
On the computational power of a continuous-space
optical model of computation

Thomas J. Naughton and Damien Woods

TASS Research Group,
Department of Computer Science,

National University of Ireland, Maynooth, Ireland.
Email: {tomn , dwoods }@cs.may.ie

URL: http://www.cs.may.ie/TASS

Date: January 2001

Technical Report: NUIM-CS-TR-2001-01

Key words: model of computation, analog computation, real computation, computability,
non-Turing computation, continuous space, Type-2 machine, optical information processing,

optical computing architectures and algorithms

Abstract

Our continuous-space model of computation was developed for the analysis of
analog optical computing architectures and algorithms. We show a lower bound
on the computational power of this model by Type-2 machine simulation. We
view each Type-2 computation as a sequence of repeated instantiations of a single
halting Turing machine. We also illustrate, by example, a problem solvable with
our model that is not Type-2 computable.

1 Introduction

In this paper we introduce to the theoretical computer science community a continuous-
space model of computation. The model was developed for the analysis of (analog)
Fourier optical computing architectures and algorithms, specifically pattern recognition
and matrix algebra processors [4]. The functionality of the model is limited to opera-
tions routinely performed by optical scientists. The model uses a finite number of two
dimensional (2-D) images of finite size and infinite resolution for data storage. The
model’s data processing unit (finite control) can navigate, copy, and perform other op-
tical operations on its images. A useful analogy would be to describe the model as a
random access machine, without conditional branching and with registers that each hold
an image of infinite resolution. This model has previously [3, 2] been shown to be at
least as computationally powerful as a universal Turing machine (TM). However, its ex-
act computational power has not yet been characterised. To demonstrate a lower bound
on computational power we simulate a Type-2 machine with the model. Interestingly,
we have evidence that the model can decide at least one language that a Type-2 machine
can not. In Sect. 2, we give a more formal introduction to the optical model of compu-
tation. In Sect. 3, we outline some relevant points from Type-2 theory of effectivity, and
present our working view of Type-2 machines. In Sect. 4, we present our simulation of
a Type-2 machine and finish with a discussion and conclusion (Sects. 5 and 6).

2 The optical computational model

Each instance of our machine [3, 2] consists of a memory containing a program (an
ordered list of operations) and an input. The memory structure is in the form of a 2-D
grid of rectangular elements, as shown in Fig. 1(a). The grid has finite size and a scheme
to address each element uniquely. Each grid element is a 2-D continuous complex-
valued image. Three of these images are represented in the machine by the identifiers
a, b, andsta (two global storage locations and a program start location, respectively).
The program is a list of instructions for the data processing unit and is stored in memory
with the input. The most basic operations available to the programmer,ld andst (both
parameterised by two column addresses and two row addresses), copy rectangularm×
n (m,n ∈ N, m,n ≥ 1) subsets of the grid into and out of imagea, respectively.
Upon such loading and storing the image information is rescaled to the full extent of the
target location (as depicted in Fig. 1(b)). Two additional real-valued parameterszlower

andzupper, specifying lower and upper cut-off values, filter the rectangle’s contents by
amplitude before rescaling,

f(i, j) =







zlower : Re[f(i, j)] < zlower

zupper : Re[f(i, j)] > zupper .
f(i, j) : otherwise

Other atomic operations perform horizontal and vertical 1-D Fourier transforms (h and
v, respectively) on the 2-D imagea, multiply (·) a by b (point by point), perform a
complex addition (+) ofa andb, and produce the complex conjugate (∗) of the image
in a. By default, the result of any such operation will be found ina. Finally, there are
two control flow commandsbr andhlt , which unconditionally branch to another part
of the program, and halt execution, respectively. A more formal specification of the

2

a b0 1 2 3

0

1

2

3

a b

(a) (b)

sta
sta

ld 2 3 1 3

Figure 1: Schematics of (a) the grid memory structure of our model of computation, showing ex-
ample locations for the ‘well-known’ addressesa, b andsta, and (b) loading (and automatically
rescaling) a subset of the grid into grid elementa. The programld 2 3 1 3 . . . hlt instructs the
machine to load into default locationa the portion of the grid addressed by columns 2 through 3
and rows 1 through 3.

model including sample machines and citations to previous optical models can be found
in [3, 2].

