, and randomised (coin-flipping) algorithms in self-assembly. It remains as
important future work to find relationships between these notions on the one hand, and intrinsic
universality and simulation on the other hand. Can ideas from intrinsic universality be used to
answer questions about these notions?
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