
Title: Active self-assembly and molecular robotics with the
nubot model

Name: Damien Woods
Affil./Addr. California Institute of Technology
Keywords: molecular robotics; self-assembly; rigid-body motion
SumOriWork: 2013; Woods, Chen, Goodfriend, Dabby, Winfree,

Yin
2013; Chen, Xin, Woods
2014; Chen, Doty, Holden, Thachuk, Woods, Yang

Active self-assembly and molecular
robotics with the nubot model
Damien Woods

California Institute of Technology

Years aud Authors of Summarized Original Work

2013; Woods, Chen, Goodfriend, Dabby, Winfree, Yin
2013; Chen, Xin, Woods
2014; Chen, Doty, Holden, Thachuk, Woods, Yang

Keywords

molecular robotics; self-assembly; rigid-body motion

Problem Definition

In the theory of molecular-scale self-assembly, large numbers of simple interacting com-
ponents are designed to come together to build complicated shapes and patterns. Many
models of self-assembly, such as the abstract Tile Assembly Model [6], are cellular
automata-like crystal growth models. Indeed such models have given rise to a rich the-
ory of self-assembly as described elsewhere in this encyclopedia. In biological organisms
we frequently see much more sophisticated growth processes, where self-assembly is
combined with active molecular components that change internal state and use molec-
ular motors that have the ability to push and pull large structures around. Molecular
engineers are now beginning to design and build molecular-scale DNA motors and ac-
tive self-assembly systems [2]. We wish to understand, at a high level of abstraction, the
ultimate computational capabilities and limitations of such molecular-scale rearrange-
ment and growth. The nubot model, put forward in [8], is akin to an asynchronous
nondeterministic cellular automaton augmented with non-local rigid-body movement.
Unit-sized monomers are placed on a 2D triangular grid. Monomers undergo state
changes, appear and disappear using local rules, as shown in Figure 1. However, there
is also a non-local aspect to the model: rigid-body movement that comes in two forms,
movement rules and random agitations.

2

1 1

(0,0) x

y

w

(1,0) (2,0)

(0,1)

(0,2)

(1,1)

p

p + yp + w

p + xp - x

p - wp - y

a b

Change states

1 1 2 3

Make a flexible bond

1 1

1 11 1

Break a rigid bond

2 31 1

Change a rigid bond to a flexible bond
and change states

1

2

1 1

Position change in the w direction

w

Base Arm

1 1

Appearance

b

1 a

Disappearance

1

AB

A

B

1

21 1

Position change in the -w direction

-w
BaseArm

A B

A

B

 r1

 r2

 r3

 r4

 r5

 r6

 r7

 r7

Fig. 1. Overview of the nubot model. (a) A nubot configuration showing a single nubot monomer on
the triangular grid. (b) Examples of nubot monomer rules. Rules r1-r6 are local cellular automaton-
like rules, whereas r7 effects a non-local movement that may translate other monomers as shown in
Figure 2. Monomers continuously undergo agitation, as shown in Figure 3. A flexible bond is depicted
as an empty red circle and a rigid bond is depicted as a solid red disk. From [8].

1

2

1

2

1

2

(0,0)

a b
(0,0)

c
1

2 2

(0,0)

d
1 1

2

(0,0)

e

Fig. 2. Movement rule. (a) Initial configuration. (b) Movement rule with one of two results depending
on the choice of arm or base. (c) Result if the monomer with state 2 is the arm, or (d) monomer with
state 1 is the arm. The shaded monomers are the moveable set. The affect on rigid (filled red disks),
flexible (hollow red circles) and null bonds is shown. (e) A configuration for which the movement rule
is blocked: movement of 1 or 2 would force the other to move hence the rule is not applicable. From [4].

1

2

(0,0)

2
(0,0)

2

1

1

1 2

1

2

Fig. 3. Example agitations. Starting from the centre configuration, there are 48 possible agitations
(8 monomers, 6 directions each) each with equal probability. The right configuration is the result
of agitation of the monomer in state 2 in direction →, the left is the result of the agitation of the
monomer in state 1 in direction ←. The shaded monomers are the agitation set—monomers that are
moved by the agitation. From [3].

