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Abstract

We investigate the computational complexity of an optically inspired model
of computation. The model is called the continuous space machine and
operates in discrete timesteps over a number of two-dimensional complex-
valued images of constant size and arbitrary spatial resolution.

We define a number of optically inspired complexity measures and data
representations for the model. We show the growth of each complexity
measure under each of the model’s operations.

We characterise the power of an important discrete restriction of the
model. Parallel time on this variant of the model is shown to correspond,
within a polynomial, to sequential space on Turing machines, thus verifying
the parallel computation thesis. We also give a characterisation of the class
NC. As a result the model has computational power equivalent to that of
many well-known parallel models. These characterisations give a method to
translate parallel algorithms to optical algorithms and facilitate the appli-
cation of the complexity theory toolbox to optical computers.

Finally we show that another variation on the model is very powerful;
illustrating the power of permitting nonuniformity through arbitrary real
inputs.
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1

Introduction

The study of computational models that are inspired by nature has witnessed
huge research growth in recent times. quantum, biomolecular, membrane,
and dynamical systems computing are but a few such fruitful fields. When
viewed in a certain light, nature seems to provide many kinds of prefabri-
cated and highly optimised computers. Usually the difficult part is finding
the light.

In this work we study a computational model that is inspired by classical
Fourier optics. Our work is motivated by theoretical questions: What can
we compute with optics? What can we not compute? How does optics relate
to other notions of computation?

The model we study is called the Continuous Space Machine (CSM).
The model is originally by Naughton and the earliest version was published
in 2000 [Nau00b]. The CSM was developed for the analysis of (analog)
Fourier optical computing architectures and algorithms, specifically pattern
recognition and matrix algebra processors [Goo96]. The model uses images,
arranged in a grid structure, for data storage. The program too resides
in images. The CSM has the ability to perform Fourier transformation,
resizing, addition, multiplication, and other operations on images, all in
unit time.

On the one hand we show that the most general form of the model is not
suited to analysis using standard techniques from complexity theory. On
the other hand, one of our main results is that an important restriction of
the model verifies the parallel compution thesis, and as such is intimately
related to a wide variety of sequential and parallel computational models.

1.1 Natural computation

In the last decade or so there has been increasing interest in computation
inspired by nature. This has spawned a wide variety of computational mod-
els, in the hope of one day building novel computers. Additionally there has
been a considerable effort to try to understand natural phenomena through
the lens of computational complexity theory. For the theorist, a new com-
putational model gives a fresh language in which to speak about something

1



1 Introduction 2

that is already understood. Hopefully, the language leads to novel intuitions
on something we are not so sure about. We present a selection of models
and recent results.

In 1987, Head [Hea87] introduced the idea of a splicing system to model
DNA from a formal language point of view. On the other hand Adle-
man [Adl94] programed DNA, using a straightforward molecular biology
procedure, to solve a small instance of the Hamiltonian path problem. This,
along with Lipton’s theoretical work [Lip95], generated much excitement and
led to a proliferation of biomolecular techniques being applied to a range of
algorithmic problems [Yok02].

In the early 1980s, Feynman [Fey82] wondered how one would simu-
late a quantum mechanical system using a classical computer (and subse-
quently proposed the concept of quantum computation). Deutsch [Deu85]
described a universal quantum computer. Shor’s polynomial time quantum
factoring algorithm [Sho94] and Grover’s square root time quantum search
algorithm [Gro96] illustrate that Feynman’s problem might indeed be a dif-
ficult one to solve efficiently. At the present time quantum computation1 is
an exciting and fruitful research area for physicists and computer scientists
alike [NC00].

Membrane computing is a rapidly growing field, despite the lack of cur-
rent implementations for membrane computers [Pău00, Pău02]. Membrane
computers model cellular processes using a tree-like membrane structure
where processing on multisets is carried out. Recently Sośık [Sos03] has
shown that a certain type of the membrane system is at least as powerful
as parallel computation thesis models. The model has “active membranes
and 2-division”. The result was shown by giving a linear time algorithm for
the PSPACE-complete problem quantified Boolean formula. This result was
subsequently improved upon [AMVP03], and a similar result using mem-
brane creation has also been given [GNPJRC05]. It is an open problem
whether there are certain types of membrane systems that either charac-
terise PSPACE (and verifies the parallel computation thesis) or perhaps
NP ∪ co-NP.

An interesting area of research is that of investigating the computational
complexity of dynamical systems, for example by showing that they simulate
Turing machines and other computational models [Moo90, SS91, Moo91,
Moo98, KM99]. Moore and others have looked at the complexity of certain
physical processes in terms of how computationally complex they are to
predict [MN97, Moo97, MN99, MM00].

Inspired by classical recursion function theory, Moore initiated [Moo96]
the study of real recursive functions. Real recursive functions are defined

1Incidentally, the quantum computing literature is rather unique in that one can find
hilarious comments of the type: “As any actual computer must, first and foremost, be a
physical device, the correct theory of computation ought to be a branch of physics rather
than a branch of mathematics” [WC98].
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using differentiation and can be viewed as defining programs that run in
continuous time. This and other analog systems were further developed,
and related to, standard notions of computational complexity by Campag-
nolo and others, for example see [Cam01, CMC02, Cam02, Cam04, dSG02,
dSG04, MC04, BH04a, BH04b].

1.2 Optical computation

Besides isolated studies [Cau90], computational complexity of optical com-
puters has received relatively little attention in comparison to the resources
devoted to the designs, implementations and algorithms for physical optical
computers (for example see [Goo96, YJY01, Lee95, AS92, LP92, McA91],
and the references therein). Some authors have complained about the lack
of suitable models [LP92, Fei88]. Many other areas of natural computing,
such as those discussed above, have not suffered from this problem. Even
so, we discuss some optical computation research that is close to the goals
of the theoretical computer scientist.

Reif and Tyagi [RT97] study two optically inspired models. The first
model is a 3D VLSI model augmented with a 2D discrete Fourier transform
(DFT) primitive and parallel optical interconnections. The second model
is a DFT circuit with operations (multiplication, addition, comparison of
two inputs, DFT) that compute over an ordered ring. Time complexity is
defined for both models in the obvious way. For the first model, volume
complexity is defined as the volume of the smallest convex box enclosing an
instance of the model. For the DFT circuit, size is defined as the number of
edges plus gates. Constant time, polynomial size/volume, algorithms for a
number of problems are reported including 1D DFT, matrix multiplication,
sorting and string matching [RT97].

Feitelson [Fei88] gives a call to theoretical computer scientists to apply
their knowledge and techniques to optical computing. He then goes on to
describe a slight generalisation on the concurrent read, concurrent write
parallel random access machine (CRCW PRAM), by augmenting it with
two optically inspired operations. The first is the ability to write the same
piece of data to many global memory locations at once. Secondly, if many
values are concurrently written to a single memory location then a summa-
tion of those values is computed in a single timestep. He mentions that this
model can simulate the CRCW PRAM with only a constant time overhead,
whereas the converse constant time simulation cannot be proved since the
best (bounded fan-in) CRCW PRAM algorithms can not perform the sum-
mation in constant time. Essentially Feitelson is using ‘unbounded fan-in
with summation’ and ‘unbounded fan-out’. His architecture mixes a well
known discrete model with some optical capabilities and his analysis does
not go much further than what we have already mentioned.
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The model we study is inspired by analog Fourier optical computing
architectures, specifically pattern recognition and matrix algebra proces-
sors [Goo96, NJK+99]. For example, these architectures have the ability to
do unit time Fourier transformation using coherent (laser) light and lenses.
Motivations for the original model definition can be found in [Nau00b]. Sub-
sequent to the original CSM definition Naughton showed [Nau00a] that the
model can simulate Turing machines, thus giving a lower bound on its com-
putational power. Later we showed [NW01] that the model could simulate
Type-2 Turing machines [Wei00]. We also gave an ω-language that is Type-2
(and Turing machine) undecidable, but is CSM decidable. In this thesis we
continue the study and clarification of the power of this model.

1.3 Parallel complexity theory

There has been much work towards developing algorithms and techniques
for speeding up interesting problems by using parallel architectures [Rei93,
Qui94, Akl97, GGKK03]. To date, the theoretical work on optical com-
putation has been in this vein, as can be seen from the references in the
previous section. An alternative approach is to ask the following question:
How does a given optical model relate to standard sequential and parallel
models? Establishing a relationship with computational complexity theory,
by describing both upper and lower bounds on the model, gives immediate
access to a large collection of useful proof techniques and algorithms.

1.3.1 The parallel computation thesis

The parallel computation thesis [Gol77] states that parallel time corresponds
to sequential space for reasonable parallel and sequential models. This broad
statement needs to be qualified somewhat. Given a parallel model M we
say that M verifies the parallel computation thesis if

M -TIME(TO(1)(n)) = SPACE(TO(1)(n)) .

The notation is essentially saying that the class of problems solvable in par-
allel time for M corresponds, within a polynomial, to the class of problems
solvable in sequential space on a Turing machine. Of course the thesis can
never be proved, it relates the intuitive notion of parallelism to the math-
ematical notion of a Turing machine. When results of this type were first
shown researchers were suitably impressed; their parallel models truly had
great power. For example if M verifies the thesis then M decides PSPACE

(including NP) languages in polynomial time. However there is another
side to this coin. It is straightforward to verify that given our current best
algorithms, M will use at least a superpolynomial amount of some other
resource (like space or number of processors) to decide a PSPACE-complete
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or NP-complete language. Since the composition of polynomials is itself a
polynomial, it follows that if we restrict the parallel computer to use at most
polynomial time and polynomial other resources, then it can at most solve
problems in P.

Nevertheless, asking if M verifies the thesis is an important question.
Certain problems (e.g. the class NC) are efficiently parallelisable, in that
they can be solved exponentially faster on parallel computation thesis models
than on sequential models. If M verifies the thesis then we know it will be
useful to apply M to these problems. We also know that if M verifies the
thesis then there are (P-complete) problems for which it is widely believed
that we will not find exponential speed up using M .

The parallel computation thesis was initially discussed by Chandra and
Stockmeyer [CS76] and Goldschlager [Gol77]; Goldschlager was the first to
study the thesis in some detail. The first models that satisfied the above
equality, and thus motivated the stating of the thesis, were the vector ma-
chine model of Pratt, Rabin and Stockmeyer [PRS74] and the multipli-
cation random access machine of Hartmanis and Simon [HS74]. A host
of other models have been shown to verify the thesis, we mention a few
by name, details can be found in the references: uniform circuits [Bor77],
PRAMs [FW78], conglomerates [Gol78], k-PRAMs [SS79], alternating Tur-
ing machines [CKS81], SIMDAGs [Gol82], array processing machines [vLW87],
associative storage modification machines [TvEB93]. Of particular interest
in our work are vector machines and uniform circuits; these are introduced
in later chapters.

Of course, not all parallel models verify the parallel computation thesis.
If P 6= PSPACE then the parallel Turing machines of Widermann [Wie84,
vEB90] are too weak to verify the thesis, yet for some problems they are
more powerful than standard sequential models. In addition, van Emde
Boas [vEB90] and Parberry [Par87] survey a number of parallel models that
seem to be strictly more powerful than parallel computation thesis mod-
els. As mentioned above, it is currently unknown whether certain types
of membrane computers verify the thesis [Sos03, AMVP03]. Dymond and
Cook [DC89], and Parberry [Par87] both suggest variations on the par-
allel computation thesis. Dymond and Cook put forward the thesis that
the resources time and hardware on parallel machines are simultaneously
polynomially related to sequential Turing machine tape head reversals and
space requirements respectively. The thesis of Parberry states that in a
parallel machine with unbounded fan-in communication, time and word size
complexity are simultaneously equivalent to alternations and time on an
alternating Turing machine, respectively, and within a constant and a poly-
nomial, respectively.

The interested reader will find discussions on the parallel computation
thesis in a number of complexity theory books and publications, for exam-
ple: [vEB90, KR90, GHR95, BDG88b].
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1.4 Thesis overview

In Chapter 2 we define our model at its most general. We then define a
total of seven complexity measures, each corresponding to some real-world
resource.

A natural question to ask from these definitions is: How does each op-
eraton affect resource growth over time? In Chapter 3 we answer this ques-
tion for each pair of operations and complexity measures. Some results
seem quite intuitive, while others do not. As is to be expected, under cer-
tain operations many of the measures do not grow at all. Others grow at
rates comparable to massively parallel models. By allowing operations like
Fourier transform we are mixing the continuous and discrete worlds, hence
some measures grow to infinity in one timestep. The chapter closes with the
definition of a restriction on the model, called the C2-CSM.

In preparation for later results, Chapter 4 introduces some image data
structures and a high level programming language for the model. This new
programming language is intimately related with the model definition and
has no more or less power. Its main advantage is ease of use; it shortens and
simplifies CSM programs.

One of our main results is showing that the C2-CSM verifies the parallel
computation thesis. That is, within a polynomial C2-CSM parallel time
corresponds to sequential space. The two inclusions necessary to show this
are given in separate chapters. Chapter 5 gives a C2-CSM simulation of the
vector machine model. This simulation is useful from the point of view of
translating vector machine algorithms into optical ones.

Chapter 6 gives the converse inclusion by simulation of the C2-CSM
with circuits. We use logspace uniform, bounded fan-in circuits which are
known to verify the parallel computation thesis. Both simulations imply
some immediate corollaries on the class of C2-CSMs. For example, we show
that a subclass of C2-CSMs accept exactly the class NC.

In Chapter 7 we recall a more general variation of the model, essentially
a C2-CSM with arbitrary real inputs. The chapter shows the hideous power
of allowing such oracle-type inputs, as we prove that this model can decide
any language over a finite alphabet; thus providing further evidence of the
relevance of our more restricted version of the model.

We close with some remarks and possible directions for future work.
Much of the work presented here has appeared in published form [WN05,
WG05a, WG05b, Woo, NW01].



2

Model definition

2.1 Introduction

In this chapter we introduce the CSM. The model uses complex-valued im-
ages, arranged in a grid structure, for data storage. The program also re-
sides in images. The CSM has the ability to perform Fourier transformation,
complex conjugation, multiplication, addition, thresholding and resizing of
images. It has some simple control flow operations and is deterministic. To
analyse such a model we define complexity measures that are inspired by
optics. For example, spatial resolution corresponds to the intuitive notion
of number of pixels. We give a total of seven measures.

We begin by defining images and some of the optically inspired functions
that are assumed as basic CSM operations. Earlier versions of the definitions
in this chapter were created in collaboration with T. Naughton [WN05].

2.2 CSM

Definition 2.2.1 (Complex-valued image) A complex-valued image (or
simply, an image) is a function f : [0, 1) × [0, 1) → C, where [0, 1) is the
half-open real unit interval.

We let I denote the set of all complex-valued images.

