
Simulating Turing machines using
switching map systems

Turlough Neary and Damien Woods

TASS Research Group,
Department of Computer Science,

National University of Ireland, Maynooth, Ireland.
Email: tneary@cs.may.ie, dwoods@cs.may.ie

URL: http://www.cs.may.ie/TASS/

Communicated by: J. Paul Gibson

Date: December 21, 2003

Technical report: NUIM-CS-2003-TR-11

Key words: model of computation, unconventional model of computation,
switching map system, baker’s map, computability, Chomsky hierarchy, Turing

machine, generalized shift.

Abstract

This report describes research carried out during a final year B.Sc. re-
search project. The research is based on the work of Moore and Sato. A
function converts Turing machines into switching baker’s maps. The theory
of switching baker’s maps and the converter function are both explained and
adapted. A switching baker’s map simulator is implemented and used to
recognise a number of languages in the Chomsky hierarchy. The computa-
tion path of the switching baker’s map simulator is graphically represented
and output patterns are examined.

1 Introduction

In 1998 Moore showed [4] that a single Turing machine (TM) [7] tape head ac-
tion could be simulated by a single baker’s map (BM) application. This was an
observation from previous work where Moore showed the equivalence of TMs
and generalized shifts [3]. In 2000 Sato and Ikegami showed that a switching map
systems with only two BMs can simulate TMs, by showing how to convert an
arbitrary TM into a switching map system [6]. In [6] the BMs for this switching
map system are given (without any formal derivation). A number of experiments
relevant to TMs and switching map systems were also carried out. The aim of this
report is to explain and derive the relevant BMs, to implement a switching map
system to simulate any TM, and to carry-out experiments on this switching map
system that may tell us something about TMs and problem solving.

1.1 Baker’s Maps

A BM is a two dimensional dynamical system (see [5]). The generalised BM is
defined as a transformation on the unit square

���������
	
�����	�������� ������	
�����	��������
and is given by the following equation [5]����������� �"! �$#&%'���(��)+*,� if

�.-/*�0	213#&4657#84$���9�:�;13*,�()�<�
if
�.=>*@? (1)

Where
<A�B	21C*D�'#8%�5/#&4FEG	

, and
�

and
�

are coordinates on the unit square.

1

1

*
0

(x,y)y

x

1 2

3 4

5 6

7 8

H H H H H H H H H HJI I I I ILK
M

B(x,y)

1

10 N NO0PRQ9STO0U

1 2

3 4

5 6

7 8

Figure 1: BM acting on the unit square.

From Eq. (1) and Fig. 1 we see that the unit square is mapped from two horizontal
stripes onto two vertical stripes. The

*
value above defines how the domain is

divided (i.e.
�A-V*

and
�A=W*

). The
#

values partition the space that is mapped
to (i.e. the range is

�X-V#8%
and

�Y=Z	[1/#&4
). The two stripes that are mapped to

do not overlap. The BM need not be area preserving. If
#\%]5>#84^�_	

the BM is
area preserving and if

#8%`5a#84b-c	
it is dissipative. In Figs. 1 and 2 we see an

2

example of a dissipative BM; as we continue with each successive mapping the
space dissipates. For more on BMs see [5].���9� �������

1

10

1 2 3 4

5 6 7 8

Figure 2: Result after two applications of the mapping given in Fig. 1.

2 Switching map systems and TMs

In this section the BMs given in [6] are developed. The BMs developed here have
some differences from those given by [6].

2.1 Representing TM tape contents as a pair of coordinates

Take a TM that has a binary tape alphabet. The contents of the tape at any time
can be represented as a coordinate on the unit square [4]. The contents stored
on the tape to the left of the tape head are represented by the

�
-coordinate and

the contents to the right of, and including, the tape head are represented by the�
-coordinate.

0 0 1 1 1 0 1 0 0 ����
�����	�
���	�
�������������� � � � � � �

decimal point

tape

tape head q1

...... �M NM
��� ��� � ��� � �� � ��� � ���
��� ��� ����� � � � � � �
� �
 !��"�� � ��� Q�Q �#� ��� Q � Q �#� "

Figure 3: Representation of the tape contents of a TM as a pair of coordinates.

The decimal point is considered to be positioned immediately to the left of the
tape head. If we look at the format of the coordinates on the TM tape in Fig. 3 we
see that the

�
-coordinate is in reverse on the tape. If we shift the tape head to the

left or right the values of the
�

- and
�

-coordinates may change.

3

2.2 Simulating a right shift

In Fig. 4 we have the result of a right shift operation, carried out on the TM con-
figuration in Fig. 3. The new configuration of our TM represented as a coordinate
on the unit square is

� ��? 	�	�	9�+������? ��	9�����
. If we examine the change in the

�
- and�

-coordinates we see that the decimal point has moved one place to the right on
the

�
-coordinate, and one place to the left on the

�
-coordinate. After the right shift

operation the most significant bit (MSB) of the
�
-coordinate (which in this case is

��� �W	
) becomes the MSB of the

�
-coordinate.

