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Abstract. We study the computational complexity of the recently pro-
posed nubots model of molecular-scale self-assembly. The model general-
izes asynchronous cellular automaton to have non-local movement where
large assemblies of molecules can be moved around, analogous to millions
of molecular motors in animal muscle effecting the rapid movement of
large arms and legs. We show that nubots is capable of simulating Boolean
circuits of polylogarithmic depth and polynomial size, in only polyloga-
rithmic expected time. In computational complexity terms, any problem
from the complexity class NC is solved in polylogarithmic expected time
on nubots that use a polynomial amount of workspace. Along the way,
we give fast parallel algorithms for a number of problems including line
growth, sorting, Boolean matrix multiplication and space-bounded Turing
machine simulation, all using a constant number of nubot states (monomer
types). Circuit depth is a well-studied notion of parallel time, and our
result implies that nubots is a highly parallel model of computation in
a formal sense. Thus, adding a movement primitive to an asynchronous
non-deterministic cellular automation, as in nubots, drastically increases
its parallel processing abilities.

1 Introduction

We study the theory of molecular self-assembly, working within the recently-
introduced nubots model by Woods, Chen, Goodfriend, Dabby, Winfree and
Yin [43]. Do we really need another new model of self-assembly? Consider the
biological process of embryonic development: a single cell growing into an organism
of astounding complexity. Throughout this active, fast and robust process there
is growth and movement. For example, at an early stage in the development
of the fruit fly Drosophila, the embryo contains approximately 6,000 large cells
arranged on its ellipsoid-shaped surface. Suddenly, within 4-minutes, the embryo
changes shape to become invaginated, creating a large structure that becomes
the mesoderm, and ultimately muscle. How does this fast rearrangement occur?
A large fraction of these cells undergo a rapid, synchronized and highly parallel
rearrangement of their internal structure where, in each cell, one end of the cell
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contracts and the other end expands. This is achieved by a mechanism that seems
to crucially involve thousands of molecular-scale motors known as myosin pulling
and pushing the cellular cytoskeleton to quickly effect this rearrangement [25].
At an abstract level one can imagine this as being analogous to how millions
of molecular motors in a muscle, each taking a tiny step but acting in a highly
parallel fashion, effect rapid long-distance muscle contraction. This rapid parallel
movement, combined with the constraint of a fixed cellular volume, as well as
variations in the elasticity properties of the cell membrane, can explain this key
step in embryonic morphogenesis. Indeed, molecular motors that together, in
parallel, produce macro-scale movement are a ubiquitous phenomenon in biology.

We wish to understand, at a high level of abstraction, the ultimate limitations
and capabilities of such molecular scale rearrangement and growth. We do
this by studying a theoretical model that includes these capabilities. As a first
step towards such understanding, we show in this paper that large numbers
of tiny motors (that can each pull or push a tiny amount) coupled with local
state changes on a grid, are sufficient to quickly solve problems deemed to be
inherently parallelizable. This result, described formally below in Section 1.2,
demonstrates that our model, the nubots model, is a highly parallel computer in
a computational complexity-theoretic sense.

Another motivation, and potential test-bed for our theoretical model and
results, is the fabrication of active molecular-scale structures. Examples in-
clude DNA-based walkers, DNA origami that reconfigure, and simple structures
called molecular motors [45] that transition between a small number of discrete
states [43]. In these systems the interplay between structure and dynamics leads
to behaviors and capabilities that are not seen in static structures, nor in other
unstructured but active, well-mixed chemical reaction network type systems. Our
theoretical results here, and those in [43], provide a sound basis to motivate the
experimental investigation of large-scale active DNA nanostructures.

There are a number of theoretical models of molecular-scale algorithmic
self-assembly processes [33]. For example, the abstract Tile Assembly Model,
where individual square DNA tiles attach to a growing assembly lattice one at a
time [41,36,17], or the two-handed (hierarchical) model where large multi-tile
assemblies come together [1,8,12,15], or the signal tile model where DNA origami
tiles that form an “active” lattice with DNA strand displacement signals running
along them [20,30,31], as well as models where one can program tile geometry [13,
18], temperature [1, 22,39], concentration [6, 9, 16,23] mixing stages [12,14] and
connectivity/flexibility [21].