2.2.1 Optical functions

We define six functions that are implemented in six of the CSM’s ten oper-
ations. Let each f ∈ I be parameterised by orthogonal dimensions x and y;
we often indicate this by writing f as f(x, y). The function h : I → I gives
the one-dimensional (1D) Fourier transformation (in the x-direction) of its
2D argument image f . The function h is defined as

h (f(x, y)) = h′ (F (α, y)) , (2.2.1)

7



2 Model definition 8

where F (α, y) is the Fourier transform (FT) in the x-direction of f(x, y),
defined as [Van92, Goo96]

F (α, y) =

∫ ∞

−∞
f(x, y) exp [i2παx] dx ,

where i =
√
−1, and where h′(F (α, y)) = F (θα, y). Here, h′ uses the value θ

to linearly rescale its argument F so that F is defined over [0, 1)× [0, 1). The
function v : I → I gives the 1D Fourier transformation (in the y-direction)
of its 2D argument image f , and is defined as

v (f(x, y)) = v′ (F (x, β)) , (2.2.2)

where F (x, β) is the FT in the y-direction of f(x, y), defined as [Van92,
Goo96]

F (x, β) =

∫ ∞

−∞
f(x, y) exp [i2πβy] dy ,

and where v′(F (x, β)) = F (x, θβ).
The function ∗ : I → I gives the complex conjugate of its argument

image,
∗(f(x, y)) = f ∗(x, y) , (2.2.3)

where f ∗ denotes the complex conjugate of f . The complex conjugate of a
scalar z = a+ ib is defined as z∗ = a− ib.

The function ··· : I × I → I gives the pointwise complex product of its
two argument images,

··· (f(x, y), g(x, y)) = f(x, y)g(x, y) , (2.2.4)

The function + : I × I → I gives the pointwise complex sum of its two
argument images,

+ (f(x, y), g(x, y)) = f(x, y) + g(x, y) . (2.2.5)

The function ρ : I ×I ×I → I performs amplitude thresholding on its first
image argument using its other two real valued (zl, zu : [0, 1) × [0, 1) → R)
image arguments as lower and upper amplitude thresholds, respectively,

ρ (f(x, y), zl(x, y), zu(x, y)) =





zl(x, y), if |f(x, y)| < zl(x, y)

|f(x, y)| , if zl(x, y) 6 |f(x, y)| 6 zu(x, y)

zu(x, y), if |f(x, y)| > zu(x, y) .

(2.2.6)
The amplitude of an arbitrary z ∈ C is denoted |z| and is defined as
|z| =

√
z(z∗), where we take the positive root.
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2.2.2 CSM

Next we will define the CSM. To prepare, we let N be the set of nonnegative
integers and N+ = {1, 2, 3, . . .}. For a given CSM M we let N be a countable
set of images that encode M ’s addresses. Additionally, for a given M there
is a function E : N → N such that E is Turing machine decidable, under
some reasonable representation of images as words. We call E the address
encoding function of M . An address is simply an element of N× N.

Definition 2.2.2 (CSM) A continuous space machine or CSM is a quin-
tuple M = (E, L, I, P,O), where

E : N→ N is the address encoding function

L = ((sξ, sη) , (aξ, aη) , (bξ, bη)) are the addresses: sta, a, and b,

I =
((
ι1ξ
, ι1η

)
, . . . ,

(
ιkξ
, ιkη

))
are the addresses of the k input images,

P =
{(
ζ1, p1ξ

, p1η

)
, . . . ,

(
ζr, prξ , prη

)}
are the r programming symbols and

their addresses where ζj∈({h, v, ∗, ···,+, ρ, st, ld, br, hlt} ∪ N ) ⊂ I,
O =

((
o1ξ
, o1η

)
, . . . ,

(
olξ , olη

))
are the addresses of the l output images.

Each address is an element from {0, 1, . . . ,Ξ − 1} × {0, 1, . . . ,Y− 1} where
Ξ,Y ∈ N+. Addresses a and b are distinct.

Addresses whose contents are not specified by P in a CSM definition are
assumed to contain the constant image f(x, y) = 0.

We interpret this definition to say that M is (initially) defined on a grid
of images bounded by the constants Ξ and Y, in the horizontal and vertical
directions respectively. We have specified the location of programming sym-
bols on the grid. We have also specified where inputs would be placed in an
instance ofM and where we would expect to find outputs. The address sta is
the program start location. Addresses a and b are special well-known images
that are used by many of the model’s operations as well-known addresses.

Some remarks are warrented on E, the address encoding function. Since
E is computable in the sense described above, the decoding function
E
−1 : N → N is also computable. Notice that we do not force any par-

ticular E on the programmer; we do not want to stop her from inventing
novel addressing schemes.

When stating that E was computable we added the caveat reasonable
for the representation of N as words. When writing CSMs we do not want
the mapping (from N to words) to hide complicated behaviour that might
undermine any claims about efficiency of our algorithms. However there is no
standard way to represent elements of N as words. Anyone writing a CSM
should offer a convincing argument that their mapping from N to words is
reasonable. Other authors have also raised this representation issue [Moo98,
vEB90, WW86] for different models, but with similar motivations.
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Finally, for an address encoding to be judged reasonable, it must be
the case that E and E

−1 are reasonable in the sense that they do not hide
complicated behaviour. For example a CSM with an intractable E could
be programed to use E as an oracle for ‘efficiently’ solving some intractable
problem. This is quite unreasonable. In a subsequent chapter we place a
tighter restriction on the computability of E.

2.2.3 CSM computation

We adopt a few notational conveniences for this section. Let c ∈ N× N be
an address, the image at address c is denoted ĉ. Sometimes the image at
address c represents a natural number, in such cases that number is denoted
E
−1(ĉ). Each of e, u and w is a sequence, where each element of the sequence

is from I × N× N (an image followed by an address).

Definition 2.2.3 (CSM configuration) A configuration of a CSM M is
a pair 〈c, e〉, where c ∈ {0, . . . ,Ξ − 1} × {0, . . . ,Y − 1} is an address called
the control. Also, e = ((i0 0, 0, 0), . . . , (iγ δ, γ, δ), . . . ) is a tuple with finitely
many elements that contains M ’s images and each of their addresses, with
iγ δ ∈ I denoting image at address (γ, δ). The elements of tuple e are ordered
first by each δ then by each γ.

An initial configuration of M is a configuration Csta = 〈csta, esta〉, where
csta = (sξ, sη) is the program start address sta, and esta contains all ele-
ments of P and the k input images (ϕ1, ι1ξ

, ι1η ), . . . , (ϕk, ιkξ
, ιkη

) as given
by I. A final configuration of M is a configuration where the control is
pointing at the hlt instruction. In other words, a configuration of the form
Chlt = 〈(γ, δ), (u, (hlt, γ, δ), w)〉, where u and w are given above. Notice that

(̂γ, δ) = hlt.
In Definition 2.2.4 we will define how a configuration may be altered

by each CSM operation, in other words a computation step. Some of the
operations can address (access) arbitrary images in the grid, using address
parameters. We introduce some notation to help us describe this. The
function φ((γ, δ)) = (γ + 1, δ) advances the control horizontally forward by
one grid element while φ(k)(c) is shorthand for function composition, e.g.

φ(2)(c) = φ(φ(c)). At a given configuration 〈c, e〉 we let ξ1 = E
−1(φ̂(c)), ξ2 =

E
−1(φ̂(2)(c)), η1 = E

−1(φ̂(3)(c)), η2 = E
−1(φ̂(4)(c)). Hence each of ξ1, ξ2, η1

and η2 is the natural number represented by the 1st, 2nd, 3rd and 4th image
after the control position, respectively. We let the scaling relationships for
st and ld be x′ = (x+γ−ξ1)/(ξ2−ξ1 +1) and y′ = (y+δ−η1)/(η2−η1 +1).
Recall from the CSM definition that (aξ, aη) is the well-known address a.
We write a(x, y) to mean the image stored in address a. Definition 2.2.4 is
followed by an explanation and summarised in Figure 2.2.1. Additionally
the operations st and ld are illustrated in Figure 2.2.2.
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Definition 2.2.4 (`M) Let `M be a binary relation on configurations of
CSM M . The relation `M contains exactly the following ten elements.

〈c, (u, (iaξaη
, aξ, aη), w)〉 `M 〈φ(c), (u, (h(iaξaη

), aξ, aη), w)〉, if ĉ = h (i)

〈c, (u, (iaξaη
, aξ, aη), w)〉 `M 〈φ(c), (u, (v(iaξaη

), aξ, aη), w)〉, if ĉ = v (ii)

〈c, (u, (iaξaη
, aξ, aη), w)〉 `M 〈φ(c), (u, (∗(iaξaη

), aξ , aη), w)〉, if ĉ = ∗ (iii)

〈c, (u, (iaξaη
, aξ, aη), w)〉 `M 〈φ(c), (u, (···(iaξaη

, ibξbη
), aξ, aη), w)〉, if ĉ = ··· (iv)

〈c, (u, (iaξaη
, aξ, aη), w)〉 `M 〈φ(c), (u, (+(iaξaη

, ibξbη
), aξ , aη), w)〉, if ĉ = + (v)

〈c, (u, (iaξaη
, aξ, aη), w)〉 `M 〈φ(c), (u,(ρ(iaξaη

, φ̂(c), φ̂(2)(c)), aξ, aη), w)〉, if ĉ =ρ (vi)

〈c, (uγδ, (iγδ(x, y), γ, δ), wγδ)〉 `M 〈φ(5)(c), (uγδ, (a (x′, y′) , γ, δ), wγδ)〉,
∀γ, δ s.t. ξ1 6 γ 6 ξ2, η1 6 δ 6 η2, ∀(x, y) ∈ [0, 1)× [0, 1), if ĉ = st (vii)

〈c, (u, (a (x′, y′) , aξ, aη), w)〉 `M 〈φ(5)(c), (u, (iγδ(x, y), aξ , aη), w)〉,
∀γ, δ s.t. ξ1 6 γ 6 ξ2, η1 6 δ 6 η2, ∀(x, y) ∈ [0, 1)× [0, 1), if ĉ = ld (viii)

〈c, (u)〉 `M 〈E−1(φ̂(c)),E−1(φ̂(2)(c)), (u)〉, if ĉ = br (vii)

〈c, (u)〉 `M 〈c, (u)〉, if ĉ = hlt (vii)

The first six elements of `M define the CSM’s implementation of the
functions defined in Eqs. (2.2.1) through (2.2.6). Notice that in each case
the image at the well-known address a is overwritten by the result of applying
one of h, v, ∗, ···, + or ρ to its argument (or arguments). The value of the
control c is then simply incremented to the next address, using the function
φ defined earlier. The seventh element of `M defines how the store operation
copies the image at well-known address a to a ‘rectangle’ of images specified
by the st parameters ξ1, ξ2, η1, η2. The eighth element of `M defines how the
load operation copies a rectangle of images specified by the ld parameters
ξ1, ξ2, η1, η2 to the image at well-known address a. Operations st and ld
are illustrated in Figure 2.2.2. Elements nine and ten of `M define the
control flow operations branch and halt, respectively. When the image at
the address specified by the control c is br, the value of c is updated to the
address encoded by the two br parameters. Finally, the hlt operation always
maps a final configuration to itself.

Let `∗M denote the transitive closure of `M . A halting computation by
M is a finite sequence of configurations beginning in an initial configuration
and ending in a final configuration: Csta `∗M Chlt.

For convenience, we use an informal ‘grid’ notation when specifying pro-
grams for the CSM. In our grid notation the first and second elements of
an address tuple refer to the horizontal and vertical axes of the grid, re-
spectively, and image (0, 0) is at the bottom left-hand corner of the grid.
The images in a grid must have the same orientation as the grid. Hence in
a given image f , the first and second elements of a coordinate tuple refer
to the horizontal and vertical axes of f , respectively, and the coordinate
(0, 0) is located at the bottom left-hand corner of f . Figure 2.2.1 informally
explains the elements of `M , as they appear in this grid notation.
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h : perform a horizontal 1D Fourier transform on the 2D
image in a. Store result in a.

v : perform a vertical 1D Fourier transform on the 2D
image in a. Store result in a.

∗ : replace image in a with its complex conjugate.

··· : multiply (point by point) the two images in a and b.
Store result in a.

+ : perform a complex addition of a and b. Store result
in a.

ρ zl zu : zl, zu ∈ I; filter the image in a by amplitude using zl
and zu as lower and upper amplitude threshold images,
respectively.

st ξ1 ξ2 η1 η2 : ξ1, ξ2, η1, η2 ∈ N; copy the image in a into the rectan-
gle of images whose bottom left-hand corner address
is (ξ1, η1) and whose top right-hand corner address is
(ξ2, η2).

ld ξ1 ξ2 η1 η2 : ξ1, ξ2, η1, η2 ∈ N; copy into a the rectangle of images
whose bottom left-hand corner address is (ξ1, η1) and
whose top right-hand corner address is (ξ2, η2).

br ξ η : ξ, η ∈ N; unconditionally branch to the image at
address (ξ, η).

hlt : halt.

Figure 2.2.1: The set of CSM operations, given in our informal grid notation.
For formal definitions see Definition 2.2.4.

a

ξ1 ξ2

η1

η2

st

ld

Figure 2.2.2: Operations st and ld.

The CSM has the ability to overwrite its own program. When analysing
programs this is an undesirable feature and we do not use program over-
writing in this work. In particular if any code is written outside the initial
grid it will never be executed since Definition 2.2.3 ensures that in a valid
configuration the control always remains within the initial grid.
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Symbol Name Description

1. T time Number of timesteps
2. G grid Number of grid images
3. Rs spatialRes Spatial resolution
4. Ra amplRes Amplitude resolution
5. Rp phaseRes Phase resolution
6. Rd dyRange Dynamic range
7. ν freq Frequency of illumination

Table 2.3.1: Summary of complexity measures for characterising CSMs.

2.3 Complexity of computations

In this section we define computational complexity measures for the CSM.
We want our measures to be straightforward to analyse, while at the same
time be meaningful by reflecting the reality of optical computing. A total
of seven complexity measures are given and are summarised in Table 2.3.1.

All finite resource bounding functions f are from N into N. We take
the notation O(f(n)) to have the usual meaning as the set of all functions
g such that for some nonnegative r ∈ R and n0 ∈ N: g(n) 6 rf(n) for
all n > n0. We wish to avoid some of the ambiguities introduced by the
the O notation [Knu97]. In an equality with O terms on one side of the
‘=’ and non-O terms on the other, we write the O terms on the right.
Ω(f(n)) is the set of all functions g such that g(n) > rf(n) for all n > n0.
Also g(n) is Θ(f(n)) if and only if g(n) is O(f(n)) and g(n) is Ω(f(n)).
All finite resource bounds that we use have the usual properties of being
nondecreasing, and time (in the case of CSM time) or space (in the case of
CSM ‘space-like’ measures) constructible on a Turing machine [BDG88a].
Such constructibility assumes a reasonable representation of images as finite
length words, with the resource bounding function being defined on the
length of such words. All logarithms are to the base 2. We refer the reader to
the literature for the definitions of the various complexity classes used in our
work (for example Johnson [Joh90] provides a good survey). However, we
mention that NSPACE and DSPACE respectively denote nondeterministic
and deterministic Turing machine space complexity classes.