0 0 1 1 1 0 1 0 0 ����
� ��� � ��� � ��� � �� � ��� ��� � � � � �

decimal point

q2

...... � N
��� ��� � ��� � �� � ��� � ��� � ���
��� ��� ����� � � � �
� �
 !��"�� � ��� Q�Q�Q �#� ��� � Q �#� "

Figure 4:
�

- and
�
-coordinates after a right shift on the TM configuration given in

Fig. 3.

In binary, if the decimal point is moved one place to the right it corresponds to
multiplying by 2 and moving one place to the left corresponds to dividing by 2.
So it would seem that a right shift (Fig. 4) on a TM tape is equivalent to a right
shift on the

�
-coordinate and a left shift on the

�
-coordinate. To get this result we

divide our
�

-coordinate by 2 and multiply our
�
-coordinate by 2, so we get� ���(����� � �)�� �������

However, this equation is not sufficient to cover all possibilities of the right shift
operation. If it is tried on the configuration in Fig. 3 we do not get the same result
as a right shift. ��� ��? 	�	9��� �)��b� ��? ��	�	9�+�� � ��? 	9��	�������� �B	�? ��	9���
The

�
-coordinate is too large as we are using coordinates on the unit square (i.e.�JE � -V	

) to represent the TM tape contents. If we are carrying out a right shift
operation, and the MSB of the

�
-coordinate is 1, then the MSB must be removed

(by subtracting 1). This 1 also has an effect on the
�

-coordinate. The MSB of the�
-coordinate becomes the MSB of the

�
-coordinate (see Figs. 3 and 4, the bit in

cell �	� moves one place to the left with respect to the tape head and now becomes
bit ��
�). If the MSB of

�
is 0 the equation above gives the correct value for the�

-coordinate since dividing
�

by 2 will simply put a 0 in the MSB position of the

4

�
-coordinate. If however the MSB of the

�
-coordinate is 1 we need to place this 1

in the MSB position of the
�

-coordinate in place of the 0. This is done by adding
0.1 to the

�
-coordinate. We now have two possibilities to cover when simulating

a right shift using our coordinate system, the MSB of the
�
-coordinate can either

be 0 or 1. If the MSB of
�

is 0 then
� -V)��

and if it is 1 then
� = 	9)��

. So if we
incorporate these changes in our equation above we have� ���(��� � � �)�� �������

if
�.-)��� ������� � ���)��257��? 	���� � 1 	 �

if
�.=G)��

If we compare these values to our BM in Eq. (1) we see that
# % �)�����* �)�����<W� 	9)��

and
#84 �)���?

The value for
4

is 1/2 because our BM must be
area preserving (BM is area preserving if

# %F5>#84]�c	
) so that any possible tape

contents of a TM with a binary tape alphabet is representable. We get our equation
for a BM that simulates a right shift

����� � ���(��� � ! ���)������ ��� if
�.-)����� � 5a	 ��)������ � 1 	 �

if
�.=G	9)��a? (2)

1

10

(x,y)

1 2

3 4

5 6

7 8

H H H H H H H H H HJI I I I ILK
M

� ��� � ���(���
1

10

1 2

3 4

5 6

7 8

Figure 5:
� ���

acting on the unit square.

2.3 Simulating a right shift with bit flip

If we wish to simulate a right shift and bit flip we need to modify Eq. (2). In Fig. 6
the

�
-coordinate remains the same as in Fig. 4 this is because the bit being flipped

at position ��� in Fig. 3 has become �
� in Fig. 6. So this bit flip will not affect the�
-coordinate. The

�
-coordinate however will be affected, the reverse of what we

have seen in the right shift will be true for the right shift with bit flip (i.e. if the
MSB of the

�
-coordinate is 0 before the shift then the MSB of the

�
-coordinate

will be 1 after the shift and if the MSB of the
�

-coordinate is 1 before the shift

5

0 0 1 1 0 0 1 0 0 ����
� ��� � ��� � ��� � �� � ��� ��� � � � � �

decimal point

q2

...... � N
��� ��� � ��� � �� � ��� � ��� � ���
��� ��� ����� � � � �
� �
 !��"�� � ��� � Q�Q �#� ��� � Q �#� "

Figure 6: Result of a right shift bit flip operation on the TM configuration in Fig. 3.

then the MSB of the
�

-coordinate will be 0 after the shift). So we have the right
shift with bit flip BM

� ������� � ������� � ! ��� � 5a	 ��)����������
if
�.-)�����)��������b1 	 �

if
�.=G	9)��a? (3)

1

10

(x,y)

1 2

3 4

5 6

7 8

I I I I I I I I�� � � � � ���
M

� � ����� ���������
1

10

5 6

7 8

1 2

3 4

Figure 7:
� �������

acting on the unit square.