As might be expected for an analog processor, its programming language does not
support comparison of arbitrary image values. Fortunately, not having such a compar-
ison operator will not impede us from simulating a branching instruction (see Sect. 4).
In addition, address resolution is possible since (i) our set of possible images is finite
(each memory grid has a fixed size), and (ii) we anticipate no false positives (we will
never seek an address not from this finite set). Each syntactically-correct program must
form a word in the language defined by the following grammar,

S → MS | FS | M | F
M → ldA | stA | brN ; N ; | hlt | �
F → h | v | ∗ | · | +
A → N ; N ; N ; N ; Q; Q;
N → ND | D
Q → N/N
D → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 ,

where we use capital letters for nonterminals and lowercase letters for terminals. Some
explanation of the symbols follows.S, by convention, is the first nonterminal. Mem-
ory and control operations,M , and optical processing operations,F , can be combined
sequentially. Load (ld) and store (st) operations address a portion of the memory using
two column, two row, and the two real-valued numbers mentioned previously. (In this
work, these real-valued numbers are expressed as quotients.) Branching requires row
and column coordinates. The opticalF operations require no parameters; they act on
imagesa andb by default. The symbol� represents an empty or undefined image. Al-
though not part of the programmer’s set of operations, empty or undefined grid elements
can appear in the absence of a programming symbol. The symbolN denotes an image
that encodes a binary number and can be used to specify a row or column of the memory
grid. Such an address encoding scheme would have to be determined by the designer
of any physical realisation of the theoretical machine. The symbol ‘/’ is used to sepa-
rate the numerator and denominator when specifying the amplitude filter(zlower, zupper)

3

A

B
T

C

Y1

Y0

Y2

write

read

write

read
write read

write

read

Figure 2: Our working view of a Type-2 machine: (T) a halting TM; (Y0) the output tape; (Y1)
the input tape; (Y2) the nonvolatile ‘work tape’. ControlsA, B, andC represent the functionality
to read fromY1, write toY0, and read/write toY2, respectively.

with rational numbers. The symbol ‘;’ may be required to separate symbols under some
encoding schemes.

3 Type-2 Theory of Effectivity

Standard computability theory [6] describes a set of functions that map from one count-
ably infinite set of finite sequences to another. In the “Type-2 Theory of Effectivity”
(TTE) [7], “computation” refers to processing over infinite sequences of symbols, that
is, infinite input sequences are mapped to infinite output sequences. If we use two or
more symbols the set of such sequences is uncountable; TTE describes computation
over uncountable sets and their subsets. The following is a definition of a Type-2 ma-
chine as taken from [7].

Definition 1. A Type-2 machine M is a Turing machine with k input tapes
together with a type specification(Y1, . . . , Yk, Y0) with Yi ∈ {Σ∗, Σω}, giv-
ing the type for each input tape and the output tape.

In this definition,Σ is a finite alphabet of two or more symbols,Σ∗ is the set of all finite
length strings overΣ, Σω is the set of all infinite length strings overΣ. There are two
possible input/output tape types, one holds words fromΣ∗ and the other fromΣω.

Input tapes are one-way read only and the output tape is one-way write only. If
the output tape restriction was not in place any part of an infinite output would not be
guaranteed to be fixed as it could possibly be overwritten at a future time. Hence, finite
outputs from Type-2 computations are useful for approximation or in the simulation of
possibly infinite processes. A Type-2 machine either finishes its computation in finite
time with a finite number of symbols on its output tape, or computes forever writing an
infinite sequence. Machines that compute forever while outputting only a finite number
of symbols are undefined in Type-2 theory [7].

3.1 A new view of Type-2 computations

We maintain that a Type-2 machine can be viewed as a repeatedly instantiated halting
TM that has an additional (read-only) input tapeY1 and an additional (write-only) output
tapeY0. (Without loss of generality, the finite number of input tapes from Def. 1 can be

4

mapped to a single tape.) The machine also has a nonvolatile ‘work tape’Y2 that stores
symbols between repeated instantiations (‘runs’) of the halting TM. This is illustrated
in Fig. 2. T is the halting TM. ControlA represents the functionality to read from
Y1. Control B represents the functionality to write toY0. Control C represents the
functionality to write to and read fromY2.