Definition 2.3.1 The time complexity of a CSM M is the number of con-
figurations in the computation sequence of M , beginning with the initial con-
figuration and ending with the first final configuration.

The definition of time assigns unit cost to each instruction.

Definition 2.3.2 The grid complexity of a CSM M is the minimum num-
ber of images, that are arranged in a rectangular grid, for M to compute
correctly on all inputs.
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From the CSM definition grid is at least ΞY. In previous work on the
model [Nau00b, Nau00a, NW01, WN05] the number of grid images remained
constant throughout a computation. Here we have altered the model (by
introducing the address encoding function) so that grid may grow over
time.

Next we define spatialRes complexity. Let a pixel λ be a constant
function defined on a real-valued rectangle with rational endpoints, as fol-
lows. λ : [0,W ) × [0,H) → z where z ∈ C; W,H ∈ Q; 0 < W,H 6 1;
and [0,W ), [0,H) ⊂ R. Let a raster image be an image composed entirely
of nonoverlapping pixels, each of the pixels are of equal height H, equal
width W , identical orientation, and arranged into Φ columns and Ψ rows
such that ΦW = 1 = ΨH. Formally, given ΦΨ pixels {λ1,1, . . . , λΦ,Ψ}, a
raster image f ′ consisting of exactly these pixels is defined as

f ′(x, y) = λγ,δ, where γ satisfies
γ − 1

Φ
6 x <

γ

Φ
,

and δ satisfies
δ − 1

Ψ
6 y <

δ

Ψ
.

Let the spatial resolution of a raster image be ΦΨ: The number of pixels
in that image. Let the process of rasterising an image be the function
S : I × (N×N)→ I, defined as S(f(x, y), (Φ,Ψ)) = f ′(x, y), where f ′(x, y)
is a raster image, with ΦΨ pixels arranged in Φ columns and Ψ rows, that
somehow approximates f(x, y).

If we choose a reasonable and realistic rasterisation then the details of S
are not important; it suffices to say that (Φ,Ψ) can be regarded as defining
a sampling grid with uniform sampling both horizontally and vertically,
although the sampling rates in both directions can differ. For example, in
this work S maps the value at the centre of each pixel-sized part of an
image to a pixel of that value. In general, increasing the spatial resolution
of the sampling (increasing Φ and/or Ψ) results in a closer approximation
to f(x, y).

Definition 2.3.3 The spatialRes complexity of a CSM M is the mini-
mum ΦΨ such that if each image f(x, y) in the computation of M is replaced
with S(f(x, y), (Φ,Ψ)) then M computes correctly on all inputs.

If no such ΦΨ exists then M has infinite spatialRes complexity. It can be
seen that if the result of M ’s computation is determined solely by features
within its images that are located at rational (respectively, irrational) co-
ordinates then M would require finite (respectively, infinite) spatialRes.
In optical image processing terms, and given the fixed size of our images,
spatialRes corresponds to the space-bandwidth product of a detector or
SLM (spatial light modulator – a device for encoding a function in an optical
wavefront).
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The amplRes complexity of a CSMM is the minimum amplitude resolution
necessary for M to compute correctly on all inputs. This is formalised as
follows. Consider the function A : I × {1, 2, 3, . . .} → I defined as

A(f(x, y), µ) =

⌊
|f(x, y)|µ+

1

2

⌋
1

µ
exp(i× arg(f(x, y))) , (2.3.1)

where | · | gives the amplitudes of its image argument, arg(·) gives the phase
angles (in the range (0, 2π]) of its image argument, and the floor operation
is defined as operating separately on each value in its image argument. The
value µ is the cardinality of the set of discrete nonzero amplitude values
that each complex value in A(f, µ) can take, per half-open unit interval of
amplitude. (Zero will always be a possible amplitude value irrespective of
the value of µ.) To aid in the understanding of Eq. (2.3.1), note that

f(x, y) = |f(x, y)| exp(i× arg(f(x, y))) .

Definition 2.3.4 The amplRes complexity of a CSM M is the minimum
µ such that if each image f(x, y) in the computation of M is replaced by
A(f(x, y), µ) then M computes correctly on all inputs.

If no such µ exists then M has infinite amplRes complexity. It can be seen
that if the result of M ’s computation is determined solely by amplitude
values within its images that are rational (respectively, irrational), then M
would require finite (respectively, infinite) amplRes. For example, CSM
instances that make use of only unary, binary and integer images (see Sec-
tion 4.2) have constant amplRes of 1. Instances that use real number
and real matrix images (see Section 4.2) have infinite amplRes complexity.
In optical image processing terms amplRes corresponds to the amplitude
quantisation of a signal.

The phaseRes complexity of a CSM M is the minimum phase resolution
necessary for M to compute correctly on all inputs. Consider the function
P : I × {1, 2, 3, . . .} → I defined as

P (f(x, y), µ) = |f(x, y)| exp

(
i

⌊
arg(f(x, y))

µ

2π
+

1

2

⌋
2π

µ

)
. (2.3.2)

The value µ is the cardinality of the set of discrete phase values that each
complex value in P (f, µ) can take.

Definition 2.3.5 The phaseRes complexity of a CSM M is the minimum
µ such that if each image f(x, y) in the computation of M is replaced by
P (f(x, y), µ) then M computes correctly on all inputs.
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If no such µ exists then M has infinite phaseRes complexity. It can be seen
that if the result of M ’s computation is determined solely by phase values
within its images that are rational (respectively, irrational) modulo 2π, or by
a finite (respectively, infinite) set of rational phase values modulo 2π, then
M would require finite (respectively, infinite) phaseRes. In optical image
processing terms phaseRes corresponds to the phase quantisation [GS70]
of a signal.

Definition 2.3.6 The dyRange complexity of a CSM M is the ceiling of
the maximum of all the amplitude values stored in all of M ’s images during
M ’s computation.

In optical processing terms dyRange corresponds to the dynamic range of
a signal.

The seventh of our complexity measures is freq. The freq complexity of
a CSM M is the minimum optical frequency necessary for M to compute
correctly. The concept of minimum optical frequency is now explained. In
optical implementations of the h and v operations (such as those suggested
in [WN05]), one of the factors that determine the dimensions of the Fourier
spectrum of f ∈ I is the frequency of the coherent illumination employed.
Increasing the frequency of the illumination results in a smaller Fourier
spectrum (components are spatially closer to the zero frequency point). In
our definitions of h and v, we employ the constant θ to rescale the Fourier
spectrum of f such that it fits into the dimensions of an image: [0, 1) ×
[0, 1). In general, however, a Fourier spectrum of an image will be infinite in
extent. Therefore, according to the relationship between optical frequency
and Fourier spectrum dimensions [Goo96, Van92], such a constant θ only
exists when the wavelength of the illumination is zero, corresponding to
illumination with infinite frequency. With a finite optical frequency, the h
and v operations will remove all Fourier components with a spatial frequency
higher than the cut-off imposed by θ. This is called low-pass filtering in
signal processing terminology, and is equivalent to a blurring of the original
signal. Given particular rasterisation and quantisation functions for the
images in M , and a particular θ, the blurring effect might not influence the
computation.

Definition 2.3.7 The freq complexity of a CSM M to be the minimum
optical frequency such that M computes correctly on all inputs.

If approximations of a FT are sufficient for M , or if M does not execute h
or v, then M requires finite freq. If the original (unbounded) definitions
of h and v must hold then M requires infinite freq. Note also that us-
ing the traditional optical methods (such as those outlined in [WN05]), any
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lower bound on spatialRes complexity will impose a lower bound on freq

complexity. In the context of traditional optical methods, this imposition
is referred to as the diffraction limit. (The optical wavelength should be a
constant times smaller than the smallest spatial feature that needs to be
resolvable in an image.) In order not to rule out the applicability of novel
sub-wavelength resolution techniques that go beyond the diffraction limit
for our CSM algorithms we give each freq complexity as an upper bound.

Often we wish to make analogies between space on some well-known model
and ‘space-like’ resources on the CSM. For this purpose we define the fol-
lowing convenient term.

Definition 2.3.8 The space complexity of a CSM M is the product of all
of M ’s complexity measures except time.

In [WN05] the interested reader will find a discussion on defining energy
of computations in terms of the above mentioned complexity measures.

For each measure we have defined the complexity of a computation (se-
quence of configurations). We extend this definition to the complexity of a
(possibly non-final) configuration in the obvious way. Additionally, we some-
times talk about the complexity of an image, this is simply the complexity
of the configuration that the image is in.

2.4 Discussion

From our CSM definition of a CSM computation, operations compute on
images in a parallel way. Images may represent a massive amount of data.
Hence in Flynn’s taxonomy [Fly72, MS98] CSMs are classed as single in-
struction, multiple data (SIMD) machines.

In earlier versions of the model [Nau00b, Nau00a, NW01, WN05] the
number of grid images remained constant throughout the computation, that
is grid was always constant. The address encoding function E was intro-
duced to enable us to treat grid as a useful complexity resource.

For the interested reader [WN05] contains an example address encod-
ing with its optical implementation. Even though grid is always constant
in [WN05], we can still apply the same ideas for optical addressing, since for
any given CSM instance the number of images is bounded by grid. Also
in [WN05] (and the references therein) there are some suggested implemen-
tations for the model’s optical operations.

We have defined a number of complexity measures that reflect resource
usage in optics. In the next chapter we analyse these measures with respect
to the model’s operations.



3

Complexity of CSM operations

and the C2-CSM

3.1 Introduction

In the previous chapter we defined our model and a number of complexity
measures. Here, we wish to understand how the various complexity mea-
sures grow, with respect to the CSM’s operations over time. We tackle
this question for each operation and complexity measure. Some of results
seem quite intuitive, while others do not. As is to be expected, under cer-
tain operations many of the measures do not grow at all. Others grow at
rates comparable to massively parallel models. By allowing operations like
Fourier transformation we are mixing the continuous and discrete worlds,
hence some measures grow to infinity in one timestep. We begin with some
motivations.

Given any model of computation, execution of one of the model’s oper-
ations may or may not increase the value of some complexity measure at
a given time in the computation. For example, a move of a Turing ma-
chine tape head sometimes increases space by 1 and always increases time
by 1. For sequential models it is usually quite obvious how execution of a
single operation will effect the complexity of the computation. In parallel
models execution of a single operation can lead to large growth. For exam-
ple a multiplication or shift operation in a unit cost parallel model (such
as the unrestricted vector machines of Pratt and Stockmeyer [PS76]) can
double the length of a binary string in one step. When binary strings are
interpreted as numbers, such multiplications and shifts generate large values
very quickly. Characterising the growth in complexity is useful for proving
upper bounds on computational power and setting reasonable restrictions
on the model [BDG88b].

In Section 3.2 of this chapter we present general worst case complexity
growth for the CSM. All restrictions of the CSM model will have complex-
ity growth less or equal to this; a useful fact when proving upper bounds
on computational power. It turns out that in the general case the CSM is
extremely powerful, in more ways than one. This leads to the idea of finding

18
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meaningful restrictions of the CSM. In Section 3.3 we define an important
restriction, called the C2-CSM.

3.2 Worst case CSM complexity growth

Our complexity growth analysis is worst case, hence we assume that at each
computation step we want to preserve all information in each image. These
results give some intuition into which operations may be useful for (say)
time efficient solutions to various problems. For example a multiplicative
increase in some resource in a single step is powerful in terms of time effi-
ciency.

It turns out that some resources do not increase under certain operations,
while others increase by a reasonable amount. Others are unbounded and
increase to ∞. This gives strong motivation for restrictions on the model
and raises some interesting questions.

When we defined complexity measures in Section 2.3 we used phrases
along the lines of “... if each image in a CSM computation is replaced by a
discretised image ...”. In order to simplify our reasoning in this chapter we
assume that the images actually have been replaced. This does not affect
the outcomes of valid computations.

Table 3.2.1 lists the effect of each CSM operation on the complexity of
computations. Specifically, for each operation and each complexity measure
the table defines the value of the complexity measure after execution of the
operation (at time T +1). The complexity of a configuration at time T +1
is at least the value it was at time T , since complexity functions are always
nondecreasing. At a given timestep T each image in a CSM configuration
has the same complexity. Our definition of time assigns unit time cost for
each operation, hence we do not have a time column. Most entries are
immediate from the definitions of the operation and complexity measure.
For entries that are not immediate, a theorem is referenced directly below
the entry in brackets.
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grid spatialRes amplRes dyRange phaseRes freq

h GT ∞ ∞ ∞ ∞ ∞

[3.2.1] [3.2.1] [3.2.2] [3.2.1] [3.2.1]

v GT ∞ ∞ ∞ ∞ ∞

[3.2.1] [3.2.1] [3.2.2] [3.2.1] [3.2.1]

∗ GT RsT
RaT

RdT
RpT

νT

[3.2.4]

··· GT RsT (RaT )2 (RdT )2 RpT νT

[3.2.5] [3.2.6] [3.2.7]

+ GT RsT ∞ 2RdT ∞ νT

[3.2.8] [3.2.9] [3.2.10]

ρ unbounded RsT RaT RdT RpT νT

[3.2.11]

st unbounded RsT RaT RdT RpT νT

[3.2.11]

ld unbounded unbounded RaT RdT RpT unbounded
[3.2.11] [3.2.12] [3.2.12]

br GT RsT RaT RdT RpT νT

[3.2.13]

hlt GT RsT RaT RdT RpT νT

Table 3.2.1: Upper bounds on CSM resource usage after a single timestep. For
each operation and complexity measure pair, the table entry defines the worst case
upper bound on CSM resource usage at time T +1. This value is given in terms of
the resources used at time T : grid = GT , spatialRes = RsT

, amplRes = RaT
,

dyRange = RdT
, phaseRes = RpT

and freq = νT . Where necessary, proofs are
referenced in brackets.
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Theorem 3.2.1 (h/v & spatialRes, amplRes, phaseRes and freq)
Let 〈c, e〉T be a configuration of CSM M at time T where either ĉ = h
or ĉ = v. Also, let RsT

, RaT
, RpT

and νT be the spatialRes, amplRes,
phaseRes and freq respectively of 〈c, e〉T . Then

RsT+1 = RaT+1 = RpT+1 = νT+1 =∞ .

Proof. For each complexity measure the statement is trivially true in the
case that the measure is infinite at time T . We give a proof for the other
case where each measure is finite at time T .

The statement is proved for the measure in question if there is no finite
minimum value for that measure at time T + 1. We use any (rectangular)
step image, such as

a(x, y) =

{
1

RaT
, if 1

2 − 1
RsxT

6 x < 1
2 and 1

2 − 1
RsyT

6 y < 1
2

0, otherwise.