The well-studied abstract Tile Assembly Model [41] is an asynchronous, and
nondeterministic, cellular automaton with the restriction that state changes are
irreversible and happen only along a crystal-like growth frontier. The nubots model
is a generalization of an asynchronous and nondeterministic cellular automaton,
where we have a non-local movement primitive. Nubots is intended to be a model
of molecular-scale phenomena so it ignores friction and gravity, allows for the
creation/destruction of monomers (we assume an invisible “fuel” source) and
has a notion of Brownian motion (called agitation, but not used in this paper).
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Instances of the model evolve as continuous time Markov processes, hence time
is modeled as in stochastic chemical kinetics [5, 38]. The style of movement in
nubots is analogous to that seen in reconfigurable robotics [7, 37, 26], and indeed
results in these robotics models show that non-local movement can be used to
effect fast global reconfiguration [4, 3, 35]. The nubots model includes features
seen in cellular automata, Lindenmayer systems [34] and graph grammars [24].
See [43] for more detailed comparisons with these models.

1.1 Previous work on active self-assembly with movement

Previous work on the nubots model [43] showed that it is capable of building
large shapes and patterns exponentially quickly: e.g. lines and squares in time
logarithmic in their size. Reference [43] goes on to describe a general scheme to
build arbitrary computable (connected, 2D) size-n shapes in time and number of
monomer states (types) that are polylogarthmic in n, plus the time and states
required for Turing machine simulation due to the inherent algorithmic complexity
of the shape. Furthermore, 2D patterns with at most n colored pixels, where the
color of each pixel is computable in time logO(1) n (i.e. polynomial in the length
of the binary description of pixel indices), are nubots-computable in time and
number of monomer types polylogarthmic in n [43]. The latter result is achieved
without going outside the pattern boundary and in a completely asynchronous
fashion. Many other models of self-assembly are not capable of this kind of
parallelism. The goal of the present paper is to formalize the kind of parallelism
seen in nubots via computational complexity of classical decision problems.

Dabby and Chen [11] study an insertion-based model, where monomers insert
between, and push apart, other monomers. In this nice simplification of nubots
they build length-n lines in O(log3 n) expected time and O(log2 n) monomer
types in 1D. They also show relationships with regular and context-free languages,
and give a design for implementation with DNA.

1.2 Our results

In the nubots model a program is specified as a set of nubots rules N and is said
to decide a language L ⊆ {0, 1}∗ if, beginning with a word x ∈ {0, 1}∗ encoded as
a sequence of |x| “binary monomers” at the origin, the system eventually reaches
a configuration with the 1 monomer at the origin if x ∈ L, and 0 otherwise. Let
NC denote the (well-known) class of problems solved by uniform polylogarthmic
depth and polynomial size Boolean circuits.1 Our main result is stated as follows.

Theorem 1 For each language L ∈ NC, there is a set of nubots rules NL that
decides L in polylogarthmic expected time, constant number of monomer states,
and polynomial space in the input string length. Moreover, for i ≥ 1, NCi is
contained in the class of languages decided by nubots running in O(logi+3 n)
expected time, O(1) monomer states, and polynomial space in input length n.

1 NC, or Nick’s class, is named after Nicholas Pippenger.
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NC problems are solved by circuits of shallow depth, hence they can be
thought of as those problems that can be solved on a highly parallel architecture
(simply run each layer of the circuit on a bunch of parallel processors, after
polylog parallel steps we are done). NC is contained in P—problems solved by
polynomial time Turing machines (this follows from the fact that NC circuits are
of polynomial size). Problems in NC (or the analogous function class) include
sorting, Boolean matrix multiplication, various kinds of maze solving and graph
reachability, and integer addition, multiplication and division. Besides its circuit
depth definition, NC has been characterized by a large number of other parallel
models of computation including parallel random access machines, vector ma-
chines, and optical computers [19, 44, 42]. It is widely conjectured, but unproven,
that NC is strictly contained in P. In particular, problems complete for P (such
as Turing machine and cellular automata [29] prediction, context-free grammar
membership and many others [19]) are believed to be “inherently sequential”—it
is conjectured that these problems are not solvable by parallel computers that
run for polylogarithmic time on a polynomial number of processors [19,10].