A Type-2 computation will proceed as follows.T is instantiated at its initial state
with blank internal tape(s). It reads a symbol fromY1. Combining this with symbols
(if any) left onY2 by the previous instantiations, it can, if required, write symbols on
Y2 andY0. T then halts, is instantiated once more with blank internal tape(s), and the
iteration continues. The computation will either terminate with a finite sequence of
symbols on the output tape or compute forever writing out an infinite sequence. In this
light, an infinite Type-2 machine computation corresponds to an infinite sequence of
instantiations of a single halting TM (plus extra computation steps for controlsA, B,
andC).

4 Simulation

We use simulation as a technique to measure computational power. If we can show that
machineB can simulate every operation that machineA performs, we can say thatB
is at least as powerful asA, without ever having to explicitly compare functionality.
Universality for our machine has already been proved [3, 2] following Minsky’s arith-
metization of TMs [1] (representing a TM in terms of quadruples of integers). Four
images were used to represent Minsky’s four registers,s, m, n, andz. Images was the
symbol under the TM tape head, imagem encoded a stack holding all symbols on the
tape to the left of the tape head,n encoded a stack holding all symbols on the tape to the
right of the tape head, andz was used for temporary storage. We have since significantly
simplified our technique of TM simulation.

In general, a TM could be simulated by a look-up table and the two stacksm andn,
as shown in Fig. 3. A given TM (e.g. Fig. 3(a)) is written in the imperative form illus-
trated in Fig. 3(b), where the simulation of state changes and TM tape head movements
can be achieved with two stacks and two variables as shown in Fig. 3(c).

In order to simulate a stack we previously effected indirect addressing with a com-
bination of program self-modification and direct addressing. We also simulated condi-
tional branching by combining indirect addressing and unconditional branching [3, 2].
This was based on a technique by Rojas [5] that relied on the fact that our set of sym-
bols is finite. Without loss of generality, in our simulation we will restrict ourselves to
three possible symbols, ‘0’, ‘1’ and a blank symbol ‘b’. Then, the conditional branching
instruction “if (α=‘1’) then jump to addressX, else jump toY ” is written as the uncon-
ditional branching instruction “jump to addressα”. We are only required to ensure that
the code corresponding to addressesX andY is always at addresses ‘1’ and ‘0’, respec-
tively. In a 2-D memory, multiple such branching instructions are possible. The data in
the stack can be encoded as a sequence of images, compressed recursively into a single
grid image.

5

q s s′ d q′

0 0 1 R 1
0 1 0 R 1
0 b b R 2
1 b b L 3
0: initial state
1: moving left
2: rejecting halt
3: accepting halt

(a)

q := initial state;
halt := false;
while (halt = false) {

select case (q, s) {
(0,0): fn(1,R,1);
(0,1): fn(0,R,1);
(0,b): fn(b,R,2);
(1,b): fn(b,L,3);
else: halt := true;

}
}

(b)

void fn(s’,d,q’) {
if(d = R) {

m.push(s’);
s := pop(n);

} else {
m.push(s’);
s := pop(m)

}
q = q’;

}
(c)

Figure 3: Figure showing (a) an example TM table of behaviour. This machine flips the binary
value at its tape head and halts in an accepting state. If there is a blank at its tape head it halts in a
rejecting state; (b) an illustration of how an arbitrary TM table of behaviour might be simulated
with pseudocode; (c) how one might effect a TM computation step with stacksm andn.

4.1 Push and pop routines

In Sect. 2 we mentioned the imagesa andb that are in every machine. For the push and
pop routines, we make use of a third imagec. When the pop routine, illustrated by the
pseudocode below, is called the column number of the intended stack will have already
been copied toa,

pop:
st(&�) // overwrite four blanks (�) below with symbol ina
ld(� � r r 0/1 1/1)
st(ab) // rescale contents ofa over both registersa, b
st(c)
ld(b)
st(� � r r 0/1 1/1)
ld(c)

(All stacks will be located on a ‘well-known’ row. Therefore, the row number, depicted
by ‘r’ in the routine above, can be hardcoded into the machine.) In the first three state-
ments, we use self-modification to load the contents of the stack intoa and rescale it
over botha andb. Imagea now contains the top element andb contains the remaining
contents of the stack. The top element is temporarily stored inc, the contents of the
stack stored back in its original location, and the top element returned toa before the
routine ends.