A movement rule r, consisting of a pair of monomer states A,B, the bond
between them and two unit vectors, is a programatic way to specify unit-distance
translation of a set of monomers in one step. See Figure 2 for an example. If A and
B are in a prescribed orientation, when a movement rule is applied one of them is
nondeterministically chosen to move unit distance in a prescribed direction. The rule r
is applied in a rigid-body fashion: roughly speaking, if A is to move right it pushes
anything immediately to its right and pulls any monomers that are bound to its left
which in turn push and pull other monomers, all in one step. The rule may not be
applicable if it is blocked (i.e. if movement of A would force B to also move), which
is analogous to the fact that a human arm can not push its own shoulder. The other,
somewhat related, form of movement is called agitation: at every point in time, every
monomer on the grid may move unit distance in any of the six directions, at unit
rate for each (monomer, direction) pair. An agitating monomer will push or pull any
monomers that it is adjacent to, in a way that preserves rigid-body structure and all in
one step as shown in Figure 3. Unlike movement, agitations are never blocked. Rules are
applied asynchronously and in parallel. Taking its time model from stochastic chemical
kinetics, a nubot system evolves as a continuous time Markov process.

3

For intuition, we describe motion in terms of pushing and pulling. However
movement and agitation are actually intended to model a nanoscale environment with
diffusion, Brownian motion, convection, turbulent flow, cytoplasmic streaming and
other uncontrolled inputs of energy that interact monomers in all directions, mov-
ing large molecular assemblies in a random fashion (i.e. agitation) and allowing motors
to simply latch and unlatch large assemblies into position (i.e. the movement rule).

Key Results

Assembling simple structures, namely lines and squares, has proven to be a fruitful way
to explore the power of the nubot model for a few reasons. Firstly, it helps us develop a
number of techniques and intuitions for the model. Secondly, lines and squares get used
again and again in more general results that show the full power of the model. Thirdly,
the efficiency of assembling simple shapes has been a de facto benchmark problem for
a number of self assembly models (although this benchmark often does not give the
full story). In a variety of models, such as the abstract Tile Assembly Model, cellular
automata and some robotics models, it takes time Ω(n) to assemble a length n line. In
the nubot model this is achieved in merely O(log n) expected time and O(log n) states.

Theorem 1 ([8]). For each n ∈ N, there is a set of nubot rules N line
n such that starting

from a single monomer, N line
n assembles a length n line in O(log n) expected time, n×2

space and O(log n) states.

One can trade time for states by giving a slightly slower method with fewer states:

Theorem 2 ([4]). There is a set of nubot rules N line such that for each n ∈ N, from a
line of O(log n) “binary” monomers (each in state 0 or 1), N line assembles a length n
line in O(log2 n) expected time, n×O(1) space and O(1) states.

An n × n square can be built by growing a horizontal line and then n vertical
lines, showing that assembly of squares with nubots is exponentially faster than the
Θ(n) expected time seen in the abstract Tile Assembly Model [1]:

Theorem 3 ([8]). For each n ∈ N, there is a set of nubot rules N square
n such that

starting from a single monomer, N square
n assembles a n×n square in O(log n) expected

time, n× n space and O(log n) states.

The results above, and all of those in [8, 4], crucially make use of the rigid-
body movement rule: the ability for a single monomer to control the movement of large
objects quickly, and at a time and place of the programmer’s choosing. However, in a
molecular-scale environment, molecular motion is happening in a largely uncontrolled
and fundamentally random manner, all of the time. The agitation nubot model does
not have the movement rule, but instead permits such uncontrolled random agitation
(movement). Although this form of movement is challenging to control in a precise
manner, the following result shows we can use it to achieve sublinear expected time
growth of a length n line in only O(n) space:

Theorem 4 ([3]). There is a set of nubot rules Nline, such that for any ε > 0, for
sufficiently large n ∈ N, starting from a line of blog2 nc+ 1 monomers, each in state 0
or 1, Nline in the agitation nubot model assembles an n×1 line in O(n1/3 log n) expected
time, n× 5 space and O(1) monomer states.

For a square we can do much better, achieving polylogarithmic expected time:

4

Theorem 5 ([3]). There is a set of nubot rules Nsquare, such that ∀n ∈ N, starting
from a line of blog2 nc + 1 monomers, each in state 0 or 1, Nsquare in the agitation
nubot model assembles an n × n square in O(log2 n) expected time, n × n space and
O(1) monomer states.

This section concludes with three results on general-purpose computation and
shape construction with the nubot model. First we have a computability-theoretic
result: any finite computable connected shape can be quickly self-assembled.