Thus our main result gives a formal sense in which the nubots model is
highly parallel: our proof gives a nubots algorithm to efficiently solve any highly
parallelizable (NC) problem in polylogarithmic expected time and constant states.
This stands in contrast to sequential machines like Turing machines, that cannot
read all of an n-bit input string in polylogarithmic time, and “somewhat parallel”
models like cellular automata and the abstract Tile Assembly Model, which can
not have all of n bits influence a single bit decision in polylogarithmic time.

In order to obtain this result we give a number of novel nubots constructions.
We show how to simulate function-computing logarithmic space deterministic
Turing machines in only polylogarithmic expected time on nubots. We also show
how to sort numbers in polylogarithmic expected time. Our sorting routine is
used throughout our construction and is inspired by mechanisms such as gel
electrophoresis that sort based on physical quantities (e.g. mass) [27]. We give a
polylogarithmic expected time Boolean matrix multiplication algorithm, as well
as a new line growing routine and a new synchronization (fast message passing)
routine. All of these constructions are carried out using only a constant number
of nubot monomers states and rules.

Previous results [43] on nubots were of the form: for each n ∈ N there is a
set of nubot rules Nn (i.e. the number of rules is a function of n) to carry out
some task parametrized by n (examples: quickly grow a line of length n, or an
n× n square, grow some complicated computable pattern or shape whose size
is parametrized by n, etc.). For each NC problems our main result here gives a
single set of rules (i.e. of constant size), that works for all problem instances.

1.3 Future work and open questions

The line growth algorithm in [43] runs in expected time O(log n), uses O(log n)
states and space O(n)×O(1) from a single seed monomer. In our construction
(see full paper) we give another line growth algorithm that runs in expected time
O(log2 n), uses O(1) states and space O(n)×O(1) from a size O(log n) seed. Is
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Fig. 1. Overview of nubots model. (a) A nubot configuration showing a single nubot
monomer on the triangular grid. (b) Examples of nubot monomer rules. Rules r1-r6 are
local cellular automaton-like rules, whereas r7 effects a non-local movement. A flexible
bond is depicted as an empty red circle and a rigid bond is depicted as a solid red disk.

it possible to find a line-growth algorithm that does better than time × space ×
states = Ω(n log2 n)?

Theorem 1 gives a lower bound on nubots power. What is the upper bound on
confluent2 polylogarthmic expected time nubots? One challenge involves finding
better Turing machine space, or circuit depth, bounds on computing the movable
set (see Section 2), and iterating this for many moves on a polynomial size (or
larger) nubots grid.

Can we tighten our NC lower bound? Is the case that NCk is contained in,
say, the class of problems solved in O(logk+1 n) expected time on nubots? Our
constructions make a lot of use of “synchronization” (where many monomers
are simultaneously signaled to transition to a single common state), one way to
improve our lower bound would be to see if it is possible to simulate circuits
efficiently without using synchronization. The proof of Theorem 7.1 in [43] contains
an example construction of a wide class of patterns that can be grown without
synchronization. What conditions are necessary and sufficient for composition of
arbitrary (unsynchronized) systems?

Is it possible to grow a structure of size Ω(n), in expected time o(n) but
without using the movement rule? Here the only source of movement comes
from the “agitation” rule, which models the fact that in a liquid molecules are
bombarding each other and jiggling all around. Every self-assembed molecular-
scale structure was made under such conditions! Our question asks if we can
programmably exploit this random molecular motion to build structures quicker
than without it. Other open problems and further directions can be found in [43].

2 The nubots model and other definitions

In this section we formally define the nubots model. Figure 1 gives an overview
of the model and rules, and Figure 2 gives an example of the movement rule.