The values RsxT
and RsyT

are the spatial resolutions in the horizontal and
vertical directions respectively. The image a(x, y) is representable with finite
spatialRes, amplRes, phaseRes and freq. However its (horizontal or
vertical) Fourier spectrum is a sinc function containing an infinite number of
spatially separated components and is therefore not representable by finite
spatialRes nor freq. The amplitudes of the peaks in this Fourier spectrum
monotonically decrease in value, never reaching zero, and therefore are not
representable by finite amplRes.

Goodman and Silvestri [GS70] discuss a method of phase quantisation
that is equivalent to phaseRes. They prove that phase quantisation in the
Fourier domain will, in general, cause degradation in the resulting inverse
FT. In particular they show that the step function above can not be per-
fectly reconstructed from its phase discretised FT, and thus we need infinite
phaseRes to represent the FT of such a function. The reader is encouraged
to consult [GS70] for details. �

All theorems in this section are a worst case analysis. If one believes that
our operations and complexity measures are meaningful, then the previous
theorem essentially tells us that applying standard complexity theory to
analyse continuous FTs is pointless. Obviously the result is of little relevance
to CSMs that do not use the FT, or only use approximations of the FT.
Typically in optical setups it will be the case that at some point in the
computation discretisations are introduced.

Theorem 3.2.2 (h/v & dyRange) Let 〈c, e〉T be a configuration of CSM
M at time T where either ĉ = h or ĉ = v. Also, let RdT

be the dyRange

of 〈c, e〉T . Then RdT+1
=∞
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Proof. Take the constant image a = 1. The horizontal FT h(a) has value 0
everywhere except at x = 0 where it is a δ function, for all y. Hence there
is no finite minimum dyRange that bounds the value at h(a(0, y)).

A similar argument holds for v, the only difference being we get the δ
function at v(a(x, 0)). �

Again, the statement of Theorem 3.2.2 is a worst case scenario. It is
worthwhile noting the following. In one dimension, Rayleigh’s (also called
Parseval’s) theorem [Bra78] states

∫ ∞

−∞
|a(x)|2 dx =

∫ ∞

−∞
|F(u)|2 du . (3.2.1)

Where F(u) is the FT of a(x). For images, this is usually interpreted to
mean that the amount of energy in an image is equal to the amount of energy
in its FT.

From the definition of h (see Eq. (2.2.1)) each horizontal line in h(a) is
the 1D FT of the corresponding horizontal line in the input image a. Then,
according to Eq. (3.2.1), for a given y-value both horizontal lines have the
same total energy. Hence the integral (sum) of the energy of all lines in h(a)
will equal that in a. From a complexity analysis of a given CSM instance,
lets suppose we know that h(a) has finite spatialRes. Then we know that
we cannot get a true δ function after a FT. Hence in such cases Parseval’s
theorem will allow us to specify a finite upper bound on the dyRange of
h(a) in terms of the complexity of a.

Theorem 3.2.4 below shows that executing a single ∗ operation does not
change the phaseRes of a CSM computation. To show this we will use the
following lemma that recalls the phase discretisation function P .

Lemma 3.2.3 Let z ∈ C, µ ∈ {1, 2, 3, . . .} and (from Eq. (2.3.2)) let

P (z, µ) = |z| exp

(
i

⌊
arg(z)

µ

2π
+

1

2

⌋
2π

µ

)
. (3.2.2)

Then

P (z, µ) ∈
{
z′
∣∣∣ z′ = |z| exp

(
iµ′

2π

µ

)
, µ′ ∈ {1, 2, . . . , µ}

}
.

Proof. Let j =
⌊
arg(z) µ2π + 1

2

⌋
, hence j ∈ Z. Let arg(z) have range 0 <

arg(z) 6 2π. By substituting for arg(z) in j it is clear that j ∈ µ′ ∪ {0}.
Since we are working in radians j = 0 gives the same value in P as j = µ in
Eq. (3.2.2), hence j ∈ µ′ and the proof is complete. �

The essence of the following theorem is that multiplying the phase angle by
−1 (that is, complex conjugation) does not increase phaseRes.
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Theorem 3.2.4 (∗ & phaseRes) Let 〈c, e〉T be a configuration of CSM M
at time T where ĉ = ∗. Also, let RpT

be the phaseRes of 〈c, e〉T . Then
RpT+1

= RpT
.

Proof. The statement is trivially true in the case that phaseRes is infinite.
We give a proof for the other case where phaseRes is finite.

From the definition of the ∗ operation (Definition 2.2.4), the only image
affected by ∗ is a. We will show that in the worst case the set of phase
values in range(a) at time T + 1 is a subset of the set of phase values in
range(a) at time T . Let z ∈ range(a(x, y)), we write z = |z| exp(i arg(z))
and by definition, ∗(z) = |z| exp (i(− arg(z))).

Let RpT
= µ, then at time T for each z ∈ range(a)

P (z, µ) = |z| exp

(
i

⌊
arg(z)

µ

2π
+

1

2

⌋
2π

µ

)

where P was defined in Eq. (2.3.2). By Lemma 3.2.3

P (z, µ) ∈
{
z′
∣∣∣ z′ = |z| exp

(
iµ′

2π

µ

)
, µ′ ∈ {1, 2, . . . , µ}

}
. (3.2.3)

By definition, after the ∗ operation

∗(P (z, µ)) = |z| exp

(
i

(
−
⌊
arg(z)

µ

2π
+

1

2

⌋
2π

µ

))
.

We then substitute into Eq. (3.2.3) to get

∗(P (z, µ)) ∈
{
z′′
∣∣∣ z′′ = |z| exp

(
i

(
−µ′ 2π

µ

))
, µ′ ∈ {1, 2, . . . , µ}

}
. (3.2.4)

Our notation is in radians hence nµ′ 2π
µ

, for all n ∈ Z, is an element of
our set of µ angles, in this case n = −1. Hence Eqs. (3.2.3) and (3.2.4) are
equivalent. �

Theorem 3.2.5 ( ··· & amplRes) Let 〈c, e〉T be a configuration of CSM
M at time T where ĉ = ··· , and RaT

be the amplRes of 〈c, e〉T . Then
RaT+1

= (RaT
)2 .

Proof. The statement is trivially true in the case that amplRes is infinite.
We give a proof for the other case where amplRes is finite.

By definition, the operation ··· acts on images a and b and the result is
placed in image a. All images other than a are unaffected so we ignore them.
For any x, y ∈ [0, 1), let za = range(a(x, y)), zb = range(b(x, y)). At time

T + 1 and coordinates (x, y), and from the definition of ··· , recall that image
a is replaced with the new image

a′(x, y) = zazb = |za| |zb| exp(i(arg a(x, y) + arg b(x, y)))
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Let RaT
= µ in Eq. (2.3.1), the values in a and b at time T are of the form

A(z, µ) =

⌊
|z|µ+

1

2

⌋
1

µ
exp(i× arg(z)) .

Since we are interested only in amplRes we will ignore the phase term.

|A(z, µ)| =
⌊
|z|µ+

1

2

⌋
1

µ

at time T . Then, at time T + 1

|A(za, µ)| |A(zb, µ)| =
(⌊
|za|µ+

1

2

⌋
1

µ

)(⌊
|zb|µ+

1

2

⌋
1

µ

)

=

⌊
|za|µ+

1

2

⌋⌊
|zb|µ+

1

2

⌋
1

µ2
.

We are proving the theorem for the case that amplRes is finite, hence we
know that at time T , |za| and |zb| are rationals, moreover they are of the
form |za| = n

µ
and |zb| = m

µ
for some n,m ∈ N. By substitution we simplify

the above expression to get

|A(za, µ)| |A(zb, µ)| = nm

µ2

In the worst case we require amplRes µ2 = (RaT
)2 to represent the values

in image a at time T + 1. �

Theorem 3.2.6 ( ··· & dyRange) Let 〈c, e〉T be a configuration of CSM M
at time T where ĉ = ··· , and let RdT

be the dyRange of 〈c, e〉T . Then
RdT+1

= (RdT
)2.

Proof. The statement is trivially true in the case that dyRange is infinite.
We give a proof for the other case where dyRange is finite.

By definition ··· acts on images a and b and the result affects only a. For
any x, y ∈ [0, 1) let za ∈ range(a(x, y)), zb ∈ range(b(x, y)). At time T + 1
and coordinates (x, y), and from the definition of ··· , recall that image a is
replaced with the new image

a′(x, y) = zazb = |za| |zb| exp(i(arg a(x, y) + arg b(x, y)))

Since dyRange is defined in terms of amplitude we will ignore the phase
term.

|a′(x, y)| = |zazb| = |za| |zb|
If |za| = |zb| = RdT

then at time T + 1 we get the worst case of

RdT+1
= |a(x, y)| = (RdT

)2
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It is easy to see that for all other values of |za| and |zb|, RdT+1 < (RdT
)2.�

Unlike the case for amplRes, phaseRes is not affected by image mul-
tiplication as the next theorem shows.

Theorem 3.2.7 ( ··· & phaseRes) Let 〈c, e〉T be a configuration of CSM M
at time T where ĉ = ··· , and let RpT

be the phaseRes of 〈c, e〉T . Then
RpT+1

= RpT
.

Proof. The statement is trivially true in the case that phaseRes is infinite.
We prove the statement for the other case where phaseRes is finite.

By definition ··· acts on images a and b and the result affects only a. We
will show that the set of possible phase values in range(a) at time T +1 is a
subset of the set of possible phase values in range(a) ∪ range(b) at time T .
For some (x, y) let za = a(x, y) and zb = b(x, y). By definition

···(za, zb) = |za| |zb| exp (i(arg za + arg zb)) .

Since we are proving the theorem for the case that phaseRes is finite, we
know (from Eq. (2.3.2)) that at time T , arg za = n

RpT
2π and arg zb = m

RpT
2π,

for some n,m ∈ N. This gives

···(za, zb) = |za| |zb| exp

(
i

(
n+m

RpT

)
2π

)

which is a member of the set of possible phase values in range(a) ∪ range(b)
at time T . �

Theorem 3.2.8 (+ & amplRes) Let 〈c, e〉T be a configuration of CSM M
at time T where ĉ = +. Also, let RaT

be the amplRes of 〈c, e〉T . Then
RaT+1

=∞.

Proof. Suppose the amplRes and phaseRes at time T are RaT
= 1 and

RpT
= 4 respectively. Also let a be the constant image a(x, y) = i = ei 1

2
π

and b be the constant image b(x, y) = 1 = e0. After the + operation, at

time T + 1, image a has value a(x, y) = 1 + i =
√

2ei
1
4
π. The CSM requires

∞ amplRes to represent the amplitude value
√

2. �

If we restrict phaseRes to be 1 or 2 then we don’t meet the worst case
scenario described in the previous theorem, we introduce this restriction in
Section 3.3.

Theorem 3.2.9 (+ & dyRange) Let 〈c, e〉T be a configuration of CSM M
at time T where ĉ = +. Also, let RdT

be the dyRange of 〈c, e〉T . Then
RdT+1

= 2RdT
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Proof. The operation + has no effect on spatialRes hence without loss
of generality we can assume that a and b are everywhere constant images,
a(x, y) = za = rae

iΘa2π and b(x, y) = zb = rbe
iΘb2π.

Suppose za = zb and |za| = RdT
. In this case za + zb = 2za = 2rae

iΘa2π

and hence RdT+1
= 2RdT

. In fact this is the worst case since adding any
pair of complex values that lie on the origin-centred disk of radius RdT

gives
a new complex value on the origin-centred disk of radius 2RdT

. �

Theorem 3.2.10 (+ & phaseRes) Let 〈c, e〉T be a configuration of CSM
M at time T where ĉ = +. Also, let RpT

be the phaseRes of 〈c, e〉T . Then
RpT+1

=∞.

Proof. The statement is trivially true in the case that phaseRes is infinite.
We prove the statement for the other case where phaseRes is finite.

The operation + has no effect on spatialRes hence without loss of
generality we can assume that a and b are everywhere constant images.

Let a(x, y) = 2 and b(x, y) = i. After the + operation, at time T + 1,
image a has value

√
5 exp

(
i tan−1

(
1

2

))
.

Niven [Niv56, Corollary 3.12] shows that

tan−1
(

1
2

)

π

is irrational. Given this, we require infinite phaseRes for addition. �

Theorem 3.2.11 (st/ld/ρ & grid) Let 〈c, e〉T be a configuration of CSM
M at time T where either ĉ = st, ĉ = ld or ĉ = ρ. Also, let GT be the grid

of 〈c, e〉T . Then there is no upper bound on the value of GT+1.

Proof. From Definition 2.2.2 the address decoding function E
−1 : N → N

is Turing machine decidable. This is the only restriction on E
−1. For an

arbitrary M there is no upper bound on the rate of growth of its E
−1 and

so there is no bound on the value of the natural number that an address
parameter of st maps to. Hence after a st operation we cannot bound grid

in terms ofGT , or any of the other complexity measures. The same argument
holds for ld and ρ. �

The previous theorem highlights the caveat of reasonableness in the def-
inition of E. When we defined E we did not wish to restrict the CSM
programmer from coming up with a novel E suited to her needs. However,
for reasonable addressing functions we would expect the growth rate of E

−1,
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with respect to the ordering on N , to be reasonable. For example, in Sec-
tion 3.3 we restrict E to being logspace Turing machine computable, which is
an agreed notion of reasonableness in parallel complexity theory. As one can
imagine, a complicated E will leave lots of headaches for the optical engineer
who has to implement it. Not only that, we would also have an incomplete
analysis of the complexity of the CSM in question (unless of course we work
the growth rate of E into our complexity analysis). The same remark applies
to the next theorem.

Theorem 3.2.12 (ld & spatialRes/ freq) Let 〈c, e〉T be a configuration
of CSM M at time T where ĉ = ld. Also, let RsT

and νT be the spatialRes

and freq respectively of 〈c, e〉T . Then there is no upper bound on the value
of RsT+1 nor νT+1.

Proof. The spatialRes of an image is the product of its horizontal
spatialRes and its vertical spatialRes: RsT

= RsxT
RsyT

. After a ld
operation, with the ld parameters ξ1, ξ2, η1, η2, image a has spatialRes

RsT+1 =(ξ2 − ξ1 + 1)RsxT
(η2 − η1 + 1)RsyT

=RsT
(ξ2 − ξ1 + 1)(η2 − η1 + 1)

(3.2.5)

From Theorem 3.2.11 there is no upper bound on the growth of E
−1. Hence

there is no upper bound on the natural number ld parameters above. After
a st operation there is no upper bound on spatialRes in terms of RsT

,
or any of the other complexity measures. Analogously, for freq the upper
bound is in terms of E

−1 rather than any of the complexity measures. �

If we have agreed upon a reasonable (bound on) E, then Eq. (3.2.5) enables
us to specify an upper bound on spatialRes and freq at time T + 1.

