
Stable Sorting Using Special-Purpose Physical
Devices

Niall Murphy1, Damien Woods2, and Thomas J. Naughton1

1 Dept. of Computer Science, National University of Ireland, Maynooth, Ireland
nmurphy@cs.nuim.ie, tom.naughton@nuim.ie

2 Boole Centre for Research in Informatics, School of Mathematics, University
College Cork, Ireland
d.woods@bcri.ucc.ie

BCRI Preprint 06/2006
May 2006

Boole Centre for Research in Informatics, University College Cork,
Ireland

Abstract. We define a computational model of physical devices that
have a parallel atomic operation that transforms the input in such a
way that the sorted list can be sequentially read off in linear time. We
show that several commonly-used scientific laboratory techniques (from
biology, chemistry, and optical physics) are instances of the model. We
show how our model naturally suggests an improvement in functionality
(specifically, stability) to an existing physics-inspired sort that is not
stable.

1 Introduction

There has been interest in identifying, analysing, and utilising computations per-
formed in nature [1, 3, 7–9, 11, 14, 17, 18, 20], in particular where they appear to
offer reduced complexity solutions when compared with the best-known sequen-
tial (e.g. Turing machine) equivalent. In this paper we present a special-purpose
unconventional model of computation that falls into that category.

The special-purpose model works as follows. A one-dimensional (1D) input
vector is transformed to a two-dimensional (2D) matrix via a constant-time
atomic operation. This 2D matrix representation admits a simple linear time
algorithm that produces a (stable) sort of the original 1D input list.

This model has at least three implementations utilised frequently by scientists
in the fields of chemistry, biology and optical physics. In these capacities it
is used to sort particles of diameter in the order of 10−6 meters and below.
This suggests that the model can be used for massively parallel operations. The
three implementations presented in this paper are routinely used for ordering
physical objects but to our knowledge, have never before been proposed for
sorting lists of numbers. Other natural sorting algorithms have been proposed
in the literature [2, 3, 15].

In Section 2 we introduce this Model of Physical Sorting (which we simply
refer to as the Model). Then in Section 2.1 we provide a high level description
of the Model before providing a more formal definition in Section 2.2. One of
the interesting aspects of the Model is that several implementations of it already
exist; in Section 3 we describe three implementations that are used as real-world
sorting methods. In Section 4 we show how this model compares to an existing
physically inspired sort called Rainbow Sort [15]. On the one hand we give a
generalisation of Rainbow Sort in Section 4.1 and show that it is an instance of
our model. On the other hand we restrict our model in Section 4.2 so that it
accurately captures the standard Rainbow Sort. Section 5 concludes the paper.

2 Model of Physical Sorting

In this section we introduce the Model of Physical Sorting. It is inspired by the
observation that a physical force affects particles differently depending on certain
physical properties of those particles. We use this effect for sorting by encoding
an unordered list of numbers as a list of particles with appropriate properties.

2.1 Informal description

We define a Model of Physical Sorting whose instances take as input a list
L = (l1, l2, . . . , ln) and compute the stable sorting [10] of the list. A sorting is
stable if and only if sorted elements with the same value retain their original
order. More precisely, a stable sorting is a permutation (p(1), p(2), . . . , p(n)) of
the indices {1, 2, . . . , n} that puts the list elements in non-decreasing order, such
that lp(1) 6 lp(2) 6 · · · 6 lp(n) and that p(i) < p(j) whenever lp(i) = lp(j)

and i < j. (Not all sorting algorithms are stable; we give some counterexamples.
Clearly any sorting algorithm that does not preserve the original relative ordering
of equal values in the input is not stable. A sorting algorithm that relies on each
element of its input being distinct to ensure stability is not stable. A sorting
algorithm that outputs only an ordered list of the input elements (rather than
indices) cannot gaurantee stability.) The Model produces a stable sorting as
follows. The input list is transformed to a 2D matrix that has a number of rows
equal to the input list length and a number of columns linear in the maximum
allowable input value. The matrix is zero everywhere except where it is populated
by the elements of the input list, whose row position in the matrix is their index
in the input and whose column position is proportional to their value. The values
in the matrix are then read sequentially, column by column, and the row index
of each nonzero value is appended to an output list. This output list of indices
is a stable sorting of the input list.

2.2 Formal description

Let N = {1, 2, 3, . . .}. We begin by defining our sorting model.