The model uses a two-dimensional triangular grid with a coordinate system
using axes x and y as shown in Figure 1(a). In the vector space induced by this

2 By confluent we mean a kind of determinism where the system (rules with the input)
is assumed to always make a unique single terminal assembly.

5



coordinate system, the axial directions D = {±−→w ,±−→x ,±−→y } are the unit vectors
along the grid axes. A pair −→p ∈ Z2 is called a grid point and has the set of six
neighbors {−→p +−→u | −→u ∈ D}. Let S be a finite set of monomer states. A nubot
monomer is a pair X = (si, p(X)) where si ∈ S is a state and p(X) ∈ Z2 is a
grid point. Two monomers on neighboring grid points are either connected by
a flexible or rigid bond, or else have no bond (called a null bond). Bonds are
described in more detail below. A configuration C is a finite set of monomers
along with the bonds between them.

One configuration transitions to another via the application of a single rule,
r = (s1, s2, b,−→u )→ (s1′, s2′, b′,−→u ′) that acts on one or two monomers.3 The left
and right sides of the arrow respectively represent the contents of the two monomer
positions before and after the application of rule r. Here s1, s2 ∈ S ∪ {empty}
are monomer states where at most one of s1, s2 is empty (denotes lack of a
monomer), b ∈ {flexible, rigid, null} is the bond type between them, and −→u ∈ D is
the relative position of the s2 monomer to the s1 monomer. If either of s1 or s2
(respectively s1′ or s2′) is empty then b (respectively b′) is null. The right is defined
similarly, although there are some further restrictions on valid rules (involving
−→u ′) described below. A rule is only applicable in the orientation specified by −→u ,
and so rules are not rotationally invariant.

A rule may involve a movement (translation), or not. First, in the case of
no movement: −→u = −→u ′. Thus we have a rule of the form r = (s1, s2, b,−→u ) →
(s1′, s2′, b′,−→u ). From above, at most one of s1, s2 is empty, hence we disallow
spontaneous generation of monomers from empty space. State change and bond
change occurs in a straightforward way, examples are shown in Figure 1(b). If
si ∈ {s1, s2} is empty and s′i is not, then the rule induces the appearance of a
new monomer at the empty location specified by −→u if s2 = empty, or −−→u if
s1 = empty. If one or both monomers go from non-empty to empty, the rule
induces the disappearance of monomer(s) at the orientation(s) given by −→u .

For a movement rule it must be the case that −→u 6= −→u ′ and d(−→u ,−→u ′) = 1,
where d(u, v) is Manhattan distance on the triangular grid, and s1, s2, s1′, s2′ ∈
S\{empty}. If we fix −→u ∈ D, then there are two −→u ′ ∈ D that satisfy d(−→u ,−→u ′) = 1.
A movement rule is applied both (i) locally and (ii) globally, as follows.

(i) Locally, one of the two monomers is chosen nondeterministically to be
the base (which remains stationary), the other is the arm (which moves). If
the s2 monomer, denoted X, is chosen as the arm then X moves from its current
position p(X) to a new position p(X) − −→u + −→u ′. After this movement −→u ′ is
the relative position of the s2′ monomer to the s1′ monomer, as illustrated in
Figure 1(b). Analogously, if the s1 monomer, Y , is chosen as the arm then Y
moves from p(Y ) to p(Y ) +−→u −−→u ′. Again, −→u ′ is the relative position of the s2′

monomer to the s1′ monomer. Bonds and states may change during the movement.

3 In reference [43] the nubots model includes “agitation”: each monomer is repeatedly
subjected to random movements that are intended to model Brownian motion and
other uncontrolled fluid flows and movement. Our constructions work with or without
agitation, hence they are robust to random uncontrolled movements, but we choose
to ignore this issue and not formally define agitation for ease of presentation.
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Fig. 2. An example of a movement rule with two results depending on the choice of
arm or base. (a) Initial configuration. (b) Movement rule. (c) Result if the monomer
with state 1 is the base. (d) Result if the monomer with state 2 is the base. We can
think of (c) as pushing and (d) as pulling. Also, the affect on a flexible bonds (hollow
red circles) and null bonds are shown.