Even though br has address parameters, the previous arguments do not
apply.

Theorem 3.2.13 (br & grid) Let 〈c, e〉T be a configuration of CSM M at
time T where ĉ = br. Also, let GT be the grid of 〈c, e〉T . Then GT+1 = GT .

Proof. From the definition of a CSM configuration (Definition 2.2.3) the
control must always be inside the initial (time 1) grid. Hence branching
outside the current grid will always result in an undefined computation.
Since in a valid computation br address parameters must always be inside
the current grid, the br operation never increases the grid complexity. �

3.3 C2-CSM

Motivated by the results in Table 3.2.1, we define a restricted class of the
CSM model, denoted C2-CSM.
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Definition 3.3.1 (C2-CSM) A C2-CSM is a CSM whose computation time

is defined for t ∈ {1, 2, . . . , T (n)} and has the following restrictions:

• For all time t both amplRes and phaseRes have constant value of 2.

• For all time t each of grid, spatialRes and dyRange is O(2t),
and space is redefined to be the product of all complexity measures
except time and freq.

• Operations h and v compute the discrete FT (DFT) in the horizontal
and vertical directions respectively.

• Given some reasonable binary word representation of the set of ad-
dresses N , the address encoding function E : N→ N is decidable by a
logspace Turing machine.

We give some remarks on this definition. We have replaced the FT with
the DFT [Bra78, Wea89]. freq is now solely dependent on spatialRes

(rescaling the Fourier spectrum by changing freq is no longer necessary);
hence freq is not an interesting complexity measure for C2-CSMs. Because
of this we do not analyse C2-CSMs in terms of freq complexity.

Given that in a C2-CSM amplRes and phaseRes are both 2, space is
now

2 · 2 ·Gt ·Rst ·Rdt = O(23t) .

where Gt, Rst and Rdt are grid, spatialRes and dyRange at time t.
The space restriction is not unique to our model, other instances of such
restrictions can be found in the literature [Par87, Gol82].

Due to the amplRes and phaseRes restrictions, the inputs and outputs
to the DFT must be from the set {0,± 1

2 ,±1,±3
2 , . . .}. This set is not closed

under the DFT (e.g. due to the DFT normalisation factor). The program-
mer should always ensure that the DFT only operates on values that lead
to output values in the above set. This remark does not affect the results
in this work.

In Section 2.2.2 we stated that address encoding and decoding functions
should be Turing machine computable. Here we strengthen this condition,
we force E to be more reasonable. At first glance sequential logspace com-
putability may seem like a strong restriction, but in fact it is quite weak.
From an optical implementation point of view it should be the case that E

is as simple as possible, otherwise we cannot assume fast addressing. Other
(sequential and parallel) models usually have a very restricted ‘addressing
function’: in most cases it is simply the identity function on N (or maps N to
its standard binary word encoding). In this context an addressing function
corresponds to the addresses in a RAM, or the connection pattern [Gol78]
for a network of processors. Without an explicit or implicit restriction on
the computational complexity of E, finding non-trivial upper bounds on the
power of C2-CSMs is impossible. For example E could encode an arbitrarily
complex halting Turing machine.
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As a (possibly) weaker restriction we could, for example, give a specific
E. However, this prohibits the programmer from developing her own novel,
and reasonable, schemes.

In Chapters 5 and 6 we will prove that the C2-CSM verifies the parallel
computation thesis.1

3.4 Discussion

We have analysed the growth of the CSM complexity measures with respect
to the CSM operations over time. Table 3.2.1 shows that many variations on
the CSM can not be analysed if we restrict ourselves to the standard tools
from complexity theory. The table gives a starting point for developing
restrictions of the model. In particular it motivated the definition of the
C2-CSMs, a restricted class of CSMs.

It should be noted that the results in this chapter are independent of
any particular data representations or program restrictions. If we restrict
ourselves to certain (continuous or discrete) data representations then clearly
we change the properties of CSM computations and we can reduce the upper
bounds on complexity growth. Another way to restrict the model would be
to place restrictions on the syntactic structure of programs, as was done
with the vector machine model [PS76].

Table 3.2.1 describes growth in complexity if inputs are finite. The
irrational values that give rise to the infinities in Table 3.2.1 are computable
reals in the sense of computable analysis [Wei00]. It would be interesting
to analyse this aspect of the model by making use of results from (say) the
framework of real recursive function theory [Moo96, Cam01, dSG02, BH04a]
or other approaches to analog or real computation [BCSS97, Wei00], from
the point of view of parallel complexity theory.

The results we prove in this chapter are not only interesting from a
computational complexity viewpoint, but from the physical viewpoint also.
For example Goodman [GS70] studies phaseRes in the same way we do,
and is mostly motivated by the practical concerns of reconstructing digital
holograms.

The C2-CSM is more realistic than the CSM in terms of optical implemen-
tation; many current optical information processing devices are pixellated
(liquid-crystal display SLMs and digital cameras) and operate over a finite
set of grey levels. Positive and negative rationals are routinely represented
in optical architectures [NJK+99, Van92, AS92, McA91, Fei88]. Clearly, the
space limitation also decreases the difficulty of implementation.

1Our notation “C2-CSM” is inspired by the fact that models that verify the parallel
computation thesis are said to be members of the second machine class [vEB90], denoted
C2 (for example in [Sos03]).



4

2D data and programs

4.1 Introduction

In this chapter we define some useful data representations for the CSM.
We give representations for words, numbers and matrices as images. Using
these representations we define what it means to decide a language by CSM.
In Section 4.4 we introduce a programming language for the CSM. This
language is an abstraction of the low-level definition given in Chapter 2.
Our high-level language facilitates the writing of CSM programs that are
easier to read and write, without sacrificing ease of complexity analysis.

4.2 Representing data as images

There are many ways to represent elements of finite, countable and uncount-
able sets as images. We define six useful representations, these are illustrated
in Figure 4.2.1. The following definition gives the image representation of
the symbol 1 as an image having value 1 at its centre and value 0 everywhere
else. The symbol 0 is represented by the image that has value 0 everywhere.

Definition 4.2.1 (Binary symbol image) The symbol ψ ∈ {0, 1} has the
binary symbol image representation fψ,

fψ(x, y) =

{
1, if x, y = 0.5, ψ = 1

0, otherwise .

We extend this representation scheme to binary words using ‘list’ and ‘stack’
images.

Definition 4.2.2 (Binary list image) The word w = w1w2 · · ·wk ∈ {0, 1}+
has the binary list image representation fw,

fw(x, y) =

{
1, if x = 2i−1

2k , y = 0.5, wi = 1

0, otherwise ,

where wi ∈ {0, 1}, 1 6 i 6 k. Image fw is said to have length k and the pair
(fw, k) uniquely represents w.

30
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The binary list image representation requires Θ(k) spatialRes and freq.
Only 1 amplRes, phaseRes and dyRange are needed. Often we wish to
access a particular subword in a list image. To do this we simply store (or
rescale) the single list image across many images and we can then address
the images we want. In general we require linear grid for such rescaling.

Definition 4.2.3 (Binary stack image) The word w = w1w2 · · ·wk ∈
{0, 1}+ has the binary stack image representation fw,

fw(x, y) =

{
1, if x = 1− 3

2k−i+2 , y = 0.5, wi = 1

0, otherwise ,

where wi ∈ {0, 1}, 1 6 i 6 k. Image fw is said to have length k and the pair
(fw, k) uniquely represents w.

The binary stack image representation requires Θ(2k) spatialRes and freq.
Only 1 amplRes, phaseRes and dyRange are needed. To access the ith

bit in a stack image we ‘pop’ the stack i times. Popping involves spreading
the stack over two horizontally adjacent images, the leftmost image now con-
tains only the topmost stack element. Despite the fact that stacks require
exponential spatialRes they are nevertheless useful when we wish to use
at most constant grid.

If the alphabet is {1} (instead of {0, 1}) we replace the word “binary”
with the word “unary” in Definitions 4.2.1, 4.2.2 and 4.2.3. In Defini-
tions 4.2.2 and 4.2.3 each unary/binary symbol in w is represented by a
corresponding value of 0 or 1 in fw. Notice that in the unary/binary stack
image, w’s leftmost symbol w1, is represented by the rightmost value in the
sequence of values representing w in fw, this means that wk is represented
by the topmost stack element.

We represent a single natural, integer, real or complex value r by an
image with a single peak of value r.

Definition 4.2.4 (Number image) The number r has the number image
representation fr,

fr(x, y) =

{
r, if x, y = 0.5

0, otherwise .

The complexity of this representation varies with the type of number. All
number images use 1 spatialRes, constant freq and |r| dyRange. Nat-
ural number images use 1 amplRes and 1 phaseRes. Integer images use
1 amplRes and 2 phaseRes. Real number images use ∞ amplRes and
1 phaseRes. Finally, complex number images use ∞ amplRes and ∞
phaseRes.

To represent a R × C matrix of real values we define RC peaks that
represent the matrix values and use both dimensions of a stack-like or list-
like image.
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Figure 4.2.1: Representing data by spatially separated peaks. The (possibly)
nonzero peaks are coloured black and the white areas denote value zero.
(a) Binary symbol image and number image, (b) list image, (c) stack image,
(d) stack-matrix image, (e) list-matrix image.

Definition 4.2.5 (R× C stack-matrix image) The R×C matrix A, with
real components aij , 1 6 i 6 R, 1 6 j 6 C, has the R×C stack-matrix image
representation fA,

fA(x, y) =

{
aij, if x = 1− 1+2k

2j+k , y = 1+2l
2i+l

0, otherwise ,

where

k =

{
1, if j < C

0, if j = C ,
l =

{
1, if i < R

0, if i = R .

This stack-matrix image representation is illustrated in Figure 4.2.1(d) for
R = 3 and C = 4. This representation requires O(2R+C) spatialRes and
freq. Since we are representing real numbers the representation uses ∞
amplRes. Only 1 amplRes, phaseRes and dyRange are needed. The
stack-matrix image representation can be manipulated using image rescaling
not only in the horizontal direction (as with the stack above), but also
in the vertical direction. We also define a list-matrix image that is more
spatialRes efficient.

Definition 4.2.6 (R× C list-matrix image) The R× C matrix A, with
real components aij, 1 6 i 6 R, 1 6 j 6 C, has the R × C list-matrix image
representation fA,

fA(x, y) =

{
aij , if x = 2i−1

2C , y = 2j−1
2R

0, otherwise ,

The list-matrix image representation is illustrated in Figure 4.2.1(e), once
again R = 3 and C = 4. The complexity of the list-matrix representation is
the same as the stack-matrix representation except it requires only O(RC)
spatialRes and freq.
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4.3 Language deciding by CSM

Definition 4.3.1 (Language deciding; stack images) CSMML decides
L ⊆ {0, 1}∗ if ML has initial configuration 〈csta, esta〉 and final configuration
〈chlt, ehlt〉, and the following hold:

• sequence esta contains the two input elements (fw, ι1ξ
, ι1η ) and (f1|w| , ι2ξ

, ι2η )

• ehlt contains the output element (f1, o1ξ
, o1η) if w ∈ L

• ehlt contains the output element (f0, o1ξ
, o1η) if w /∈ L

• 〈csta, esta〉 `∗M 〈chlt, ehlt〉, for all w ∈ {0, 1}∗,

where fw is the binary stack image representation of w ∈ {0, 1}∗, f1|w| is
the unary stack image representation of the unary word 1|w|. Images f0

and f1 are the binary symbol image representations of the symbols 0 and 1,
respectively.

In this definition addresses (ι1ξ
, ι1η ), (ι2ξ

, ι2η ) ∈ I and address (o1ξ
, o1η ) ∈ O,

where I and O are as given in Definition 2.2.2. We use the stack image
representation of words. The unary input word 1|w| is sufficient for ML to
determine the length of input word w. (For example the binary stack image
representations of the words 00 and 000 are identical.) This definition has
the drawback of using stacks which have exponential spatialRes in input
word length. The next definition is identical in all respects except that it
uses natural number images instead of stacks, thus swapping exponential
spatialRes for linear dyRange.

Definition 4.3.2 (Language deciding; list & natural number images)
CSM ML decides L ⊆ {0, 1}∗ if ML has initial configuration 〈csta, esta〉 and
final configuration 〈chlt, ehlt〉, and the following hold:

• sequence esta contains the two input elements (fw, ι1ξ
, ι1η ) and (fn, ι2ξ

, ι2η )

• ehlt contains the output element (f1, o1ξ
, o1η) if w ∈ L

• ehlt contains the output element (f0, o1ξ
, o1η) if w /∈ L

• 〈csta, esta〉 `∗M 〈chlt, ehlt〉, for all w ∈ {0, 1}∗,

where fw is the binary list image representation of w ∈ {0, 1}∗, fn is the
natural number image representation of n = |w|. Images f0 and f1 are the
binary symbol image representations of the symbols 0 and 1, respectively.
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4.4 CSM programming language

Reading and writing CSM programs using the low-level syntax given in
Chapter 2 can be cumbersome and time consuming. In this section we
define a higher-level language to simplify reasoning about the model. The
syntax we use removes much of the technical detail found in low-level CSM
programs, thus shortening and simplifying them.

Why do we have two levels of abstraction? The initial definition of the
model has the advantage of being low-level enough to be somewhat closer
to the reality of optical implementations than the high-level programming
language we will give here. The higher-level programming language has the
obvious advantage of being more ‘friendly’.1 This language abstracts away
from some details of the lower-level definition, but as we will show does not
hide any more than a small constant factor overhead in resource usage, so
we can still provide meaningful complexity analysis. Before continuing, if
the reader wants to get a feel for the language she may glance ahead to
Section 4.5 to see some example code.

4.4.1 Programming language syntax

We define the programming language syntax with the context free grammer
in Figure 4.4.1. In this grammer ‘ | ’ denotes ‘or’, ‘:’ denotes ‘rewrites as’ and
‘ε’ is the empty word. Additionally, nonterminals have an uppercase initial
letter and are written in Typewriter font, all other words and characters
are terminals.

As is defined in Figure 4.4.1, a program is a collection of user defined
functions. User defined functions consist of a function header and a list of
statements. A function header consists of a function name and a comma
separated list of parameters, each parameter being an image address. A
single semicolon appears instead of one of the commas, for readability pur-
poses only: As a convention we place read-only image addresses on the left
of the semicolon and read/write image addresses on the right. A statement
is either a basic operation, an if or while control flow operation, or a call
to a user defined function.

Statements refer to single images either explicitly by using a CSM ad-
dress (e.g. [2,2,3,3]) or implicitly by using a variable name. When referring
to images explicitly it is possible that Img defines a rectangle of images (e.g.
[2,6,13,18]). When calculating spatialRes of programs we need to be aware
that the underlying CSM architecture would rescale any such rectangle of
images to a single image before performing an operation on them. We will
return to this point later.