2.4 Simulating a left shift

If a left shift on the TM configuration in Fig. 3 is carried out its result can be
represented by

���������^�_�:��? 	9��������? 	�	���	9���L�
. We see that the decimal point moves

to the left on the
�
-coordinate (equivalent to dividing

�
by 2) and moves to the

right on the
�

-coordinate (equivalent to multiplying
�

by 2). This gives� ������� � � � ������)���� ?
As before, this equation is not sufficient to represent a left shift operation since
the MSB of

�
is 1

� ��
� in Fig. 3 becomes ���). If the MSB of
�

is 0 before the
shift this equation would be sufficient but if it is 1 we need to place this 1 in the
MSB position of the

�
-coordinate. As we have seen before if the MSB of

�
is 0

then our
� -)��

and if the MSB of
�

is 1 the
� =G)��

. So we have

6

��������� � � � ������)����
if
� -) �� ������� � � � � 1 	�� � � 5a	9�()����

if
� =V) �a?

This gives the third BM equation��� � � ���(��� �c! � � ������)���� if
� -)��� � � 1 	�� �:�R5a	9�()����

if
� =G)��a? (4)

1

10

(x,y)

1 2

3 4

5 6

7 8I I I I I I I �
�
� ���

M
� � � ���������

1

10

5 6

7 8

1 2

3 4

Figure 8:
� � �

acting on the unit square.

It can be seen that the domain is divided differently for
� � �

than for the first
two BM equations (Eq. 2 and 3) that were derived. This is because we test the�

value instead of the
�

value to see where the coordinates will map. The BMs
carry out operations on both coordinates, but depending on the direction of the
shift we must test the value of either one of the coordinates. This all depends on
the bit that is travelling across the tape head boundary (i.e. our decimal point) to
the other coordinate.

2.5 Switching map systems

A switching map (SM) system [6] consists of one or more maps (e.g. BMs, horse-
shoe maps). A SM system involves switching between the different mappings of
the system. A single mapping (computation step) on a SM system may involve
the composition of a number of different maps. Using the two BMs,

� ���
and� �������

, here is an example of a mapping on the unit square by some (SM) sys-
tem;

���������;� �:� ��� � � � ����� �����������(�
. The SM system also uses states to decide

which map sequence comes next. For more on SM systems see [6].

2.5.1 Map sequences

It can be shown that for each TM there exists a SM system consisting of just two
BMs that simulates the computation of the TM, step by step [6]. We will use the

7

BMs
� � �

and
� � �����

(given by Eqs. (4) and (3) respectively), to construct our
SM system. Examine the possible operations of a TM (right shift, right shift bit
flip, left shift, left shift bit flip, no shift, no shift bit flip). We already have two of
the six possible operations: left shift,

� � �
(seq. 1) and right shift bit flip,

� �������
(seq. 2). We can simulate the right shift operation by using the map sequence� ������� � � � � �:� ������� � ���(�����(�

(seq. 3). The first map simulates a right shift bit
flip. The second map then simulates a left shift on this result. If we think of this
in terms of a TM the tape head is back in its original position, except that the bit
under the tape head (� �) has been flipped. When the third map (

� ����� �
) is applied,

��� is flipped back to its original value and the right shift is simulated. A left shift
bit flip can be simulated by using the map sequence

� � � � � � � � � � ����� ���������(�(�
(seq. 4). As with seq. 3, after the first two maps have been applied the tape head
can be thought of as being in its original position except that the bit � � is flipped.
When the left shift map (

� � �
) is then applied, we have simulated a left shift bit

flip. For no shift bit flip, the sequence
� � � � � � ����� �����������

(seq. 5) is used. This
sequence is the same as applying the first two maps in seq. 3, so is the same as
a no shift with the bit ��� having been flipped. The sequence for no shift is the
identity sequence

� �������
(seq. 6), it leaves the coordinates unchanged. So now

each possible TM operation is simulated by one of these 6 map sequences.

2.6 Formal definition of a switching baker’s map

We now give our definition of a switching baker’s map (SBM). This definition
has some notational differences from the definition in [6]. A SBM is a 6-tuple���,���b���`��� ��� � ���
 %
	�	����� � where

1.
�

is the set of states,

2.
�

is the space,
�V� � ����	
���3� ����	 �����V���

,

3.
����� ���V� � ���

is the switching function,

4.
�

is the set of map sequences given above,

5.
� ��� � is the start state,

6.
�
 %
		������ � � is the accept state.

The purpose of the states in a SM system is to determine which map sequence
is to be applied next. The SBM simulates a computation step of a TM using the
switching function.