(ii) Globally, the movement rule may push, or pull other monomers, or if it can
do neither then it is not applicable. This is formalized as follows, and an example
is shown in Figure 2. Let −→v ∈ D be a unit vector. The −→v -boundary of a set of
monomers S is defined to be the set of grid points outside S that are unit distance
in the −→v direction from monomers in S. Let C be a configuration containing
adjacent monomers A and B, and let C ′ be C except that the bond between A
and B is null in C ′ if not null in C. The movable set M =M(C,A,B,−→v ) is the
smallest subset of C ′ that contains A but not B and can be translated by −→v to
give the set M+−→v where the new configuration C ′′ = (C ′ \M) ∪M+−→v is such
that: (a) monomer pairs in C ′ that are joined by rigid bonds have the same
relative position in C ′′, (b) monomer pairs in C ′ that are joined by flexible bonds
are neighbors in C ′′, and (c) the −→v -boundary of M contains no monomers.

IfM(C,A,B,−→v ) 6= {}, then the movement where A is the arm (which should
be translated by −→v ) and B is the base (which should not be translated) is applied
as follows: (1) the movable set M(C,A,B,−→v ) moves unit distance along −→v ; (2)
the states of, and the bond between, A and B are updated according to the
rule; (3) the states of all the monomers besides A and B remain unchanged
and pairwise bonds remain intact (although monomer positions and flexible/null
bond orientations may change). If M(C,A,B,−→v ) = {}, the movement rule is
inapplicable (the rule is “blocked” and thus A is prevented from translating).

An assembly system T = (C0,N ) is a pair where C0 is the initial configuration,
and N is the set of rules. If configuration Ci transitions to Cj by some rule
r ∈ N , we write Ci `N Cj . A trajectory is a finite sequence of configurations
C1, C2, . . . , Ck where Ci `N Ci+1 and 1 ≤ i ≤ k − 1. An assembly system
evolves as a continuous time Markov process. The rate for each rule application
is 1. If there are k applicable transitions for Ci then the probability of any
given transition being applied is 1/k, and the time until the next transition is
applied is an exponential random variable with rate k (i.e. the expected time is
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1/k).4 The probability of a trajectory is then the product of the probabilities
of each of the transitions along the trajectory, and the expected time of a
trajectory is the sum of the expected times of each transition in the trajectory.
Thus,

∑
t∈T Pr[t]time(t) is the expected time for the system to evolve from

configuration Ci to configuration Cj , where T is the set of all trajectories from Ci

to any configuration isomorphic to Cj , that do not pass through any other
configuration isomorphic to Cj , and time(t) is the expected time for trajectory t.

2.1 Nubots and decision problems

Let N = {0, 1, 2, . . .}. Given a binary string x ∈ {0, 1}∗, written x = x0x1 . . . xk−1,
we let x̃ denote a horizontal line of k nubot monomers that represent x using one of
two “binary” monomer states. We let |x̃| ∈ N denote the number of monomers in x̃.
Given a line of monomers A composed of m (previously defined) line segments,
the notation [A, i] means segment i of A, and [A, i]j means bit j of segment i of A.
We next define what it means to decide a language (or problem) with nubots.

Definition 1. A finite set of nubot rules NL decides a language L ⊆ {0, 1}∗
if for all x ∈ {0, 1}∗ there is an initial configuration C0 consisting of exactly
the line x̃ of monomers, positioned so that the left extent of x̃ is at the origin
(0, 0), where by applying the rule set NL, the system always eventually reaches a
configuration where there is an “answer” monomer at the origin in one of two
states: (a) “accept” if x ∈ L, or (b) “reject” if x 6∈ L. Further, from the time it
first appears, the answer monomer never changes state.