1These friends are merely symbolic.
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Program : Program UserDefinedFn | UserDefinedFn
UserDefinedFn : Name(ImgList; ImgList) StatementList end

StatementList : StatementList Statement | ε
Statement : BasicOp | ControlFlow | FnCall
BasicOp : h(Img; Img) | v(Img; Img) | ∗(Img; Img)

| ρ (Img, Img, Img; Img) | ···(Img, Img; Img)
| +(Img, Img; Img) | Img← Img

ControlFlow : IfElse | WhileLoop
FnCall : Name(ImgList; ImgList)

IfElse : if Condition then StatementList

else StatementList end if

WhileLoop : while Condition do StatementList end while

Condition : (Img == Img)

Name : NameName | a | b | · · · | z | A | B | · · · | Z | 0 | 1 | · · · | 9
ImgList : Img, ImgList | Img | ε

Img : [ D, D, D, D ] | Name
D : D D | 0 | 1 | · · · | 9

Figure 4.4.1: CSM programming language syntax.

4.4.2 Programming language operational semantics

The semantics of the basic elements of our programming language are defined
by the the code fragments in Figure 4.4.2. Each basic element of the language
is defined in terms of low-level CSM code and is explained further below.

A ‘system stack’ is used to store temporary information during the exe-
cution of CSM programs, the need for such a stack becomes apparent when
we define control flow structures and functions below. There are a number
of ways to implement the system stack using images. These implementa-
tions will vary in the type and amount of resources they require. In order to
facilitate a straightforward complexity analysis of stacks, in this section we
assume that stack elements have constant complexity. In general this will
not be the case. However for a given system stack structure only the stack
elements themselves will vary in complexity. Since each element will be an
explicit image in our program a complexity analysis of a program will take
into account the complexity of underlying system stack elements.

A possible stack implementation would be to use a single image; to ‘push’
image a onto the stack we place the stack image and image a side by side and
rescale to one image. Then to ‘pop’ image a from the stack we simply rescale
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the stack image over two juxtaposed images. This implementation has the
advantage of using only constant grid, dyRange, amplRes, phaseRes

and freq for push, pop and stack storage of n stack elements, but has the
disadvantage that O(2n) spatialRes is required. Another possible imple-
mentation uses a single image to store each stack element. For this to work
for arbitrary length stacks we could reserve an entire row of the CSM grid
for the stack. The leftmost image on the row would be the bottom stack ele-
ment and a counter image would keep track of the address of the current top
element. If addresses are implemented as natural number images then this
implementation uses linear grid and dyRange, and constant spatialRes,
amplRes, phaseRes and freq for push, pop and stack storage of n stack
elements. Both of the above implementations require O(n) time.

The programmer may be able to imagine alternative system stack im-
plementations. It should be clear that picking a particular implementation
forces some constraints (e.g. resource usage) on the programmer. Hence we
do not decide on any specific implementation here, instead the programmer
should always define the system stack structure she wishes to use.

All programs have constant depth control flow structures and a constant
number of nested function calls, with respect to the input. Stack length is
dependent only on the depth of these constructs. Hence in our work the
choice of stack (from the above two) is irrelevant with respect to asymptotic
complexity analysis.

Basic operations

Figure 4.4.2 defines a new primitive for each of operations (i)–(vi) in Defini-
tion 2.2.4. Also, the two operations st and ld have been combined into one
operation called copy and denoted ‘←’ (we often refer to this as ‘rescale’).
The hlt and br operations are replaced with alternative control flow mecha-
nisms. The hlt operation is simulated by the end of a program (e.g. an ‘end
of file’ marker). The obvious way to simulate br is with a goto command,
instead we use (friendlier) if and while control flow constructs, described
below.

Each of the seven code fragments make use of addresses a and b. Imme-
diately before execution of a statement it could well be the case that these
addresses hold some important data. Hence at the beginning of the code
fragments the contents of a (and in some cases b) are pushed to the system
stack. At the end of each code fragment the system stack is popped to a,
and in some cases b, thus restoring the original contents to a or b. Defining
semantics in this way allows us to write algorithms that do not explicitly
refer to the addresses a and b, and so are less cumbersome.

Note that the operations move their parameter images to image a before
operating. A parameter may define an entire rectangle of images, so there
will be some rescaling (shrinking) involved. The programmer/analyst should
be aware of this fact when calculating spatialRes.
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h ( img1 ; img2 )

push a

�

ld img1

�

h

�

st img2

�

pop a

�

v ( img1 ; img2 )

push a

�

ld img1

�

v

�

st img2

�

pop a

�

∗ ( img1 ; img2 )

push a

�

ld img1

�

∗ �

st img2

�

pop a

�

··· ( img1 , img2 ; img3 )

push a

�

push b

�

ld img2

�

st b

�

ld img1

�

··· �

st img3

�

pop b

�

pop a

�

+( img1 , img2 ; img3 )

push a

�

push b

�

ld img2

�

st b

�

ld img1

�

+

�

st img3

�

pop b

�

pop a

�

ρ ( img1 , img2 , img3 ; img4 )

push a

�

ld img1

�
ρ img2 img3

�

st img4

�

pop a

�
[ξ′1, ξ

′
2, η

′
1, η

′
2] ← [ξ1, ξ2, η1, η2]

push a

�

ld ξ1 ξ2 η1 η2
�

st ξ′1 ξ′2 η′1 η′2

�

pop a

�

Figure 4.4.2: Semantics of the CSM programming language, in terms of low-
level CSM code. The symbol ‘

�

’ is shorthand for ‘branch to the leftmost
address of the row immediately below’.

Control flow

Figure 4.4.3 defines the basic if and while structures that we use for con-
trol flow. The code fragments use program self-modification and direct
addressing to simulate indirect addressing. This technique was given by
Rojas [Roj96] and was first applied to the CSM by Naughton [Nau00b].
These implementations of if and while work only if the condition is testing
equality of an image with either of the binary symbol images f0 or f1 (Defi-
nition 4.2.1). However it is quite straightforward to write programs that test
more complicated conditions by using a combination of image thresholding
and this Boolean test.2

2Note that equality testing on arbitrary real or complex numbers will never work. This
undesirable situation is prevented by the fact that the set of possible addresses N is fully
ordered and countable, while the set of images I is partially ordered and uncountable.
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push a

�

ld 0 2 0 1

�

if (img1 == f1) then push a

�

SX ld “br SX”

�

else st 0 2 1 1

�

SY ld “br SY”

�

end if st 0 2 0 0

�

SZ br 0 img1

�

(a) Low level code to implement if. The following instructions are placed immediately

before the code fragments SX and SY: pop a st 0 2 0 1 pop a , to restore the contents

of rows 0 and 1. A “br SZ” instruction is appended to the end of both SX and SY. For

conditions of the form (img1 == f0) the instructions ld “br SX” and ld “br SY” are

simply swapped.

push a
�

ld 0 2 0 1

�

push a

�

while (img1 == f1) do ld “br SX”

�

SX st 0 2 1 1

�

end while ld “br SY”

�

SY st 0 2 0 0

�

br 0 img1

(b) Low-level CSM code to implement while. The following instructions are placed im-

mediately before the code fragments SX and SY: pop a st 0 2 0 1 pop a , to restore

the contents of rows 0 and 1, A br 0 img1 instruction is appended to the end of SX,

to enforce looping. For conditions of the form (img1 == f0) the instructions ld “br SX”

and ld “br SY” are simply swapped.

Figure 4.4.3: Program control flow in the form of ‘if’ and ‘while’. SX and
SY represent sequences of program statements. “br SX” statements are used
for indirect addressing.
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The low-level CSM code for the if statement and while loop makes use of
image a, and rows 0 & 1. These may be accessed by any code in the body of
an if statement or while loop, hence we must push image a and the relevant
values from rows 0 and 1 on the system stack immediately before the code
body is executed. This data is then restored (with two ‘pop’ instructions)
immediately before the end of execution of the if or while blocks. For any
given program with maximum logical depth of d, a stack of size O(d) is
sufficient for control flow. Programs are of constant length (with respect
to the input) and so have constant logical depth; hence stack size is always
constant.3

User defined functions

All image identifiers are global: Any image on the grid can be accessed from
any function or control structure, there is no notion of identifier scoping. For
convenience we talk about ‘function inputs’ and ‘function outputs’ below,
even though there is no such formal notion at the implementation level.

We use the same syntax for both function headers and function calls. The
function inputs and outputs are CSM addresses. As a convenience the input
addresses are specified by a comma (‘,’) separated list of image addresses
before a single semicolon (‘;’), the output addresses are listed immediately
after the semicolon.

In the text of programs there are exactly three places that new image
identifiers are defined. These definitions occur where new identifiers are
mentioned in (i) basic operations, (ii) function headers and (iii) function
calls. Each unique identifier in a program gets rewritten to low-level code
as a unique grid address.

The body of a function is translated to low-level code, this code has
a beginning and an end address. When a function is called, control flow
switches to its beginning address. When the function terminates, control
flow switches back to the origin of the call.

Identifiers in a function header and function call may differ. To cater for
this, some additional ‘book-keeping’ code is written with the function’s low-
level code. When a function is called this book-keeping code (i) overwrites
the image identifiers that appear in the function header with those that
are in the call and (ii) overwrites the relevant images in the function body
with those in the call. After the the function code has executed the original
identifiers are written back to the function code. The system stack is used for
this book-keeping. Since programs are of constant length this book-keeping
requires constant time and constant stack length. For the first function
that is called in a program this book-keeping is not necessary and does not
occur.

3Recursion is not permitted in our high-level language. Also, unlike low-level programs,
high-level programs cannot modify themselves.
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Figure 4.5.1: The output image g for code in Example 4.5.2, where l = 3.
Black areas denote 1 and white areas denote 0.

Comments are preceded by ‘//’. At the beginning of a function two
special comments let the reader know the names of any image constants
and image variables used in the program (other than those mentioned in the
function header).

4.5 Examples

Example 4.5.1 We give a short program that tests i > j. Here i and j
are integer number images, as defined in the beginning of this chapter. The
constants f−1, f0 and f1 in the program are also integer images. The output,
bool, is f1 if i > j and f0 otherwise. Assuming integer image inputs, the
program has max(|i|, |j|) dyRange and constant time, grid, spatialRes,
amplRes, phaseRes and freq.

is greater than ( i, j; bool)

// constants: f−1, f0, f1.
// variables: −j, difference.

··· ( j , f−1 ; −j )
+( i , −j ; difference )
ρ ( difference , f0 , f1 ; bool )

end // is greater than

Example 4.5.2 The following is an example that generates an image rep-
resenting all 2l binary words of length l in O(l) time. It makes use of the
function given in the previous example. l is assumed to be a natural num-
ber image representing some value strictly greater than 0. The algorithm
requires O(2l) spatialRes to represent all the words in a single image. O(l)
grid and dyRange is required since part of the algorithm involves rescal-
ing list images to their full length. The words are represented as vertically
juxtaposed binary list images, all rescaled into a single image, as shown in
Figure 4.5.1.
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generate binary words (l, 0, 1; g, |g|)

// constants: f0, f1, f−1.
// variables: flag, top 0 bottom 1, l−1, −|g|, difference.

// Generate the image top 0 bottom 1,
// where the top half is 0 the bottom half is 1

[ 0, 0, 2, 2 ] ← 0
[ 0, 0, 3, 3 ] ← 1
top 0 bottom 1 ← [ 0, 0, 2, 3 ]

// Assign values for the base case
g ← top 0 bottom 1
|g| ← f1

// If l > 1 then enter loop
is greater than ( l, 1; flag)
while (flag == f1) do

// Vertically juxtapose 2 copies of g and rescale into 1 image
[ 1, |g|, 2, 2 ] ← g
[ 1, |g|, 3, 3 ] ← g
[ 1, |g|, 2, 2 ] ← [ 1, |g|, 2, 3 ]

// Place top 0 bottom 1 to the left of the
// vertically juxtaposed copies of g

[ 0, 0, 2, 2 ] ← top 0 bottom 1

// Make a new image g that represents all words of length |g|+ 1
g ← [ 0, |g|, 2, 2 ]

// Increment |g|
+( |g| , f1 ; |g| )

// If l > |g| then enter loop again
is greater than ( l, |g|; flag)

end while

end // generate binary words

The example gives an indication of the type of speed-up (over sequential
models) achievable with the CSM.

4.6 Discussion

There are many ways to represent data as images. The data representations
we give are not meant to be exhaustive, we choose to present the represen-
tations that are used in subsequent chapters. Often it is the case that a
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new CSM algorithm may depend on a novel data representation technique.
Given this, one should bear in mind that data representations should be in
some sense reasonable. If a representation function (e.g. mapping words to
images) is too powerful we are lessening what we say about the complexity
of our algorithm. Moore [Moo98] has an interesting discussion on this topic.
He notes that most authors use the best-known representation function from
discrete to continuous, mapping the symbol sequence of a word to the digit
sequence of a number (e.g w0w1w2 . . . is represented by 0.w0w1w2 . . .). Such
representations (e.g. those that appear in [SS94]) can be generated by it-
erated affine maps. Moore [Moo98] presents results on real-time language
recognition by dynamical systems. This leads to his thesis that “reason-
able [representations] consist of reasonable maps, iterated in real time as the
symbols of the word are input one by one”.

For the case of our model we choose to represent natural, integer, real or
complex numbers in a very direct way. The representation function simply
maps a value r to an image whose centre has value r. If we ignore all of
the image except the centre point [i.e. ignore the constant (zero) part of the
image] then this representation is the identity function and thus, we argue,
a reasonable representation. Suppose the number we wish to represent has
fractional parts. In order to represent the value as a number image our
complexity measures will incur a cost that is at worst exponential in the
length of the fractional part. For example the real number representation of
the decimal number 0.01 requires amplRes of 100. We return to this point
in Section 7.4.

The list (and list-matrix) image representation function is affine, however
it is not a (sequentially) iterated map as in [Moo98]. We feel that this is still
a reasonable representation function. The CSM is a parallel model, and as
such needs to be able to access n input symbols in less than n time, otherwise
efficient (sublinear time) parallel computation is impossible. Intuitively the
list and list-matrix representations are quite simple, we are in effect taking
a ‘picture’ of the word or matrix.

The stack and stack-matrix image representations are not affine. How-
ever, if we use stack images in a nontrivial way, then we immediately incur
a cost of exponential spatialRes in the represented word length. The same
argument holds for stack-matrix images, so we are getting no free lunches
in either case.

There were two main goals in mind when designing the programming
language, (i) algorithms should be easy to understand and (ii) complexity
analysis should be straightforward. It would have been possible to give our
programming language a more concise, modern syntax. However, we feel
that this would have sacrificed the second goal somewhat. The complexity
resources we defined for the CSM are rather unusual compared to standard
parallel resources such as word size and number of processors. An overly
concise language may have made analysis of programs difficult for someone
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not familiar with the CSM architecture. We have not given a complete
formal specification of the language, however it is described in enough detail
for the purposes of our work.