8

2.6.1 The switching function

The switching function maps from a state/space pair to a state/space pair, by one
of a number of switching rules. We use a worked example to explain, this will lead
to a general template for a switching rule. A switching rule contains the current
state, the value of the current coordinates, the map sequence and the next state.
Let

�/����� � ��� � ��� � ��?�?�? �����
��� and
� �	��
 � ��
 � �
 �

��?�?
?
�
 �
��� where
�

is the
set of states of a SBM and

�
is the set of map sequences (e.g. seqs. 1–6 defined

in Sect. 2.5.1) of the SBM. The SBM switching rules have the format�����$� �	� �
�������� �
where

��� ����� � � and

�� � � and �	� is the MSB of the

�
-coordinate.

Like a TM, a SBM instance will have an initial configuration. The configuration
of a SBM will be given by the

� �������
coordinate and the current state (analogous to

the TM tape contents and state). The configuration will change, analogous to that
of a TM, until the SBM halts (if it halts). The configuration of the SBM chnages
ovedr time, starting from some initial state

� � and continuing until some final state���
� , as follows
� � ��� � � ��� � ��� � ��� � ��� � � � � � �(� � ���
� � ��� � � ��� � ��� � ��� � ���

�
� � �

�
�(�
�
���

...
� � �����
 � � �����
 � �����
 � ��� � �����
� � �����
� �����
� �(�

In general the last state in this sequence may or may not be an accepting state.
At each configuration the switching function

�
determines the next configuration

by choosing a switching rule based on the current state and the current coordinate
value. The current MSB of the

�
-coordinate (� �) is the only bit of the current

coordinate that is actually used to decide which switching rule (if one exists) is
chosen. The direct relationship can be seen between the operation of a TM and a
SBM as it is the read symbol of the TM (which is in the corresponding position
to �	� , see Fig. 3) that decides which transition rule is applied next. Each map
sequence simulates a single TM operation, which gives a linear time simulation
of the TM by the SBM.

2.7 Converting a TM table of behaviour into a SBM table of
behaviour

To convert some TM to a SBM we must convert the set of transition rules that
describe the operation of the TM to a set of switching rules that describe the

9

operation of a SBM. Take the transition rule below

(initial state, read symbol, write symbol, shift direction, destination state)����� ��	�������� �����'� ?
This transition rule right shifts, bit flips, and changes from state

���
to state

���
. To

convert this to a switching rule we use the map sequence for right shift bit flip,� �������
(seq. 2 from Sect. 2.5.1). There is no need to change the state names, we

can use the same states for the switching rule. As seen earlier in Fig. 3, the bit
��� will be the same as the symbol under the tape head, in this case it is 1. So our
conversion looks as follows�����$��	�������� �����'� � �����$��	���� ����� � � ������� ����� � ?
In Fig. 9 we take all the possible transition rules from a fixed state

���
to a fixed

state
���

, using a tape alphabet of
�
0, 1 � and the possible head movements of

�
L,

R, N � , and give their representation as switching rules.
� ����� ��	+������� �����'�T� ����� ��	+��� ������� ���������'����� �
� ����� ��	+��	���� �����'�T� ����� ��	+��� ������� �:� � � � � ����� � ���������(�(�'�����'�
� ����� ����������� �����'�T� ����� ������� ������� �:� � � � � ����� � ���������(�(�'�����'�
� ����� ������	���� �����'�T� ����� ������� ������� ���������'����� �
� ����� �
	��������`�����'�T� ����� ��	+��� � � �:� � � �:� ������� � �������(��� �����'�
� ����� �
	���	����`�����'�T� ����� ��	+��� � � ��������� �����'�
� ����� �����������`�����'�T� ����� ������� � � ��������� �����'�
� ����� ������	����`�����'�T� ����� ������� � � �:� � � �:� ������� � �������(��� �����'�
� �����$��	�������� �����'�T� ����� ��	+��� � � �:� ������� � ���(����� �����'�
� �����$��	���	+��� �����'�T� ����� ��	+� � ������� �������
� �����$����������� �����'�T� ����� ����� � ������� �������
� �����$������	+��� �����'�T� ����� ������� � � �:� ������� � ���(����� �����'�

Figure 9: The function
�

maps each TM transition rule to a unique SBM rule.

Using
�

(see Fig. 9, taken from [6]) it is possible to convert any table of behaviour
of a binary TM into a set of switching rules for a SBM. As we have seen earlier,
the state names map directly across (from transition rule to switching rule) without
being changed, the read symbol also maps directly across and is interpreted as a
numerical digit (i.e. � �). The only thing left to do when applying

�
is to find

the correct map sequence. As seen in Sect. 2.5.1 there are only 6 possible map
sequences that can be chosen. To find the correct map sequence two things in our
transition rule need to be checked, first is there a bit flip (i.e. is the read symbol
the same as the write symbol), second what is the direction of the shift. The

�

function will check both and pick the correct map sequence for the corresponding
switching rule. We have now shown that any TM can be converted into a SBM.