Theorem 6 ([8]). An arbitrary connected computable 2D shape of size ≤
√
n×
√
n can

be assembled in expected time O(log2 n+t(|n|)) using O(s+log n) states. Here, t(|n|) is
the time required for a program-size s Turing machine to compute, given a pixel index
as a binary string of length |n| = blog2 nc + 1, whether or not the pixel is present in
the shape.

For complicated computable shapes the construction for Theorem 6 necessarily re-
quires computation workspace outside of the shape’s bounding box. The next result is
of a more resource-bounded style and, roughly-speaking, states that 2D patterns with
efficiently computable pixel colours can be assembled using nubots in merely polylog-
arithmic expected time, while staying inside the pattern’s bounding box.

Theorem 7 ([8]). An arbitrary finite computable 2D pattern of size ≤ n × n, where
n = 2p, p ∈ N, with pixels whose colour is computable on a polynomial time O(|n|`)
(inputs are binary strings of length |n| = O(log n)), linear space O(|n|), program-
size s Turing machine, can be assembled in expected time O(log`+1 n), with O(s+log n)
monomer states and without growing outside the pattern borders.

The results cited so far can be used to compare the nubot model to other models
of self-assembly, and tell us that nubots build shapes and patterns in a fast parallel
manner. The next result quantifies this parallelism in terms of a well-known parallel
model from computational complexity theory: NC is the class of problems solved by
uniform polylogarithmic depth and polynomial size Boolean circuits.

Theorem 8 ([4]). For each language L ∈ NC, there is a set of nubots rules NL that
decides L in polylogarithmic expected time, constant number of monomer states, and
polynomial space in the length of the input string of binary monomers (in state 0 or
1). The output is a single binary monomer.

This result stands in contrast to sequential machines like Turing machines, that cannot
read all of an n-bit input string in polylogarithmic time, and “somewhat parallel”
models like cellular automata and the abstract Tile Assembly Model, that can not have
all of n bits influence a single output bit decision in polylogarithmic time [5]. Thus,
adding the nubot rigid-body movement primitive to an asynchronous non-deterministic
cellular automaton drastically increases its parallel processing abilities.

Open Problems

Some future research directions are discussed here and in [8, 4, 3]. It remains as future
work to look at other topics such as fault tolerance, self-healing, dynamical tasks, or
systems that continuously respond to the environment.

The complexity of assembling lines. Theorem 1 states that a line can be
grown in expected time O(log n), space O(n)×O(1) and O(log n) states, and Theorem 2
trades time for states to get expected time O(log2 n), space O(n)×O(1) and O(1) states.

5

What is the complexity (expected time × states) of assembling a line in the nubot
model? Is it possible to meet the lower bound of expected time × states = Ω(log n)?
In this problem, the input should be a set of monomers with space × states = O(log n).

Computational power. Theorem 8 gives a lower bound on the computational
complexity of the nubot model. What is the exact power of polylogarithmic expected
time nubots? The answer may differ on whether we begin from a small collection
of monomers (as in Theorem 8) or a large prebuilt structure. One challenge, for the
upper bound, involves finding better Turing machine space, or circuit depth, bounds
on computing multiple applications of the movable set on a large nubots grid.

Synchronization and composition of nubot algorithms. Synchroniza-
tion is a method to quickly send signals using non-local rigid-body motion [8, 4]. The
nubot model is asynchronous, but synchronization can be used to set discrete stages, or
checkpoints, during a complicated construction. This in turn facilitates composition of
nubot algorithms (run algorithm 1, synchronize, run algorithm 2, synchronize, etc.) and
many of the results cited here use it for exactly that reason. However, synchronization-
less constructions often exhibit a kind of independence where growth proceeds every-
where in parallel, without waiting on signals from distant components. Such systems
are highly distributed, easy to analyse and perhaps more amenable to laboratory im-
plementation. Intuitively, this seems like the right way to program molecules. The
proof of Theorem 7 does not use synchronization which shows that without it a very
general class of (efficiently) computable patterns can be grown and indeed the proof
gives methods to compose nubot algorithms without resorting to synchronization. It
remains as future work to formalise both this notion of synchronization-less “indepen-
dence” and what we mean by “composition” of nubot algorithms. What conditions are
necessary and sufficient for composition of nubot algorithms? What classes of shapes
and patterns can be assembled using without synchronization, or other forms of rapid
long-range communication?