2.2 Boolean circuits and the class NC

We define a Boolean circuit to be a directed acyclic graph, where the nodes
are called gates and each node has a label that is one of: input (with in-degree
0), constant 0 (in-degree 0), constant 1 (in-degree 0), ∨ (OR, in-degree 1 or
2), ∧ (AND, in-degree 1 or 2), ¬ (NOT, in-degree 1). One of the gates is also
identified as the output gate. The depth of a circuit is the length of the longest
path from an input gate to the output gate. The size of a circuit is the number
of gates it contains. A circuit computes a Boolean (yes/no) function on a fixed
number of Boolean variables, by the inputs and constants defining the output
gate value in the standard way. In order to compute functions over an arbitrarily
number of variables, we define (usually, infinite) families of circuits. We say that
a family of circuits CL = {cn | cn is a circuit with n ∈ N input gates} decides a
language L ⊆ {0, 1}∗ if for each x ∈ {0, 1}∗ circuit c|x| ∈ CL on input x outputs 1
if w ∈ L and 0 if w /∈ L.

In a non-uniform family of circuits there is no required similarity, or relation-
ship, between family members. We use a uniformity function that algorithmically
specifies some similarity between members of a circuit family. Roughly speaking,

4 For simplicity, when counting the number of applicable rules for a configuration, a
movement rule is counted twice, to account for the two choices of arm and base.
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a uniform circuit family C is an infinite sequence of circuits with an associated
function f : {1}∗ → C that generates members of the family and is computable
within some resource bound. Here we care about logspace-uniform circuit families:

Definition 2 (L-uniform circuit family). A circuit family C is L-uniform, if
there is function f : {1}∗ → C that is computable on a deterministic logarithmic
space Turing machine, and where f(1n) = cn for all n ∈ N, and cn ∈ C is a
description of a circuit with n input gates.

Without going into details, we assume reasonable encodings of circuits as strings.
There are stricter, but more technical to state, notions of uniformity used in
the literature [2, 46,19,28] (which we do not require since we are giving a lower
bound on power), and circuit classes are reasonably robust under these more
restrictive definitions.

Define NCi to be the class of all languages L ⊆ {0, 1}∗ that are decided by
O(logi n) depth, polynomial size L-uniform Boolean circuit families. Define NC =⋃∞

i=0 NCi, in other words NC is the class of languages decided by polylogarithmic
depth and polynomial size L-uniform Boolean circuit families. Since NC circuits
are of polynomial size, they can be simulated by polynomial time Turing machines,
and so NC ⊆ P. It remains open whether this containment is strict [19]. See [40]
for more on circuits.

3 Proof overview of Theorem 1

Here we give a high-level overview of the proof of Theorem 1. The full paper
contains the detailed proof, which includes novel parallel nubots algorithms for
line growth, sorting, Boolean matrix multiplication, space bounded function-
computing Turing machine simulation, parallel function evaluation for functions
of a certain form, Boolean circuit generation, and Boolean circuit simulation.

For each language L ∈ NC, we show that there exists a finite set of nubots
rules NL that decides L in the sense of Definition 1. Let CL be the circuit family
that decides L. We begin with the observation that since L is in logspace-uniform
NC, there is a deterministic Turing machine ML that uses logarithmic space
(in its input size) such that on unary input 1n, ML(1n) = cn, where cn is a
description of the unique circuit in CL that has n input gates.

Our initial nubots configuration consists of a length-n line of binary nubots
monomers denoted x̃ that represents some x ∈ {0, 1}∗, and is located at the
origin. From this we create another length-n line of monomers that encode the
unary string 1n to be used for the creation of the circuit cn. The rule set NL

includes a description of ML. At a very abstract level, the system first generates
a circuit by simulating the computation of ML on input 1n, and producing a
nubots configuration (collection of monomers in a connected component) that
represents the circuit cn. The circuit is then simulated on input x. Both of these
tasks present a number of challenges.
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3.1 Circuit Generation

Here we describe the fast parallel simulation of the logspace machine ML.
Logspace Turing machines have a read-only input tape with n input symbols,
a read-write worktape of length O(log n), and a write-only output tape where
the output tape head is assumed to always move right after writing a symbol. A
configuration consists of the input tape head position, worktape contents, and
worktape head position. There are at most O(nc) distinct configurations of this
form, for some c ∈ N, which comes from the O(log n) bound on the worktape
length. Hence ML runs in time O(nc). We assume that ML stops in a halt state
(we are simulating a halting, function-computing, deterministic machine, so it
can be assumed to always halt in a special halt state). As noted, ML runs in
time O(nc), however we require a nubots simulation that runs in expected time
that is merely polylogarithmic in n. To achieve this our simulation of ML works
in a highly parallel fashion, described below.