10

2.8 TM and SBM equivalence

The following is an explanation of a property of Sato’s [6]
�

function. We have
explained how

�
maps from any binary TM table of behaviour to a SBM table of

behaviour. If we restrict SBMs to use only finitely described rationals1 and only
the 6 map sequences defined in this paper (see Sect. 2.5.1), then

�
is bijective.

Hence, given such a restricted SBM we can use
�
�

to get a TM that simulates
the SBM. In practice, it is simply a matter of examining the map sequence and
the value ��� , and converting these into a shift direction and write symbol, for each
switching rule. Also, the read symbol is given by � � and the state names need not
be changed. Hence, the SBM (using finitely described rationals and only these
six map sequences) and the TM are equivalent models, in terms of computational
power.

In fact any SBM that is defined on a rational space and uses map sequences that
are definable solely in terms of finite sequences of the two maps (Eqs. 3 and 4)
is equivalent in terms of computational power to the TM model. Any finite com-
position of these two maps can be simulated by a finite number of computational
steps on a TM. Using such map sequences in the SBM will have an effect on the
computational complexity of the TM computation (i.e. a time and/or space in-
crease), but not on computational power. In fact, the time complexity of the TM
will be O(n), where n is the time complexity of the SBM.

2.9 Generalized Shifts

Generalized shifts (GSs) were introduced by [2, 3] as a generalisation of shift
maps such as the BM and horseshoe map. A GS is a mapping from a bi-infinite
sequence � to a bi-infinite sequence � � � � . As the name suggests, the mapping
involves a shift of the sequence. This shift occurs with respect to a decimal point
which is at a given location in the sequence. In this light we can compare a GS
sequence to a TM tape with head (in that a TM has a bi-infinite tape with the tape
head separating both sides of the sequence). The mapping may also change the
symbols in a finite subsequence of the sequence. Let the ��� be set of all bi-infinite
sequences over a finite alphabet � . The operation of the GS is determined by two

1In this paper we are assuming that TMs have a single input tape, and at each computation step
the tape contains a finite length word from ���	��
��� , followed immediately by an infinite string of
� s. Obviously there is a straightforward bijective mapping between such TM tapes and standard
TMs tapes that make use of an explicit blank symbol. In terms of computability we wish to
adhere strictly to the standard TM model, and hence we say the SBM space is rational. When
we say that the coordinates must be finitely describable rationals we mean that they are of the
form ����������������� ����� ��!�"���#�$�	� �%�&�� �!���"� � where ���'���%��()���	��
�� , and �+�'�$�,� are both interpreted as
numerical strings.

11

functions
�

and � .
� � � � � �

maps to some integer value that specifies the
direction and magnitude of the shift. � � � � � � ����� � � maps to a finite se-
quence over � that is both appended and prepended by an infinite sequence of null
(�) symbols. � specifies an overwriting of the symbols in a finite subsequence of
the sequence � . Both of these functions are dependent on a finite subsequence
known as the domain of dependence (DoD) . The locations in sequence � that are
modified by � are known as the domain of effect (DoE).

A GS � (Moore [3] calls it
�

) is then

� � � � � ��� %
	 � ��� � � � �(� �
where

� ��� %	
shifts the sequence by the integer value

�J� � � , and ��� � � � � overwrites
the DoE of � using � � � � in the following way

� ��� � � � �(� �\� ! � � � � � if � � � � ���� �
� � if � � � � �\� � ?

Here � � �
and as usual � � is the � th symbol in � . Moore [3] showed that GSs

simulate TMs. A GS’s behaviour is defined by its � and its
�

functions. For a
given TM instance the next configuration is dependent on the current state and
the current read symbol. When simulating a TM, a GS must (under some suitable
encoding) examine both the current state and the read symbol. This is achieved by
incorporating both into the DoD. The number of bits needed for the DoD depends
on the alphabets of the TM and GS (but for simplicity lets say that both are using
binary). If, for example, our TM has 8 states the DoD would read 4 locations in the
sequence (3 bits for the state as there are

���
possible states, and 1 bit for the read

symbol). The location of the DoE will vary depending on the shift direction, since� � ��� "
is applied after the G function and we require our state and read symbol to

occupy the same locations on the tape after each shift. It is clear that any TM can
be simulated by a GS. It is also possible to go the other direction and convert a GS
(that is defined on finite sequences) into a TM. Each step of the GS (i.e. applying
��� � and then

� �
) can be simulated by a finite number of TM steps. The number

of states for the TM will depend on the size of the DoD. For more on GSs and
their relationship to TMs see [3].