5

Lower bounds on C2-CSM power

5.1 Introduction

The main result of this chapter is a lower bound on the computational power
of the C2-CSM. We show that time on the C2-CSM is at least as powerful
as space on Turing machines. More precisely

NSPACE(S(n)) ⊆ C2-CSM–TIME(O(S(n) + log n)4)

For example polynomial time C2-CSMs accept the PSPACE languages. This
inclusion is one of two that are necessary to show that the C2-CSM verifies
the parallel computation thesis. We show the other inclusion in Chapter 6.

The result is proved by giving a quadratic time C2-CSM simulation of the
vector machine model of Pratt and Stockmeyer. The simulation is carried
out with a cubic space overhead in vector machine space.

We begin by introducing vector machines, and the variant that we simu-
late called index-vector machines. We then proceed to describe our represen-
tation of vectors as images and the grid layout of the simulation program.
Then, in a sequence of theorems we simulate each vector machine opera-
tion, all the while being mindful of resource overheads. We finish with a
discussion.

5.2 Vector machines

The vector machine model was originally proposed by Pratt, Rabin and
Stockmeyer [PRS74]. In this work we mostly use the conventions of a later
paper by Pratt and Stockmeyer [PS76] and of [BDG88b].

A vector V is a binary sequence (from {0, 1}) that is infinite to the left
only. Vectors are ultimately constant; after some finite number of bits every
bit to the left is either always 0 or always 1. Vectors are written from right to
left, Pratt and Stockmeyer adopt this convention because they want vector
machines to simulate operations on integers [PS76]. The length of vector V ,
denoted |V |, is defined to be the length of the non-constant part of V .

Often we interpret a vector as a number. Here we adopt the convention
from [BDG88b] and say that an ultimately 0 sequence represents a positive

44
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number and an ultimately 1 sequence represents a negative number. Also
the non-constant part represents a positive binary integer in the usual way,
with the rightmost vector bit representing the least significant numerical
bit. The negative integer −n is represented by the complement of the vec-
tor representing n > 0. For example 5 is represented as . . . 000101 and −5
as . . . 111010. In this scheme 0 has two representations: . . . 000 and . . . 111.
Since positive (respectively negative) binary numbers will always have a
leading 1 (respectively 0) the most significant bit of a number and the be-
ginning of the ultimately constant part are both well defined. This is like
the 1’s complement binary representation of integers [Sav76] except that
in 1’s complement notation there is a single single leading sign bit ψ as
opposed to an infinite repeating sequence of the sign bit ψ

A vector machine (program) is a sequence of instructions, where each
instruction is of the form given in the following definition.

Definition 5.2.1 (Balcázar et al [BDG88b]) Vector machine instructions
and their meanings. In a program, instructions are labelled to facilitate the
goto instruction.

Vector instruction Meaning

Vi := x Load the positive constant binary number x into vector Vi.

Vk := ¬Vi Bitwise parallel negation of vector Vi.

Vk := Vi ∧ Vj Bitwise parallel ‘and’ of two vectors.

Vk := Vi ↑ Vj If Vj is ultimately 0 (resp. 1) then shift Vi to the left
(resp. right) by the distance given by the binary number vj

and store the result in Vk. If Vj = 0 then Vi is copied to Vk.

Vk := Vi ↓ Vj If Vj is ultimately 0 (resp. 1) then shift Vi to the right
(resp. left) by the distance given by the binary number vj

and store the result in Vk. If Vj = 0 then Vi is copied to Vk.

goto m if Vi = 0 If Vi = 0 then branch to the instruction labelled m.

goto m if Vi 6= 0 If Vi 6= 0 then branch to the instruction labelled m.

Configurations, computations, accepting computations and computation
time are all defined in the obvious way. Computation space is the maximum
over all configurations, of the sum of the lengths of the vectors in each
configuration. A language accepting vector machine on input w has an
input vector of the form ...000w where w ∈ 1{0, 1}∗. Vector machines may
be deterministic or nondeterministic. In Flynn’s taxonomy [Qui94] vector
machines are classed as single instruction, multiple data (SIMD) machines.
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Example 5.2.1 A loop that executes t times, with vector V2 as the loop
counter [PS76].

V1 := . . . 0001
V2 := . . . 00010n−1

i V1 := V1 ↑ V1

V2 := V2 ↓ 1
goto i if V2 6= 0

Initially vector V1 represents the number 1, after t iterations it represents an
exponential tower of 2s, of height larger than t. Shifts (↑ and ↓), and parallel
bitwise operations, have impressive power. Vector machines generate, and
operate on, huge objects very quickly.

5.2.1 Index-vector machines

Pratt and Stockmeyer [PS76] characterised the power of a restricted version
of the model. This restricted version is called an index-vector machine and
the class of such machines is denoted VI .

Definition 5.2.2 (Pratt and Stockmeyer [PS76]) A vector machine is
of class VI (equivalently, an index-vector machine) if its registers are par-
titioned into two disjoint sets, one set called index registers and the other
called vector registers, such that (i) each Boolean operation in the program
involves either only index registers or only vector registers; and (ii) each
shift instruction is of the form

V1 := V2 ↑ I, V1 := V2 ↓ I, I := J ↑ 1, I := J ↓ 1

where V1 and V2 are vector registers, and I and J are index registers. For
language recognition the input register is placed in a vector register.

It is straightforward to prove the following lemma by induction on t.

Lemma 5.2.3 (Pratt and Stockmeyer [PS76]) Given index-vector ma-
chine M ∈ VI with n as the maximum input length, there is a constant c such
that vector length in index (respectively vector) registers is bounded above by
c+ t (respectively 2c+t + n) after t timesteps.

Pratt and Stockmeyer [PS76] were unable to characterise the power of
vector machines with unrestricted shifts, however they conjectured that for
language recognition they have no more power than index-vector machines.
Interestingly, Simon later proved1 this conjecture [Sim77]; unrestricted vec-
tor shifts give no extra power up to a polynomial in time.

1This was shown by giving a polynomial space Turing machine that decides equivalence
of straight-line RAM programs that use special instruction sets and data representations.
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Pratt and Stockmeyer’s main result is a characterisation of the power
of index-vector machines. This characterisation is given by the following
two inclusions, proved for time bounded index-vector machines and space
bounded Turing machines.

Theorem 5.2.4 ([PS76])

NSPACE(S(n)) ⊆ VI-TIME(O(S(n) + log n)2)

VI-TIME(T (n)) ⊆ DSPACE(O(T (n)(T (n) + log n)))

In other words, index-vector machines verify the parallel computation
thesis. Moreover it was shown that modulo a polynomial, deterministic
and nondeterministic vector machines have equal power [PRS74]. It follows
that deterministic and nondeterministic polynomial time are equal on such
machines.

We will prove by simulation that C2-CSMs are at least as powerful as
index-vector machines (up to a polynomial in time). More precisely

VI -TIME(T (n)) ⊆ C2-CSM–TIME(O(T 2(n))) . (5.2.1)

The simulation simultaneously has a polynomial overhead in space.
To prove this we simulate each index-vector machine instruction in

O(log |Vmax|) time where |Vmax| ∈ N is the maximum length of (the non-
constant part of) any of the unrestricted vectors mentioned in the instruc-
tion. Additionally we simulate the index-vector shifts in linear time. From
Lemma 5.2.3 this time bound ensures that our overall simulation executes
in quadratic time, which is sufficient for the inclusion given by Eq. (5.2.1).
The space bound on the simulation is O(|Vmax|3).

5.3 Representation

We first give the representation of vectors by images and then the grid layout
of the simulating C2-CSM . Then we give a series of theorems, each proof
contains a C2-CSM program that simulates a vector machine instruction. We
state resource usage for each program, ignoring amplRes and phaseRes

as these both have constant value of 2. Also we ignore freq, (recall from
the C2-CSM definition the we do not analyse C2-CSMs in terms of freq).
Finally Corollary 5.4.12 gives the overall resource usage for our simulation
of an index-vector machine.

5.3.1 Image representation of vectors

Throughout the remainder of the current chapter we use the following nota-
tion. If we have a vector Vi then vi ∈ {0, 1}∗ is the non ‘ultimately constant’
part of Vi. If the ‘ultimately constant’ part of Vi is 0ω (respectively 1ω) then
sign(vi) = 0 (respectively sign(vi) = 1).
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The vector Vi is represented by three images

Vi
rep
=⇒ ( vi, |vi|, sign(vi) )

The image vi is the binary list image representation of vi. Image |vi| is
the natural number image represention of |vi| (the length of vi). Accessing
these images will incur spatialRes and dyRange costs that are linear in
|vi|. Image sign(vi) is the binary symbol image representing 0 if vector Vi
is ultimately 0 and 1 if Vi is ultimately 1. We use the same representation
scheme for vector program constants.

The simulation uses natural number images as addresses, which are
clearly reasonable in the sense of the C2-CSM definition. Hence address-
ing incurs a (linear) dyRange cost.

5.3.2 Grid layout

Figure 5.3.1 illustrates the grid layout for our index-vector machine simu-
lation. Rows 0 and 1 are used for rough work (e.g. simulating shifts) and
for evaluating conditions in if statements and while loops (as described in
Section 4.4.2). Row 2 is reserved for the program stack that is used by what-
ever compiler converts the CSM programming language to low level CSM
code.2 Row 3 is used for constant images and variable images. The following
constant images are given as input to the vector machine simulation pro-
gram: f−1, f0, f 1

2
, f1 and f2. In fact f−1 and f 1

2
are the only constants that

are necessary as we can easily generate the others from these. A number
of variable (temporary) images are used within each routine. For example
the algorithm in Theorem 5.4.3 uses the variables: list neg ones, −vi and
list ones. Row 4 is used for vector images. Vector images vi, |vi| and sign(vi)
are located at addresses (3i, 4), (3i+ 1, 4) and (3i+ 2, 4) respectively. Rows
5 to Gy are for the vector machine simulation program. Gy is a constant
related to the size of our simulation program. So the vertical grid complex-
ity of our simulation is constant. On the other hand the horizontal grid

complexity is linear in vector machine space, specifically Gx is equal to a
small constant times the length of the longest vector in the simulated vector
machine’s computation.

With the exception of rows 0 and 1 we do not explicitly refer to any
numerical address values in the simulation (all variables are given names
from the outset). Therefore the above layout is one of a number of example
layouts that would work for the simulation.

5.4 C2-CSM simulation of vector machines

We begin by giving a straightforward simulation of vector assignment.

2Two possible stack structures were discussed in Section 4.4.2, either of these may be
used and will not effect the asymptotic resource usages given in this chapter.
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Figure 5.3.1: Grid layout for index-vector machine simulation.

Theorem 5.4.1 (Vi := x) The vector machine assignment instruction
Vi := x is simulated by a C2-CSM in O(1) time, O(1) grid, O(|x|) dyRange,
O(max(|x|, |vi|)) spatialRes.

Proof. The straight-line CSM program below simulates Vi := x. In this pro-
gram the images representing x are simply copied to the images representing
Vi.

assignment ( x, |x|, sign(x); vi, |vi|, sign(vi) )

vi ← x

|vi| ← |x|
sign(vi) ← sign(x)

end // assignment

We require O(max(|x|, |vi|)) spatialRes to represent x and vi as binary
list images. dyRange of O(|x|) is needed to represent |x| as a natural
number image. No address goes beyond the initial grid limits hence we
require only constant grid. �

Before moving on to simulate another vector machine operation, we give
a program that will be frequently used. The program quickly generates a
list image, where each list element is identical. We state the lemma for the
specific case that each list element is a binary symbol image. By simply
changing the value of one input, the algorithm generalises to arbitrary re-
peated lists (with a suitable change in resource use, dependent only on the
complexity of the new input image element).
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Lemma 5.4.2 (generate list(fψ, l; g)) A list image g that contains l list el-
ements, each of which is a copy of input binary image fψ, is generated in
O(log l) time, O(l) grid, spatialRes and dyRange.

Proof. The algorithm (below) horizontally juxtaposes two copies of fψ and
rescales them to a single image. This juxtaposing and rescaling is repeated
on the new image; the process is iterated a total of dlog le times to give a
list of length 2dlog le, giving the stated time bound. Finally, l images are
selected (in constant time) from this list and rescaled to give the output.
O(l) spatialRes is necessary to store the list in a single image. O(l) grid

is used to stretch the list out to its full length in the two final program
instructions. Recall that we are using natural number images for addresses,
hence O(l) dyRange is used when we stretch the list across 2dlog le images.

generate list (fψ, l; g)

// constants: f−1, f1, f2.
// variables: lc, flag, −lc, difference.

g ← fψ
lc ← f1

ρ ( l , 0 , 1 ; flag )
while ( flag == f1 ) do

// horizontally juxtapose two copies of g and rescale
[ 0, 0, 0, 0 ] ← g
[ 1, 1, 0, 0 ] ← g
g ← [ 0, 1, 0, 0 ]
··· ( lc , f2 ; lc )
··· ( lc , f−1 ; −lc )
+( l , −lc ; difference )
ρ ( difference , 0 , 1 ; flag )

end while

// Select l images and rescale to one image
[ 1, lc, 0, 0 ] ← g
g ← [ 1, l, 0, 0 ]

end // generate list �

Theorem 5.4.3 (Vk := ¬Vi) The vector machine negation instruction
Vk := ¬Vi is simulated by a C2-CSM in O(log |vi|) time, O(|vi|) grid and
dyRange, and O(max(|vk|, |vi|)) spatialRes.

Proof. The CSM program below simulates Vk := ¬Vi. To generate ¬Vi the
program generates a list of ‘−1’s of length |vi|. This list image is then multi-
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plied by vi; changing each 1 in vi to −1 and leaving each 0 unchanged. Then
we add 1 to the each element in the resulting list. A simple if statement
negates sign(vi).

¬ ( vi, |vi|, sign(vi); vk, |vk|, sign(vk) )

// constants: f−1, f0, f1.
// variables: list neg ones, −vi, list ones.

// generate list of −1s
generate list (f−1, |vi|; list neg ones)

// change each 1 in vi to −1
··· ( vi , list neg ones ; −vi )

// generate list of 1s
generate list (f1, |vi|; list ones)

// change −1s to 0s and 0s to 1s in vi, place result in vk
+( −vi , list ones ; vk )
if ( sign(vi) == f1 ) then

sign(vk) ← f0

else
sign(vk) ← f1

end if

end // ¬

Each call to the function generate list(·) requires O(log |vi|) time, otherwise
time is constant. The remaining resource usages are necessary for accessing
vectors and rescaling them to their full length. �

The proof of the following straightforward lemma gives a program that
decides which of two vectors is the longer in constant time. It also shows
that we can decide the max or min of two integer images in constant time.
The result will be used in Theorem 5.4.5 in the C2-CSM simulation of the
vector instruction ∧.