The following pseudocode for the push routine,
psh:

st(&�)
ld(� � r r 0/1 1/1)
st(b)
ld(c)
ld(ab)
st(� � r r 0/1 1/1)

is called with the address of the intended stack ina and the new element inc. The
contents of the stack are copied intob and the new element moved toa. Then botha

6

andb are rescaled into one image, pushing the new element onto the top of the stack,
and the contents stored back in the stack’s original location. We use these push and pop
routines to simulate the movement of the TM tape head as illustrated in Fig. 3(c).

4.2 Shorthand conventions

To facilitate persons reading and writing programs, a shorthand notation is used. Such
notations used in our simulation are summarised in Fig. 5. Note that in this shorthand,
instead of having to specify exact addresses, we give images a temporary name (such
as ‘x1’) and refer to the address of that image with the ampersand (‘&’) character. Ex-
pansion from this shorthand to the long-form programming language is a mechanical
procedure that could be performed as a ‘tidying-up’ phase by the programmer or by a
preprocessor. Unless otherwise stated, we assume that the bounds on image amplitude
values arezMIN = 0 andzMAX = 1. The load and store commands contain0/1 (= 0) and
1/1 (= 1) for theirzlower andzupperparameters, respectively, indicating that the complete
image is to be accessed. As a convention we use boldface and underlining in program
grid elements whose images can be modified by the machine and italics to highlight
points of machine termination within the grid.

4.3 Type-2 machine simulation

An arbitrary Type-2 machine is incorporated into our simulation as follows. Firstly,
transform the Type-2 machine into a Type-2 machine that operates over our alphabet.
Then rewrite the machine to conform to the form shown in Fig 2. For the purposes
of this simulation we representY2 with T’s internal tape (effectively using the semi-
infinite tape to the left of the tape head). WhenT halts it will either be in an accepting
or rejecting state.T’s accepting state is equivalent to the simulator’s initial state (i.e.T
passes control back to the simulator when it halts). At the simulator’s initial state it
checks ifT’s tape head was at a non-blank symbol whenT halted. If so it writes that
symbol toY0. All symbols to the left of the tape head (equivalent to the contents ofY2)
will be retained for the next instantiation ofT. Next, the simulator reads a symbol from
Y1 and writes it onT’s tape in the cell being scanned byT’s tape head. It then passes
control toT, by going intoT’s initial state. If at any timeT halts in a rejecting state
we branch to the simulator’s halt state. In Fig. 4, we provide a specific example of a
Type-2 machine that flips the bits of its binary input. If the input is an infinite sequence
it computes forever, writing out an infinite sequence of flipped bits. If the input is finite
it outputs a finite sequence of flipped bits.

4.4 Explanation of Fig. 4

The simulation by our model is shown in Fig. 4. It consists of two parts (separated in the
diagram for clarity). The larger is the simulator (consisting of functionalityA, B, andC
from Fig. 2, stacksY1 andY0, and a universal TM). A TM table of behaviour must be
inserted into this simulator [the example TM is that from Fig. 3(a)]. It has a straight-
forward encoding. Notice how for each row of the table of behaviour〈q, s, s′, d, q′〉
an ordered triple〈s′, d, q′〉 is placed at the location addressed by the coordinates(q, s).
StacksY1 andY0 represent the one-way tapes from Fig. 2. We pop fromY1 and push
to Y0. The stackm encodes all symbols onT’s tape to the left of tape head, and the

7

m
s

n
Y 1

Y
0

‘0
’

‘1
’

‘b
’

st
a

a
b

c
99

1
∅∅ ∅

∅∅ ∅
4

∅∅ ∅
6

?
8

∅∅ ∅
0

1
2

br
0

2
∅∅ ∅

∅∅ ∅
∅∅ ∅

po
p:

8
st

&
x1

st
&

x2
st

&
x3

st
&

x4
ld

x1
x2

st
ab

st
c

ld
b

st
x3

x4
ld

c
re

t
ps

h:
7

st
&

x5
st

&
x6

st
&

x7
st

&
x8

ld
x5

x6
st

b
ld

c
ld

ab
st

x7
x8

re
t

m
vr

:
6

P
h

m
P

p
n

st
s

re
t

m
vl

:
5

P
h

n
P

p
m

st
s

re
t

ac
c:

4
br

0
*s

re
j:

3
hl

t
2

P
p

Y
1

st
s

br
qS

0
1

ld
s

P
h

Y
0

br
0

2
2

‘b
’

R
q2

‘b
’

L
q3

b
r

re
j

0
ld

s
P

h
Y

0
br

0
2

1
‘0

’
R

q1
b

r
a

cc
0

1
2

3
4

..
.