3 Results

A number of different TMs were implemented. The TMs recognised languages
from different levels of the Chomsky hierarchy [1]. Table 1 details the different

12

Language level Name Language definition

Regular isEven
�3� � ��� � � � 	���� ��� & ��� ��� � � �

Regular Fibonnaci
�3� � ��� � � � 	���� � � & � � �B	
	 � ��� � � � �

Context free �
���

�3� � ��� � �B	 � � �
& � ��� �

Context free ��� � � � � � ��� � � � � � � 	���� � � & � � � the reverse of �
& � is a symbol �

Context free Dyck
�V� � ��� � � � 	���� � � & for each 0 there must be
a unique 1 and this 1 must occur before the 0 &� 	

s
� � �

s �
Context
sensitive

��� � �3� � ��� ��� � � � 	���� ��� & � is a symbol �

Context
sensitive

prime
�3� � ��� � � � 	 ��� &

� ����)��� &
	 - � - � ��� �

Recursively
Enumerable � threeX

(or 3x+1)

�/� �9� � � � � 	 ��� & � � � � � � 	
& � ��� � , where

� ��� � � ���� � � � � 5 	��
if
�

is odd� !"�
�
�

if
�

is even

Table 1: Languages for which TMs were written and their respective levels in
the Chomsky hierarchy, � � is the # ��$ symbol in � . � Conway has shown that a
generalisation of the 3x+1 problem is undecidable, it is unknown whether the
standard version of the problem that we use is decidable or not.

languages that were examined. Each TM was run with a number of different
inputs. Each TM, on each input, was also simulated by a Java SBM simulator.
The output of the SBM simulator was then graphed.

3.1 Graphed results

This section contains a selection of graphical outputs from our Java SBM simu-
lator. In the lower left hand corner of each graph is the name of the simulated
TM, the number of iterations, and the last coordinates when the SBM simulator
finished its computation. The language recognised by each TM and the encodings
for each TM are given before the relevant graphs, %& denotes the encoding of &
and

is the blank symbol. All final states are accepting states unless specified
otherwise.

13

Graphs: 1 to 4. Language: Fibonnaci. Encoding: % 	[�B	+	
, %�b�B	9�

and % � ���
.

Graph 1. Output for the
input representing 1010.

Graph 2. Output for the
input representing

���
.

Graph 3. Output for
the input representing
10101010101.

Graph 4. Output for the
input representing

� � �
.

14

Graph: 5. Language: �
� �

. Encoding: % 	[�B	�	
, %�;�V	9�

, %� � ��	
and % � ���

.

Graph 5. Output for the input
representing

� ��� 	 ���
.

15

Graphs: 6 to 8. Language: ��� � � . Encoding: % 	 �V	�	�	
, %�;�V	9���

, %� �a��	9�
, %� �B	���	

and % � ���+�
.

Graph 6. Output for
the input representing	�� � 	�� .

Graph 7. Output for
the input representing��� � ��� .

Graph 8. Output for
the input representing
101100101c101001101.

16

Graphs: 9 and 10. Language: Dyck. Encoding: % 	 � 	+	
, %� � 	9�

, %��� ��	
and% � ���

.

Graph 9. Output for
the input representing	 � � � � �

.

Graph 10. Output for
the input representing
1101011001001010110100.

17

Graphs: 11 to 13. Language: ��� � . Encoding: %�C� 	9���
, % 	A� 	�	+	

, %� � 	���	
,%� � ��	9�

and % � �+���
.

Graph 11. Output for
the input representing	 � � 	 � .

Graph 12. Output for
the input representing��� � ��� .

Graph 13. Output for
the input representing
1010011001c1010011001.

18

Graphs: 14 and 15. Language: prime. Encoding: % 	.�@	�	
, %�3�@	9�

, %� �c��	
and% � ���

.

Graph 14. Output for the
input representing

	 �
.

Graph 15. Output for the
input representing

	 � �
.

Graphs: 16 and 17. Language: threeX. Encoding: % 	R�W	�	
, %� �W	��

and % � �+�
.

Graph 16. Output for the
input representing

	 � �
.

Graph 17. Output for the
input representing

	 ���
.

This computation did not
halt.

19

3.2 Examination of results

In the first four graphs we see output from a Fibonnaci language recogniser. Since
this language is regular the tape head of the simulated TM is constantly moving
right across the input (similar to the action of a finite state automata, meaning that
no bits need be flipped or read twice). Hence, in the SBM the value of the

�
-

coordinate will increase and the value of the
�
-coordinate will decrease over time.