1

2

3

4

5

6n =

1 2 3 4 5 6 7 = am + b

1

3

2

1

1

3

Fig. 1. Graphical illustration of the matrix G for example model S = (m, a, b) =
(3, 2, 1) and for example input list L = (1, 3, 2, 1, 1, 3).

Definition 1 (Model of Physical Sorting). A Model of Physical Sorting is
a triple S = (m,a, b) ∈ N× N× N, where m is an upper bound on the values to
be sorted and a, b are scaling constants.

The Model acts on a list L = (l1, l2, . . . , ln) where li ∈ {1, . . . ,m}. Given
such a list L and a Model of Physical Sorting S we define a n× (am + b) matrix
G with elements

Gi,j =

{
li if j = ali + b

0 otherwise
(1)

An example G for given S and L is shown in Fig. 1.

Definition 2 (Physical Sorting computation). A Physical Sorting compu-
tation is a function c : {1, . . . ,m}n → {1, . . . , n}n that maps a list L of values
to a sorted list

c(l1, l2, . . . , ln) = (k1, k2, . . . , kn) (2)

of indices, where lkp is the pth non-zero element of G and the elements of G are
assumed to be ordered first by column and then by row.

Remark 1. A Physical Sorting computation returns a stable sorting of its input:
k1 is the index of the first value in the stable sorting of L, k2 is the index of the
second value, and so on.

Remark 2. We assume that a Physical Sorting computation is computed in ex-
actly (am + b)n + 1 = O(n) timesteps. The creation of matrix G takes one
timestep and obtaining the indices of the nonzero values in G takes one timestep
per element of G.

Each of the physical instances of our Model of Physical Sorting that follow are
consistent with Remarks 1 and 2; the matrix G is generated in a single parallel

timestep and the Physical Sorting computation takes linear time to output a
stable sorting.

An interesting feature of the algorithm is the fact that it has a parallel part
followed a sequential part. One could ask that the entire algorithm be either
entirely sequential or entirely parallel, with a respective increase or decrease in
time complexity. However, neither of these scenarios correspond to the way in
which the below physical instances are actually performed in the laboratory.

3 Physical Instances of the Model

In this section we give example instances of the Model that arise in commonly-
used scientific laboratory techniques. The common idea behind these implemen-
tations is that some physical force will affect items to a greater or lesser extent
depending on their physical properties.

We show that each of these examples implements the model’s computation.
We do this by specifying relevant values for the triple S (Definition 1) and by
showing that the examples compute in a way that is consistent with Definition 2.
Thus each example generates G (Equation (1)) and is a stable sort.

3.1 Gel Sort

Gel electrophoresis [16] is a fundamental tool of molecular biologists and is
a standard technique for separating large molecules (such as DNA, RNA and
polypeptide chains) by length. It utilises the differential movement of molecules
of different sizes in a substance (an agarose gel) of a given density.

The process of gel electrophoresis occurs as follows. Each sample of uniform
length molecules is placed at one end of a rectangle of agarose gel, separated
from each other by being placed in wells at different spatial locations in a line.
The gel is then permeated with a conducting liquid. Electrodes apply a voltage
across the gel which provides a force upon the (sometimes artificially) charged
molecules causing them to be pulled towards the oppositely charged electrode.
Smaller molecules move through the gel more quickly and easily than larger
molecules. This difference in velocity separates the molecules and orders them
by length.

Viney and Fenton [19] provide an equation that describes the physics of gel
electrophoresis,

V = K1
E

εMn
−K2E , (3)

where V is the velocity of a molecule of molecular mass M in an electric field
E, where the ratio between the pore size and the typical size of the molecules
is given by 0 < n 6 1, and where ε is the permittivity of the conducting liquid.
The constants K1 and K2 are composed of such variables as the length of the
gel, and the charge per unit length of the molecule [19].

To get distance s we apply V = s/t where t is time, giving

s = K1
Et

εMn
−K2Et .

We refer to sorting using gel electrophoresis as Gel Sort. For an instance of
Gel Sort we choose appropriate values for K1,K2, E, t, ε ∈ R such that k1 =
(K1Et/ε) ∈ N and k2 = (K2Et) ∈ N. We also let n = 1 which gives

s = k1M
−1 − k2 . (4)

Equation (4) satisfies Equation (1) if we let S = (m, k1, k2) where m ∈ N is the
largest length of DNA, RNA or polypeptide chain to be sorted.