Agitation versus the movement rule. Is it possible to simulate the move-
ment rule using agitation? More formally, is it the case that for each nubot program N ,
there is an agitation nubot program AN , that acts just like N but with some m ×m
scale-up in space, and a k factor slowdown in time, where m and k are (constants) inde-
pendent of N and its input? As motivation, note that every self-assembled molecular-
scale structure was made under conditions where random jiggling of monomers is a
dominant source of movement! Our question asks if we can programmably exploit this
random molecular motion to build structures quicker than without it.

Intrinsic universality and simulation. Is the nubot model intrinsically
universal? Specifically, does there exist a set of monomer rules U , such that any nubot
system N can be simulated by “seeding” U with a suitable initial configuration? Here
the simulation should have a spatial scale factor m that is a function of the number of
states in the simulated system N . Is the agitation nubot model intrinsically universal?
Our hope would be that simulation could be used to tease apart the power of different
notions of movement (for example to understand if nubot-style movement is weaker
or stronger than other notions of robotic movement), in the way it has been used to
characterize and separate the power of other self-assembly models [7].

Brownian nubots. With nubots, under agitation, or multiple parallel move-
ment rules, larger objects move faster. This is intended to model an environment with
uncontrolled and rapid fluid flows. But in Brownian motion, larger objects move slower:
what is the power of nubots with such a rate model, for example with rate 1/object
size? Although assembly in such a model may be slower than with the usual model
many of the same programming principles should apply, and indeed it will still be
possible to assemble objects in a parallel distributed fashion.

6

Acknowledgements. A warm thanks to all of my co-authors on this topic,
and especially to Erik Winfree and Chris Thachuk for helpful comments. The author
is supported by NSF grants 0832824, 1317694, CCF-1219274 and CCF-1162589.

Cross-References

Combinatorial Optimization and Verification in Self-Assembly
Intrinsic Universality in Self-Assembly
Patterned Self-Assembly Tile Set Synthesis
Randomized Self-Assembly
Robustness in Self-Assembly
Self-Assembly at Temperature 1
Self-Assembly of Fractals
Self-Assembly of Squares and Scaled Shapes
Self-Assembly with Active Components
Self-Assembly with General Shaped Tiles
Temperature Programming in Self-Assembly
Two Handed Self-Assembly

Recommended Reading

1. L. M. Adleman, Q. Cheng, A. Goel, and M.-D. Huang. Running time and program size for self-
assembled squares. In STOC 2001: Proceedings of the 33rd annual ACM Symposium on Theory of
Computing, pages 740–748, Hersonissos, Greece, 2001. ACM.

2. J. Bath and A. Turberfield. DNA nanomachines. Nature Nanotechnology, 2:275–284, 2007.
3. H.-L. Chen, D. Doty, D. Holden, C. Thachuk, D. Woods, and C.-T. Yang. Fast algorithmic self-

assembly of simple shapes using random agitation. In DNA20: The 20th International Conference
on DNA Computing and Molecular Programming, volume 8727 of LNCS, pages 20–36. Springer,
2014. arxiv preprint: arXiv:1409.4828.

4. M. Chen, D. Xin, and D. Woods. Parallel computation using active self-assembly. In DNA19: The
19th International Conference on DNA Computing and Molecular Programming, volume 8141 of
LNCS, pages 16–30. Springer, Sept. 2013. arxiv preprint arXiv:1405.0527.

5. A. Keenan, R. Schweller, M. Sherman, and X. Zhong. Fast arithmetic in algorithmic self-assembly.
In UCNC: The 13th International Conference on Unconventional Computation and Natural Com-
putation, volume 8553 of LNCS, pages 242–253. Springer, 2014. Arxiv preprint arXiv:1303.2416
[cs.DS].

6. E. Winfree. Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of Technology,
June 1998.

7. D. Woods. Intrinsic universality and the computational power of self-assembly. Philosophical Trans-
actions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015. Accepted.

8. D. Woods, H.-L. Chen, S. Goodfriend, N. Dabby, E. Winfree, and P. Yin. Active self-assembly
of algorithmic shapes and patterns in polylogarithmic time. In ITCS’13: Proceedings of the 4th
conference on Innovations in Theoretical Computer Science, pages 353–354. ACM, 2013. Full
version: arXiv:1301.2626 [cs.DS].

http://arxiv.org/abs/1409.4828
http://arxiv.org/abs/1405.0527
http://arxiv.org/abs/1303.2416
http://arxiv.org/abs/1301.2626

	Active self-assembly and molecular robotics with the nubot model