In general, if the number of 0s in the input increases then the coordinates will have
smaller values. For smaller inputs there seems to be no patterns, this is because
there is not enough iterations of the SBM and hence not enough points plotted for
a clear pattern to emerge. For larger inputs there are sharp corners (see graph 4)
where the coordinates change from larger

�
values to smaller

�
values and from

smaller
�

values to larger
�

values. This is because with large inputs when the
tape head is in the centre of the input there is a slowing down of the change in
magnitude of both the

�
- and

�
-coordinates. Any regular language recogniser will

begin with
�3�c�

and finish with
� �c�

(assuming the word is accepted). Even
if the input contains many 0s the coordinates will still converge on sharp corners
before the computation finishes. If we look at graph 4 we see two well defined
corners at

� ��?��� ����?��� � and
�:��?��� ����?��� � . Due to the characteristic property of the Fibon-

naci language and the encoding used, the following properties hold for the input
to graph 4: (a) if the tape head is over a 0 then the MSB of

�
is 1 and the MSB of�

is 0, (b) if the tape head is over a 1 then the MSB of
�

is 0 and the MSB of
�

is 1.
So in terms of our SBM we see that throughout the computation the coordinates
bounce between these two corners. The graphs for only one regular language are
given since examining these four graphs also explains behaviour exhibited in the
other regular language graphs. The only difference between the Fibonnaci lan-
guage and the isEven language is that the isEven language can accept long strings
of consecutive 1s provided they end with a 0. This means that in such cases we
have graphs with just one sharp corner (i.e. converging at point

�0	��
	 �
).

In the remaining graphs (5–17) the coordinates seem to be covering areas of the
unit square that are not covered in the regular language graphs. Again on giving
larger inputs the coordinates seem to converge on sharp corners. Most of the TMs
will just change 1 or 2 symbols with each scan of the input. Again we see the
positions of the coordinates are affected by the inputs. Some of this behaviour can
be easily explained. If we look at graphs 6 and 7 we see that again there are points
of convergence but graph 6 covers higher areas of the unit square than graph 7.
This is because the input for graph 6 contains more 1s than the input for graph
7. We can see that the two graphs have some common areas of convergence (i.e.� ��?�������?������

,
�:��?
	 ����?�	��

,
�:��?���������?�� �

) this is because as the computation progresses
they will tend towards the same values (tape contents). Again we see these com-

20

mon areas of convergence in graph 8. In graphs 15–17 the top right corner of the
unit square contains the majority of the coordinates plotted. This is because the
threeX and prime TMs both use unary encodings to represent input so computa-
tion will mainly involve scanning through long strings of 1s. In graph 14 there are
no sharp corners, this is simply because the TM tape contents remains too short
for the patterns seen in graph 15 to emerge.

In many of the graphs a number of patterns comprised of a series of square shapes
appear. In graphs 5, 9, 16 and 17 we see more distinctive patterns. They seem
to have symmetry around the line

� 1 � � �
. All these graphs share a com-

mon feature, that is their SBM coordinates all contained a large unbroken string
of 1s for a period of time during their computation. As mentioned earlier, when
simulating the scanning of a TM over a long string of 1s we get sharp corners.
These TMs scan over their tape contents a number of times altering the contents
at a very slow rate, usually just one or two bit flips for each scan. If we look
at what happens when we scan over a string of 1s on our TM and see what this
looks like in terms of our SBM graphs the patterns make more sense. Initially�

is 0 and as the number of 1s in the input increases the
�

value approaches 1.
If we examine the

�
-coordinate’s progression we see that with each right shift

on the string of 1s it gets larger. For simplicity we take the
�
-coordinate to

be 1 until
�

itself gets very close to 1. We end up with a progression as fol-
lows

� ����	9�Y� � ��?�����	9�Y� � ��?�	 ���
	 �X� � ��?���	 ����	 � � �:��? � � 	 ���
	 � � ?�?
? ��0	�����? � � 	 ��� � �0	�����?�� 	 ���A� �0	�����?
	 �+� � � 	�����?����A� �0	����L�
. It can be easily

seen that this traces out a right angle with a convergence (corner) at the point (1,
1). When

�
is increasing the change in the

�
-coordinate value over time where

��� �
is given by

� � � � � � � 5 !��
� , where

� � �
is the first timestep. This means

the increase in the
�

-coordinates value is halved with each iteration (the opposite
is true for

�
decreasing,

� � � � � � �\1 ��� � �
� 17� �:�
). The sequence of coordinates

described above will be reversed when scanning in the left direction over the tape
again.

If a very small portion of the input is changed during a scan of the input we can
see, from the sequence above, why the symmetry about the line

�b1 � � �
occurs.

However in most cases 0s will appear at different places in the coordinates during
a computation. Over many iterations and changing of 1s to 0s, this gives rise to
many series of points, each series seemingly converging to a corner. This gives the
impression of right angles, which in turn gives the impression of squares of de-
creasing size (decreasing by multiples of 2, see graphs 4, 9, 16 and 17). In many
cases we have a single 0 in the center of a string of 1s when we move towards
it and then away from it we will get symmetric points on either side of the line�.1C� � �

similar to what we have seen above (e.g. graphs 16 and 17).