Given a list L to be sorted, we encode each value as a molecule with length
inversely proportional to each value. Each molecule is then placed in an indi-
vidual well, in the same order of the list to be sorted L. After the gel is run, it
is a representation of the matrix G. To read the list of indices corresponding to
a stable sort, we sequentially record the indices of the samples beginning with
those that travelled least. Thus Gel Sort implements arbitrary computations of
the Model.

3.2 Optomechanical Sort

It is known that transparent objects experience a force when a beam of light
passes through them [4]. This force is caused by the beam’s path being refracted
by the object. A change in light beam direction causes a change in the beam’s
momentum, and momentum is only conserved if there is an equal but opposite
change of momentum for the object. This momentum change has a component in
the same direction as the direction of the beam and a component in the direction
of the increasing gradient of the beam (the gradient force, Fgrad). This effect is
most commonly employed in optical tweezers [5].

We use this technology to sort objects and we refer to this sort as Optome-
chanical Sort. In Optomechanical Sort, all of the input objects are arranged in
a straight line in a medium (e.g. water). There is a barrier that prevents the
objects from moving in the direction of the beam (the scattering force). A light
source with a strictly increasing intensity gradient perpendicular to the axis of
the input objects is supplied. The objects with a larger volume will move more
quickly in the direction of increasing intensity than those of a smaller volume.
This movement will separate the objects according to their volumes.

We will now proceed using the equations for objects smaller than the wave-
length of the light beam. Ashkin [6] provides the equation to calculate the force
in the direction of the gradient on the particles

Fgrad = −n3
bV

2

(
m2 − 1
m2 − 2

)
∇E2

here nb is the refractive index of the medium, m is the refractive index of the
particles divided by the index of the medium, V is the volume of the particles
and ∇E2 is the change in beam density over the particle.

For each instance of Optomechanical Sort we let nb,m,∇E2 be constants
such that

Fgrad = k1V (5)

where ki ∈ N, holds. Equation (5) satisfies Equation (1) with S = (m, k1, 0)
where m is the maximum particle volume for the specific material and medium.
The sort is stable as we obtain a list of indices by reading the index of each
particle in the order of least distance traveled and since the particles move in
parallel lines. Thus Optomechanical Sort is an instance of the Model.

3.3 Chromatography

Chromatography is a collection of many different procedures in analytical chem-
istry [12] which behave similarly (e.g. gas chromatography, liquid chromatog-
raphy, ion exchange chromatography, affinity chromatography, thin layer chro-
matography).

The result of chromatography is the separation of the sample input chemicals
(analytes) over time. Chromatography achieves this by exploiting the behaviours
of different chemicals in two media; the mobile phase and the stationary phase.
The mobile phase is a solvent for the analytes and filters through the stationary
phase. The stationary phase resists the movement of the analytes to different
degrees based on their chemical propeties. This causes the analytes to separate
over time.

We use standard equations from analytical chemistry [13] to calculate the
distance traveled by an analyte in a particular mobile phase and stationary
phase.

Given the time tm for the mobile phase to travel distance Lm, the average
velocity ūm of the mobile phase in the stationary phase and the capacity factor
k of the analyte, Poole and Schuette [13] provide

tR =
Lm

ūm
(1 + k)

to find the time tR that it takes the analyte to travel the distance Lm. They also
provide

k =
tR − tm

tm

to find the value of k. By substitution we find

Lm = ūmtm ,

It follows that an analyte moving at an average velocity of ūa 6 ūm will in time
tm travel a proportional distance La 6 Lm, that is

La = ūatm . (6)

We refer to the use of chromatography to sort substances by their average
velocity ūa through the stationary phase as Chromatography Sort. If we provide
an instance of the Model with the triple S = (m, tm, 0) where m = ūm is the
average velocity of the mobile phase in the stationary phase, it is clear that
Equation (6) satisfies Equation (1).

Also, we ensure that Chromatography sort is stable by running each ana-
lyte to be sorted side by side, or on a separate but identical, apparatus. The
final indices are read off in order of the distance traveled by the analyte. Thus
Chromatography Sort is an instance of the model.

4 Rainbow Sort

Rainbow Sort was first described by Schultes [15]. It utilises the phenomenon
of dispersion, where light beams of longer wavelengths are refracted to a lesser
degree than beams of a shorter wavelength.