0
br

q0
*s

‘1
’

R
q1

b
r

a
cc

qS
q0

q1
q2

q3

Figure 4: Simulating Type-2 machines on our model of computation. The machine is in two
parts for clarity. The larger is a universal Type-2 machine simulator and the smaller is its halting
TM table of behaviour. [The example TM we use here is that in Fig. 3(a).] The simulator is
written in a compact shorthand notation. The expansions into sequences of atomic operations
are shown in Fig. 5.

8

(a) Pp Y1 → ld Y1 br pop
Pp m → ld m br pop
Pp n → ld n br pop
Ph m → st c ld m br psh
Ph n → st c ld n br psh
Ph Y0 → st c ld Y0 br psh

(b) br q0 *s → ld s st &y1 br q0 y1
br 0 *s → ld s st &y2 br 0 y2

(c) ‘b’ R q2 → ld ‘b’ br mvr br q2 *s
‘0’ R q1 → ld ‘0’ br mvr br q1 *s
‘1’ R q1 → ld ‘1’ br mvr br q1 *s
‘b’ L q3 → ld ‘b’ br mvl br q3 *s

(d) ld Y1 → ld 5 5 99 99 0 / 1 1 / 1
ld Y0 → ld 7 7 99 99 0 / 1 1 / 1
ld m → ld 0 0 99 99 0 / 1 1 / 1
ld n → ld 3 3 99 99 0 / 1 1 / 1
st Y1 → st 5 5 99 99 0 / 1 1 / 1
st Y0 → st 7 7 99 99 0 / 1 1 / 1
st m → st 0 0 99 99 0 / 1 1 / 1
st n → st 3 3 99 99 0 / 1 1 / 1
ld s → ld 2 2 99 99 0 / 1 1 / 1
ld b → ld 21 21 99 99 0 / 1 1 / 1
ld c → ld 22 22 99 99 0 / 1 1 / 1
st s → st 2 2 99 99 0 / 1 1 / 1
st b → st 21 21 99 99 0 / 1 1 / 1
st c → st 22 22 99 99 0 / 1 1 / 1
ld ab → ld 20 21 99 99 0 / 1 1 / 1
st ab → st 20 21 99 99 0 / 1 1 / 1
ld ‘0’ → ld 9 9 99 99 0 / 1 1 / 1
ld ‘1’ → ld 10 10 99 99 0 / 1 1 / 1
ld ‘b’ → ld 11 11 99 99 0 / 1 1 / 1

(e) br pop → br 0 8
br psh → br 0 7
br mvr → br 0 6
br mvl → br 0 5
br acc → br 0 4
br rej → br 0 3

(f) st &x1 → st 9 9 8 8 0 / 1 1 / 1
ld x1 x2 → ld x1 x2 99 99 0 / 1 1 / 1
st x3 x4 → st x3 x4 99 99 0 / 1 1 / 1

Figure 5: Time-saving shorthand conventions when programming the model of computation.
These specific examples from the simulator in Fig. 4 serve to illustrate the idea. (a) Setting up
calls to thepshandpop routines (loading the appropriate stack address intoa in advance of a pop
and loading the stack address intoaand storing the appropriate symbol inc in advance of a push).
In advance of apsh the element to be pushed will be ina. After apop, the popped element will
be ina. (b) Branching to an address where the row is specified by the symbol currently scanned
by the tape head. (c) Calling the tape head movement routines (simulating the execution of a row
of the TM table of behaviour). (d) Loading from and storing to locations specified at runtime,
and to/from the ‘well-known’ locations on row 99. (e) Branching to subroutines. (f) All labels
are eventually given absolute addresses by a preprocessor. After a first pass of the preprocessor
(expanding the shorthand) the modifiable references are updated with hardcoded addresses.