First, we describe the adjacency matrix of the configuration graph G ofML on
input 1n. A configuration graph G is a directed graph, where each node represents
a configuration of ML on (the fixed) input 1n [32]. There is an edge from node i
to node j if and only if ML moves from configuration i to configuration j in a
single step. From the previously-mentioned basic facts about logspace machines,
the number of nodes in G is at most polynomial in n. Further, nodes in G have
out degree 0 or 1 (ML is deterministic), the “halt” node has out degree 0 (we
assume there are no transitions out of the halt state), and there a unique halt
configuration (ML completes its computation by wiping the worktape, returning
all tape heads to the beginning of their tapes, and entering the halt state). The
nubots system NL begins by generating a representation of the adjacency matrix
of graph G of machineML on input 1n. This is achieved by building a “counter,”
that grows from the n monomers (that encode 1n) to become an O(nc)×O(log n)
rectangle, the rows of which enumerate the syntactically correct configurations
of the machine via the known time (O(nc)) and space (O(log n)) bounds (some
of these configurations are reachable on this input, and some are not). The
list of configurations are grown in expected time O(log2 n), polynomial space
and only O(1) monomer states. We then make a copy of this list, and pairwise
compare every entry in the copy to that of the original—a process achieved via
iterative copying of the list along with some geometric rearrangement tricks.
The comparisons are done in parallel, where for each i, j it is checked whether
configuration j is reachable from configuration i in one step on ML (each such
comparison depends only on configurations i, j and so can be computed in
expected time O(log n) since the nubot rules NL directly encode the program
ML). The result of this process is quickly (in parallel) rearranged to form a new
list (a line of monomers) that encodes the result of all of these comparisons, and
thus represents the entire binary adjacency matrix MG.

After the adjacency matrix MG is constructed, the nubots system computes
reachability on the graph G. Specifically, the rules NL compute whether a path
exists from the node representing the initial configuration of ML on input x
to the node representing the unique halting configuration in the halt state.
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However, this directed graph is of size polynomial in n, so a sequential algorithm
would be too slow for our purposes. We quickly (in polylog expected time) solve
this reachability problem by parallel iterated matrix squaring of the adjacency
matrix MG. More precisely, we iterate MG := M2

G + MG a total of O(log n)
times to give the matrix M ′G. The column in M ′G that represents the halt node
of graph G contains non-zero entries for exactly those nodes that have a path
to the halt node [32]. The Boolean matrix squaring is carried out as follows.
MG is represented as a line of monomers, this line iscopied, and every entry of
the two copies is pairwise ANDed, this involves further copying and geometric
arrangement. The results are rearranged (using a novel nubots sorting algorithm
discussed below) and then ORed in parallel to give the Boolean matrix M2

G.
This parallel matrix multiplication algorithm constitutes the main part of a

construction to simulate a logspace Turing machine that decides some language
(if we also take account of accept/reject states). However, here we wish to
simulate a machine that computes a function: ML’s output is a description of
the circuit cn, so we are not yet done. We add the following assumption to ML:
it has a counter on its worktape that starts at 0 and is immediately incremented
each time ML writes to the output tape (this counter merely adds a O(log n)
term to the worktape length). Thus only the “output-producing” configurations
involve a counter incrementation. We extract from the matrix M ′G exactly those
configurations that satisfy the following two criteria: (1) they are on a path from
the input configuration to the halt configuration (2) they produce output. To find
(1) we simply filter out those nodes (configurations) that correspond to non-zero
entries in both the row of the initial node, and the column of the halt node. To get
(2) we sort, via a novel, fast parallel sorting algorithm (discussed below), these
configurations in increasing order of the values on their workspace counters. Then
we take this sorted list, and delete everything (in parallel) except the encoded
output tape write symbol from each configuration. We use the counter to sort
the write symbols and are left with a line of ` = O(nk) monomers that represent
the length-` output tape of ML on input 1n. This line of monomers, which we
denote ĉn, is an encoding of the circuit cn.