A set of elements is to be sorted. Each element is encoded as a beam of light
of a distinct wavelength. The separate beams are then combined into one beam
of light and this is passed through a prism. The component beams are refracted
at different angles and so emerge from the prism separately and in an order
dictated by their wavelength. A light measurement device can be positioned to
sequentially read the ordered component beams.

There is a relationship between the angle of deviation δ (the angle between
the input beam and the output beam) and the refractive index of the prism
medium for each wavelength of light [15]. We will restrict the possible wave-
lengths of the input beam so that the distance from where the uninterrupted
beam would have reached the sensor to where the diffracted beam reaches it is
linear in tan δ and the distance between the sensor and the prism. This can be
expressed as

s = p tan δ (7)

where s is the distance along the sensor and p is the distance between the
sensor and the prism surface. Equation (7) satisfies Equation (1) if we let S =
(m, p, 0) where m is the minimum wavelength that can be diffracted by the
implementation. However, Rainbow Sort cannot guarantee to return a stable
sorting as it returns a sorted list of wavelengths not a list of indices. Also Rainbow
Sort cannot be directly used to sort lists with repeated values. Rainbow Sort is
not an instance of the Model.

4.1 Generalising Rainbow Sort

We now outline a natural generalisation of Rainbow Sort that satisfies our Model.
We refer to this generalisation as Generalised Rainbow Sort. Generalised Rain-
bow Sort is very similar to Rainbow Sort except that it utilises the full geometry
of the prism. It keeps each input beam at a different depth in the prism, as
shown in Figure 2(B). The output is then detected by a two dimensional sensor
and is read off sequentially in a manner consistent with Definition 2.

Generalised Rainbow Sort sorts the input in a manner that is similar to
Rainbow Sort but instead returns a list of indices, and naturally deals with
repeated elements in the input. The resulting Generalised Rainbow Sort is a
stable sort. Using Equation (7) and the Model triple S = (m, p, 0) from Section 4

we see that Generalised Rainbow Sort is an instance of the Model. It is interesting
to note that the introduction of stability to Rainbow Sort does not decrease its
big-Oh time complexity.

(A)

(B)

s

s

l

l

l

l

ll

l

l

1

l2

3

4

m

1,...,m

m

4

1

δ

Fig. 2. Rainbow Sort and Generalised Rainbow Sort. (A) The computation of Rainbow
Sort and also a side elevation of Generalised Rainbow Sort. Here s represents a sensor.
The angle δ is the angle of deviation. (B) Top down view of Generalised Rainbow Sort.

4.2 Restricting the Model

We now restrict the Model to simulate the original Rainbow Sort [15]. To do this
we redefine Equation (1) and restrict Definition 2 to one dimension. Definition 1
remains unchanged for the Restricted Model of Physical Sorting (the Restricted
Model).

The Restricted Model model acts on a set T = {t1, t2, . . . , tn} ⊂ N. Given
such a set T and a Restricted Model of Physical Sorting S we define the vector
V where |V | = am + b. As before a, b are scaling constants and m = max(T).
The vector V has elements

Vj =

{
ti if j = ati + b

0 otherwise
(8)

Definition 3 (Restricted Physical Sorting computation). A Restricted
Physical Sorting computation is a function c that maps a set T = {t1, t2, . . . , tn} ⊂
N to a list

c(T) = (tk1 , tk2 , . . . , tkn) (9)

where tkp is the pth non-zero element of V .

It is not difficult to see that c(T) is strictly increasing, that is tki < tki+1 for all
i ∈ {1, 2, . . . , n− 1}.

The Restricted Model computes a non-stable sorting of the input set. Equa-
tion (7) satisfies Equation (8) if we let the Restricted Model triple be S =
(m, p, 0) where m is the minimum wavelength that is diffracted by the imple-
mentation and p is as in Equation (7). Thus Rainbow Sort is an instance of the
Restricted Model.

The physical instances of the Model in Section 3 can be suitably restricted
to become instances of the Restricted Model and thus have equivalent sorting
abilities to Rainbow Sort. This restriction is achieved by removing the abilities
to track indices and deal with repeated elements.

To restrict Gel Sort all samples are placed in a single well. The output is
an ordering of the samples by size. In order for the sort to be stable it must be
case that all inputs are distinct. Thus this resticted Gel Sort is not stable. In
Optomechanical Sort we direct the input set along an angle slanting across the
intensity gradient so that the particles do not move in parallel but are forced
into a single ordered line. We cannot distinguish identical input elements from
the output. In Chromatography Sort we mix the analytes and separate them on
the same column, the output is an ordered list however we can no longer identify
separate identical input values. In order for the latter two sorts to be stable it
must be case that all inputs are distinct, thus they are not stable.