9

stackn encodes all symbols onT’s tape to the right of the tape head. Images encodes
the symbol currently being scanned byT’s tape head. Execution of the simulator begins
with an input encoded in stackY1 [grid element(6, 99)] and the finite control pointing at
sta [grid element(17, 99)]. Control flow always proceeds from left to right unless one
of br or hlt is encountered. The stacks are indirectly addressed to allow push and pop
operations to take a stack as an argument (e.g. the image at address labelledm contains
the column number of stackm). The simulation is written in a shorthand whose long
form is given in Fig. 5.

5 Discussion

Type-2 machines do not describe all of the computational capabilities of our model. The
model’s atomic operations operate on a continuum of values in constant time (indepen-
dent of input size) and would not have obvious TM or Type-2 machine implementations.

Consider the languageL defined by the following characteristic function
f : Σω → {0, 1}, where

f(p) :=
{

1 : if p 6= 0ω

0 : otherwise

and wherep is an infinite sequence over alphabet{0, 1}. This language is acceptable but
not decidable by a Type-2 machine [7] (Ex. 2.1.4.6). In our model, we encode a boolean
value in an image by letting aδ-function at its origin denote a ‘1’ and an empty image
(or an image with low background noise) denote a ‘0’. An infinite sequence of boolean-
valued images appear concatenated together in one image without loss of information
(by definition, images in our machine have infinite spatial resolution). An off-centre
peak can be centred for easy detection through Fourier transformation (using the fol-
lowing shorthand programld Y1 h v st b ∗ ·). This uses the property that the term at
the origin of a Fourier transform of an image, the dc term, has a value proportional to
the energy over the entire image. Our model could Fourier transform the continuous
input image and measure the value of the dc term in unit time. A peak would indicate
that there is some energy (and therefore at least one ‘1’) somewhere in the image; the
corresponding word is inL. An absence of a peak at the origin indicates that there is
not a ‘1’ in the image; the corresponding word is not inL.

6 Conclusion

In a previous paper [2] a method for arbitrary TM simulation was shown. Here, we have
shown how our model can simulate any Type-2 machine. TMs and Type-2 machines are
both infinite state machines; however, Type-2 computability theory is an extension of
standard Turing computability theory. In this theory “computation” includes mappings
between infinite sequences. In order to make the jump from TM to Type-2 machine
simulation we refined our TM simulator, making it efficient, and allowed it to make
better use of our underlying model by permitting infinite input sequences. We were
not required to alter the underlying model (even when deciding a Type-2 undecidable
language) and it remains a faithful interpretation of Fourier optical information process-
ing architectures. This motivates further research into the exact characterisation of the
computational power of our model.

10

Acknowledgements

We gratefully acknowledge advice and assistance from J. Paul Gibson and the Theoret-
ical Aspects of Software Systems group, NUI Maynooth.

References

[1] Marvin L. Minsky. Computation: Finite and Infinite Machines. Series in Automatic
Computation. Prentice Hall, Englewood Cliffs, New Jersey, 1967.

[2] Thomas J. Naughton. Continuous-space model of computation is Turing universal.
In Sunny Bains and Leo J. Irakliotis, editors,Critical Technologies for the Future
of Computing, Proceedings of SPIE vol. 4109, San Diego, California, August 2000.
To appear.

[3] Thomas J. Naughton. A model of computation for Fourier optical processors. In
Roger A. Lessard and Tigran Galstian, editors,Optics in Computing 2000, Proceed-
ings of SPIE vol. 4089, pages 24–34, Quebec, Canada, June 2000.

[4] Thomas Naughton, Zohreh Javadpour, John Keating, Miloš Klı́ma, and Jǐrı́ Rott.
General-purpose acousto-optic connectionist processor.Optical Engineering,
38(7):1170–1177, July 1999.

[5] Raúl Rojas. Conditional branching is not necessary for universal computation in
von Neumann computers.Journal of Universal Computer Science, 2(11):756–768,
1996.

[6] Alan M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem.Proceedings of the London Mathematical Society ser. 2, 42(2):230–
265, 1936. Correction in vol. 43, pp. 544–546, 1937.

[7] Klaus Weihrauch.Computable Analysis. Springer, Berlin, 2000.

11