21

Notice that graphs 5 and 9 use the same TM tape encoding and that the input is
of a similar structure (graph 5’s input is a string of 10s followed by a string of
11s and graph 9’s input is a string of 11s followed by a string of 10s). We have
seen that scanning a string of 10s leads to sharp corners around 2 points. We
have also seen how symmetry occurs about the line

� 1>� � �
when scanning

through a symmetric string that contains a large number of 1s. This symmetry
can also be considered true of long substrings that are symmetric, as the influence
of the rest of the string is greatly reduced when we are in the centre part of a
long substring. Looking at the encodings for graphs 5 and 9 we see that as the
computation continues our encodings of 1s and 0s will be replaced with

�
s. So

we have two different inputs tending towards similar tape contents (string of
�

s).
In terms of SBM output, this leads to other symmetries evolving about the line�.1C� � �

that are similar in the two graphs.

3.3 Conclusions

A number of patterns emerged that were common to many of the languages from
different levels of the Chomsky hierarchy. It would seem that these patterns do not
give any new information into the computational process of the TM recognisers of
these languages. The appearance of specific graphical properties is explainable in
terms of the encoding and dynamic TM and tape contents over time. For instance
symmetry as mentioned above will always play a role since TMs of languages that
are not regular will almost certainly scan their input strings more than once [4].
The encoding will also play an important part in what patterns emerge. If we take
graphs for the threeX (graphs 16 and 17) and prime (graph 15) TMs we see that
their SBM outputs cover similar areas of the unit square. Both of these SBMs take
unary words as input and have similar computation cycles. The TMs for the Dyck
and �

� �
languages also used identical encodings and when the input was similar

the patterns that emerged were similar (graphs 5 and 9).

So can these graphs tell us anything about TM computation? From above, by
looking at the graphs it may be possible to distinguish which graphs are of TMs
that have similar encodings and take similar input. They may also be used to clas-
sify languages in new ways by looking at the links between emerging patterns and
computational aspects of these languages. We could also plot the spatial coor-
dinates against time and see how the computation cycle changes for non-regular
languages (e.g. we would see the slower movement of the tape head away from its
initial position due to scanning back and forth). One point to note when looking
at the threeX language is that it may our may not halt on certain inputs. If it does
not halt then there are a number of possibilities. One possibility is that it enters a

22

looping state (i.e. a finite set of elements which does not include the members of
�3� � ��� � � � 	 ��� & � ��� � � �

& � � � �). The second is that it keeps getting big-
ger in which case as we scan back and forth and the coordinates approach

�0	��
	 �
,

the length of the string of 1s tends to infinity. This would be spatially represented
as an ever increasing number of progressively smaller squares. However, since the
problem is undecidable, the SBM may unpredictably switch out of this behaviour
at any time. This poses the question: given an undecidable problem � , can we use
information from SBM outputs to classify whether certain instances (or subsets)
of � will terminate?

A SBM graph does not include all elements of a simulated TM’s dynamic con-
figuration. The graphs give the tape contents and tape head’s position, but TM
state information is not included. We could use the GS mentioned in Sect. 2.9 and
plot the left and right parts of the bi-infinite sequence as coordinates, similar to
the method used for the SBM. This would graphically represent the dynamics of
a TM’s computation more accurately. How would the output look? In the GS the
space is divided into a series of rectangles (the DoD divides the unit square into a
series rectangles) because the states are incorporated into the DoD this means each
rectangle will correspond to a particular state (and read symbol). Using the TMs
implemented in this study, the computation continues until an accepting state is
reached or the TM halts. An accepting state would correspond to a rectangle that
had no mappings to other rectangles (states). Hence in an output graph a rectan-
gular section of the unit square would contain either zero or one point. In general,
plotting state and tape contents will result in more complex plots. Patterns that
are different, but analogous, to those in our SBM simulations will form. However,
incorporating state information may lead to interesting dynamical classifications
of TM computations.

Acknowledgments

We wish to acknowledge Dr. J. Paul Gibson for his helpful comments on a draft
of this report.

References

[1] John E. Hopcroft and Jeffrey D. Ullman. Introduction to automata theory,
languages, and computation. Addison-Wesley, 1979.

[2] Cristopher Moore. Undecidability and unpredictability in dynamical systems.
Physical Review Letters, 64(20):2354–2357, May 1990.

23

[3] Cristopher Moore. Generalized shifts: undecidability and unpredictability in
dynamical systems. Nonlinearity, 4:199–230, 1991.

[4] Cristopher Moore. Finite-dimensional analog computers: Flows, maps, and
recurrent neural networks. In Proceedings of the 1st International Conference
on Unconventional Models of Computation, Berlin, January 1998. Springer-
Verlag.

[5] Edward Ott. Chaos in dynamical systems. Cambridge University Press, Cam-
bridge, 1993.

[6] Yuzuru Sato and Takashi Ikegami. Computation with switching map systems.
Journal of Universal Computer Science, 6(9):881–889, September 2000.

[7] Micheal Sipser. Introduction to the theory of computation. PWS, Boston,
1997.

24