5 Conclusion

In this paper we have proposed a Model of Physical Sorting that computes a
stable sorting of its input list of natural numbers. This model has a parallel
1D to 2D (list to matrix) transformation as an atomic operation, where only
one dimension of the matrix is dependent on the input list length. Once in
matrix form it becomes a linear-time sequential task to read the list of stable
sorted indices. As examples of physical sorts that are instances of the Model, we
have provided three physical implementations that are well-known laboratory
techniques from experimental science. Other well-known example candidates are
centrifugal separation and fractional distillation [12].

We showed how the Model naturally suggests how to introduce stability
into an existing physics-inspired sort, Rainbow Sort. Finally, we showed that
a restricted version of the Model accurately describes (the standard) Rainbow
Sort, and further show that the three physical instances of the Model described in
this paper (from biology, chemistry, and optical physics) have similar restricted
implementations with the same properties and time complexity as (the standard)
Rainbow Sort.

References

1. Leonard Adleman. Molecular computation of solutions to combinatorial problems.
Science, 266:1021 – 1024, 1994.

2. Dewdney A.K. On the spaghetti computer and other analog gadgets for problem
solving. Scientific American, 250(6):19 – 26, jun 1984.

3. Joshua J. Arulanandham, Cristian S. Calude, and Michael J. Dinneen. A fast
natural algorithm for searching. Theoretical Computer Science, 320:3 – 13, 2004.

4. Arthur Ashkin. Acceleration and trapping of particles by radiation pressure. Phys-
ical Review Letters, 24(4):156 – 159, 1970.

5. Arthur Ashkin. History of optical trapping and manipulation of small-neutral
particle, atoms, and molecules. IEEE Journal on Selected Topics in Quantum
Electronics, 6(6), 2000.

6. Arthur Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and Steven Chu. Observation of
a single-beam gradient force optical trap for dielectric particles. Optics Letters,
11(5):288 – 290, 1986.

7. Yaakov Benenson, Tamar Paz-Elizur, Rivka Adar, Ehud Keinan, Zvi Livneh,
and Ehud Shapiro. Programmable and autonomous computing machine made
of biomolecules. Nature, 414:430 –434, 2001.

8. Cristian S. Calude and Gheorghe Păun. Computing with Cells and Atoms. Taylor
& Francis Publishers, London, 2001.

9. Thomas Head. Formal language theory and dna: an analysis of the generative
capacity of specific recombinant behaviors. Bulletin of Mathematical Biology,
47(6):737 – 759, 1987.

10. Donald E. Knuth. The Art of Computing Programming: Sorting and Searching,
volume 3. Addison-Wesley, second edition, 1997.

11. Carver Mead. Analog VLSI and Neural Systems, chapter 6, pages 83–99. Addison-
Wesley, Reading, Massachusetts, 1989.

12. Clifton E. Meloan. Chemical Separations: principles, techniques, and experiments.
Wiley-Interscience, 1999.

13. Colin F. Poole and Sheila A. Schuette. Contemporary practice of chromatography.
Elsevier, 1984.

14. Gheorghe Păun. Computing with membranes. Journal of Computer and System
Sciences, 61(1):108 – 143, 2000.

15. Dominik Schultes. Rainbow sort: Sorting at the speed of light. Natural Computing,
5(1):67 – 82, 2006.

16. Colin F. Simpson and Mary Whittaker, editors. Electrophoretic techniques. Aca-
demic Press, London, 1983.

17. Tommaso Toffoli. What are nature’s ‘natural’ ways of computing? In PhysComp
’92 – Proceedings of the Workshop on Physics of Computation, pages 5 – 9, 1992.

18. Tommaso Toffoli. Programmable matter methods. Future Generation Computer
Systems, 16:187 – 201, 1999.

19. Christopher Viney and Richard A. Fenton. Physics and gel electrophoresis: using
terminal velocity to characterize molecular weight. European Journal of Physics,
19(6):575–580, 1998.

20. Damien Woods and Thomas J. Naughton. An optical model of computation. The-
oretical Computer Science, 334(1 – 3):227 – 258, apr 2005.