The line of monomers ĉn is next geometrically rearranged for fast parallel
circuit simulation. Here, ĉn reorganizes itself into a ladder-like form as shown in
Figure 3(c) via fast parallel folding. Each layer i of the circuit cn as shown in
Figures 3(a) is encoded as a row of nubot monomers, as shown in Figure 3(c) (our
circuits are assumed to be layered [40]). The circuit is now ready to be simulated.

3.2 Circuit Simulation

Recall that the circuit input bits (encoded as binary monomers) are located at
the origin, and that the entire circuit was “grown” from them. These monomers
move to the first (bottom) row of the encoded circuit (Figure 3(c)) and position
themselves so that each gate can “read” its 1 or 2 input bits. The jth gate on
layer i ≥ 1, is simulated by a single nubot monomer that reads its adjacent 1
or 2 input bits and then sends its “result bit” to the blue “wire address” regions
directly above it (Figure 3(d), in blue). After each gate computes its bit, layer i

11
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Fig. 3. Encoding of a Boolean circuit as a nubots configuration. (a) Boolean circuit
with (b) detailed zoom-in. (c) Nubots configuration encoding the circuit, with zoom-in
shown in (d). A wire leading out of a gate in (b) has a destination gate number encoded
in (d) as strips of O(logn) blue binary monomers (indices in red). After a gate computes
some Boolean function (one of ∨, ∧, ¬) the resulting bit is tagged onto the relevant
blue strip of monomers that encode the destination addresses (red numbers). Circuits
are not necessarily planar, so to handle wire crossovers these result bits are first sorted
in parallel based on their wire address, and then pushed up to the next layer of gates.
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Fig. 4. High-level overview of the sorting algorithm. (a) A line of mdlogme monomers,
split into m blue line segments (“heads”) each is the binary representation of a natural
number i ≤ m. (b) A blue head that encodes value i is grown to height i by a green rod.
Purple “labels” are also grown at the bottom. (c) The heads are horizontally merged,
using the labels to synchronize, to be vertically aligned. (d) Merged heads rotate down
into a line configuration, giving the sorted list. Each stage occurs in expected time
polylogarithmic in m. See full paper for details.

“synchronizes” via a logarithmic in n expected time message passing algorithm [43].
Next, we wish to send the “result” bits from layer i to layer i+ 1. Circuits are
not necessarily planar, so we need to deal with wire crossings.

Wire crossings are handled via a fast parallel sorting routine (also used in
earlier parts of the construction) that is loosely inspired by Murphy et al [27] who
show that physical techniques, such as gel electrophoresis, can be used to sort
numbers that are represented as the magnitude of some physical quantity. The
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sorting routine is illustrated in Figure 4. It takes as input a line of mdlog2me
monomers, which is composed of m line segments each encoding a number in
dlog2me binary monomers. Each segment grows to a height equal to its value,
segments are merged horizontally, and rotated down to vertical to give a sorted
list of segments, all in expected time polylogarithmic in m.

The blue “wire address” regions in the circuit (Figure 3(d)) are sorted in
increasing order from left to right, then appropriately padded with empty space in
between (using counters), and are passed up to the next level. After the “output
gate” monomer computes its Boolean function, it signals to the rest of the circuit
to destroy itself. It then moves itself to the origin and the system halts (no more
rules are applicable). This completes the overview of the simulation.

This overview ignores many details. In particular the nubots model is asyn-
chronous, that is, rule updates happen independently via stochastic chemical
kinetics. The construction includes a large number of synchronization steps and
signal passing to ensure that all parts of the construction are appropriately staged,
but yet the construction is free to carry out many fast, asynchronous, parallel
steps between these “sequential” synchronization steps.
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