Lemma 5.4.4 (max(·) and min(·)) The max (or min) length of the vec-
tors Vi and Vj is decided in O(1) time, O(1) grid, O(max(|vi|, |vj |))
spatialRes, O(max(|vi|, |vj |)) dyRange.

Proof. The max(·) algorithm thresholds the value |vj|−|vi| to the range [0, 1].
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max ( vi, |vi|, sign(vi), vj , |vj |, sign(vj); longest, |longest|, sign(longest))

// constants: f−1, f0, f1.
// variables: −|vi|, difference, flag.

··· ( |vi| , f−1 ; −|vi| )
+( |vj| , −|vi| ; difference )
ρ ( difference , f0 , f1 ; flag )
if ( flag == f0 ) then

// |vi| is max
longest ← vi
|longest| ← |vi|
sign(longest) ← sign(vi)

else

// |vj | is max
longest ← vj
|longest| ← |vj |
sign(longest) ← sign(vj)

end if

end // max

To decide the min length of two vector images, we use the above algo-
rithm except that the code in the if block is exchanged with the code in the
else block. The function header for min(·) is formatted as follows:

min(vi, |vi|, sign(vi), vj, |vj |, sign(vj); shortest, |shortest|, sign(shortest)).
�

Theorem 5.4.5 (Vk := Vi ∧ Vj) The vector machine instruction Vk := Vi∧
Vj is simulated by a C2-CSM in O(log max(|vi|, |vj |)) time, O(max(|vi|, |vj |, |vk|))
spatialRes, and O(max(|vi|, |vj |)) grid and dyRange.

Proof. We use multiplication of vector images to simulate Vi ∧Vj in a paral-
lel fashion. However this does not work directly if |vi| 6= |vj |, in such cases
we pad the shorter of the vector images so that both are then of the same
length. To find the longer and shorter of the two vectors we make use of the
max(·) and min(·) routines given in Lemma 5.4.4. The following program
simulates ∧.
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∧ (vi, |vi|, sign(vi), vj, |vj|, sign(vj); vk, |vk|, sign(vk) )

// constants: f−1, f0, f1.
// variables: longest, |longest|, sign(longest), shortest, |shortest|,
sign(shortest), difference, difference+1, pad, padded shortest.

// Find which vector is the longest and which is the shortest
max(vi, |vi|, sign(vi), vj , |vj|, sign(vj); longest, |longest|, sign(longest))

min(vi, |vi|, sign(vi), vj, |vj |, sign(vj); shortest, |shortest|, sign(shortest))
··· ( f−1 , |shortest| ; −|shortest| )
+( longest , −|shortest| ; difference )
+( difference , f1 ; difference+1 )

// Pad the shortest vector image with 1s or 0s
// so that both vector images are of the same length

if ( sign(longest) == f1 ) then
generate list (f1, difference; pad)
[ 1, difference, 1, 1 ] ← pad
[ difference+1, |longest|, 1, 1 ] ← shortest
padded shortest ← [ 1, |longest|, 1, 1 ]

else
[ 1, |longest|, 1, 1 ] ← f0

[ difference+1, |longest|, 1, 1 ] ← shortest
padded shortest ← [ 1, |longest|, 1, 1 ]

end if

// Now that the vector images are of the same length
// a single multiplication step simulates vi ∧ vj

··· ( longest , padded shortest ; vk )
··· ( sign(longest) , sign(shortest) ; sign(vk) )
|vk| ← |longest|

end // ∧

The algorithm requires O(log max(|vi|, |vj |)) time for the generate list(·) call
(the worst case is when exactly one of the vectors is of length 0). The rest
of the algorithm runs in O(1) time, including determining which vector is
longer, padding of the shorter vector and parallel multiplication of vectors.
The remaining resource usages on vector images in the theorem statement
are for accessing and storing to a single image, and stretching to full length.

�

The proofs of the next two lemmas give algorithms to simulate vector
left shift and right shift. In simple terms, the main idea is to copy large
numbers of images to simulate shifting.
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Lemma 5.4.6 (left shift(·)) A left shift of distance n > 0 on a vector Vi, to
create vector Vk, is simulated in O(1) time, O(|vi+n|) grid and dyRange,
and O(max(|vi + n|, |vk|)) spatialRes.

Proof. The algorithm assumes that n is given as a natural number image.
After the shift (in accordance with the definition of vector shift), 0s are to be
placed in the rightmost positions. We simulate the shift by stretching vi out
to its full length, placing n zero images to the right of the stretched vi, and
then selecting all of vi along with the n zeros and rescaling back to one image.

left shift (n, vi, |vi|, sign(vi); vk, |vk|, sign(vk) )

// constants: f0, f1.
// variables: |vi|+1, |vi|+n, flag.

[ 1, |vi|, 0, 0 ] ← vi
+( n , |vi| ; |vi|+n )
ρ ( n , f0 , f1 ; flag )
if ( flag == f1 ) then

// n > 0, so zeros are placed in the new rightmost positions
+( |vi| , f1 ; |vi|+1 )
[ |vi|+1, |vi|+n, 0, 0 ] ← f0

end if
vk ← [ 1, |vi|+n, 0, 0 ]
|vk| ← |vi|+n
sign(vk) ← sign(vi)

end // left shift
�

Lemma 5.4.7 (right shift(·)) A right shift of distance n > 0 on a vector Vi,
to create vector Vk, is simulated in O(1) time, O(|vi|) grid, O(max(|vi|, |vk|))
spatialRes and dyRange.

Proof. The algorithm below assumes that n is given as a natural number
image whose value is 6 |vi|. We simulate the right shift by stretching vi out
to its full length, selecting the leftmost |vi|−n images and rescaling back to
one image. If n > |vi| then the output of the algorithm is the representation
of the zero vector.
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right shift (n, vi, |vi|, sign(vi); vk, |vk|, sign(vk) )

// constants: f−1, f0, f1.
// variables: −n, |vi|−n, flag.

··· ( n , f−1 ; −n )
+( |vi| , −n ; |vi|−n )
ρ ( |vi|−n , f0 , f1 ; flag )
if ( flag == f1 ) then

// In this case n < |vi|, so simulate shift
[ 1, |vi|, 0, 0 ] ← vi
vk ← [ 1, |vi|−n, 0, 0 ]
|vk| ← |vi|−n
sign(vk) ← sign(vi)

else

// In this case n = |vi|, output the zero vector
vk ← f0

|vk| ← f0

sign(vk) ← sign(vi)
end if

end // right shift

Unlike the case of right shift(·), n is not present in the expression for dyRange

since it represents a value 6 |vi|. The other resource usages are clear from
the algorithm. �

We make use of the previous two results in the following theorem.

Theorem 5.4.8 (Vk := Vi ↑ Vj) The vector machine instruction Vk := Vi ↑
Vj is simulated by a C2-CSM in O(|vj |) time, O(|vi| + 2|vj |) grid and
dyRange, and O(max(|vk|, |vi|+ 2|vj |)) spatialRes.

Proof. The shift instruction (↑) shifts Vi by the binary number stored in Vj .
We simulate the shift by stretching Vi out to its full length; then selecting
either part of Vi, or Vi and some extra zero images; and finally rescaling back
to one image. The simulator’s addresses are represented by natural number
images whereas vectors are represented by binary list images. Hence we con-
vert the binary number defined by ( vj , |vj|, sign(vj) ) to a natural number
image called shift distance. The algorithm below generates shift distance
from the binary index-vector image vj and then performs the shift. The
while loop executes |vj | times to generate shift distance. Inside this loop
there are three if statements. For the first (highest level) if statement: if Vj
is positive execution always enters the if then part, if Vj is negative execu-
tion always enters the else part. If Vj is positive (respectively negative) the
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second (respectively third) if is executed only in the case that the current bit
of Vj is 1 (respectively 0). Essentially these two lower level if statements are
adding 2l to shift distance, at the lth bit of Vj. A final if statement decides
which direction to shift, passing shift distance and the relevant vectors to
one of the functions left shift(·) or right shift(·) which were given above.

↑ (vi, |vi|, sign(vi), vj , |vj |, sign(vj); vk, |vk|, sign(vk) )

// constants: f−1, f0, f1, f2.
// variables: shift distance, current bit, current power 2, flag.

shift distance ← f0

current bit ← |vj |
current power 2 ← f1

[ 1, |vj |, 0, 0 ] ← vj
ρ ( |vj | , f0 , f1 ; flag )

// O(|vj |) time while loop to calculate shift distance
while ( flag == f1 ) do

if ( sign(vj) == f0 ) then

// Vj is ultimately 0 (positive)
if ( [ current bit, current bit, 0, 0 ] == f1 ) then

+( shift distance , current power 2 ; shift distance )
end if

else
// Vj is ultimately 1 (negative)

if ( [ current bit, current bit, 0, 0 ] == f0 ) then
+( shift distance , current power 2 ; shift distance )

end if
end if
··· ( current power 2 , f2 ; current power 2 )
+( current bit , f−1 ; current bit )
ρ ( current bit , f0 , f1 ; flag )

end while

// Decide which direction to shift, then shift
if ( sign(vj) == f0 ) then

left shift (shift distance, vi, |vi|, sign(vi); vk, |vk|, sign(vk) )
else

right shift (shift distance, vi, |vi|, sign(vi); vk, |vk|, sign(vk) )
end if

end // ↑
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The while loop efficiently generates a value of O(2|vj |) in O(|vj |) time.
At different stages of the algorithm each of vi and vj are rescaled to their full
length, across |vi| and |vj | images respectively. We get the value O(|vi|+2|vj |)
for grid since in the worst case Vi is left shifted by the value 2|vj |, and (when
stretched) the resulting vector lies across O(|vi|+ 2|vj |) images. This upper
bound also covers the right shift case (when Vj is negative). Analogously we
get the same value for spatialRes and dyRange (except |vk| is also in the
spatialRes expression as it could contain some values before the program
executes). �

In the previous simulation Vj is either an index-vector or else repre-
sents 1, and by Lemma 5.2.3 index-vectors grow at most linearly over time.
Hence this O(|vj |) time simulation will be sufficient for the resource usage
given in our overall simulation (Corollary 5.4.12). The same remark holds
for the following theorem.

Theorem 5.4.9 (Vk := Vi ↓ Vj) The vector machine instruction Vk := Vi ↓
Vj is simulated by a C2-CSM in O(|vj |) time, O(|vi| + 2|vj |) grid and
dyRange, and O(max(|vk|, |vi|+ 2|vj |)) spatialRes.

Proof. We use the algorithm from the previous theorem (5.4.8), except we
exchange the calls to the right shift(·) and left shift(·) programs. �

The proof of the following lemma gives a log time algorithm to decide
if a list or vector image represents a word that consists only of zeros. It is
possible to give a constant time algorithm that makes use of Fourier trans-
formation (to ‘sum’ the entire list in constant time). However we choose
not to use this FT algorithm here (we discuss this point in Section 5.5).

Lemma 5.4.10 A C2-CSM that does not use Fourier transformation de-
cides whether or not a list (equivalently vector) image vi represents the word
0|vi| in O(log |vi|) time, O(|vi|) grid, spatialRes and dyRange.

Proof. The algorithm splits the binary list image vi into two, adds both
halves (in a one step parallel point by point fashion), and repeats until the
list is of length 1. If the result is the zero image then vi represents a list of
zeros, otherwise vi represents a list with at least one 1.
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is vector of zeros (vi, |vi|; vi is zeros )

// constants: f−1, f0, f 1
2
, f1, f2.

// variables: n, flag, −n, difference, padded |vi|, n
2 , n2+1, sum.

// Generate a list of length 2n, where 2n−1 < |vi| 6 2n, such that
// the word vi is represented by the first |vi| positions and any
// remaining positions each represent f0. Call this list padded |vi|.

n ← f1

flag ← f1

while ( flag == f1 ) do
··· ( n , f2 ; n )
+( n , f−1 ; −n )
+( |vi| , −n ; difference )
ρ ( difference , f0 , f1 ; flag )

end while
[ 1, n, 0, 0 ] ← f0

[ 1, |vi|, 0, 0 ] ← vi
padded |vi| ← [ 1, n, 0, 0 ]

// Split padded |vi| into two halves. Add both halves.
// Repeatedly split and add until list image is of length 1.

flag ← f1

while ( flag == f1 ) do
··· ( n , f 1

2
; n2 )

+( n
2 , 1 ; n2+1 )

+( [ 1, n
2 , 0, 0 ] , [ n

2+1, n, 0, 0 ] ; sum)
[ 1, n

2 , 0, 0 ] ← sum
n ← n

2
ρ ( n , f1 , f2 ; flag )
+( flag , f−1 ; flag )

end while

// If sum is the zero image then
// the original list contained only 0 elements.

ρ ( sum , f0 , f1 ; flag )
if ( flag == 0 ) then
vi is zeros ← f1

else
vi is zeros ← f0

end if

end // is vector of zeros �
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Theorem 5.4.11 (goto m if Vi = 0) The vector machine instruction goto
m if Vi = 0 (or goto m if Vi 6= 0) is simulated by a C2-CSM in O(log |vi|)
time, O(|vi|) grid, spatialRes, and dyRange.

Proof. Due to the vector machine number representation we have chosen
to use, there are exactly two representations for 0 in vectors; the constant
sequences . . . 000 and . . . 111. Using our C2-CSM representation of vectors,
if |vi| = 0 then the vector Vi is constant, and hence represents 0. We can
test |vi| = 0 in constant time with an if statement.

However, using our image representation of vectors it may be the case
that |vi| = n > 0 and yet Vi represents 0. In this case vi represents a list
of 0s (respectively 1s) and sign(vi) represents 0 (respectively 1). Linearly
searching through vi will require exponential time (worst case) and as such
is too slow. Instead we use the log time technique given by the previous
program. In the case that Vi is ultimately 1 we make use of the ¬(·) program
defined in Theorem 5.4.3.

vector equals zero (vi, |vi|, sign(vi); Vi equals zero )

// constants: f−1, f0, f 1
2
, f1, f2.

// variables: flag, n, −n, difference, padded |vi|, n
2 , n2+1, sum.

ρ ( |vi| , f0 , f1 ; flag )
if ( flag == f0 ) then

// Vi is of length 0, hence Vi represents 0 and we are finished.
Vi equals zero ← f1

else
// Vi is of length greater than 0,
// hence Vi may or may not represent 0.

if ( sign(vi) == f0 ) then
is vector of zeros (vi, |vi|; Vi equals zero )

else
// Vi is ultimately 1, negate Vi and test if it contains only zeros

¬ ( vi, |vi|, sign(vi); ¬ vi, ¬ |vi|, ¬ sign(vi) )
is vector of zeros (¬ vi, ¬ |vi|; Vi equals zero )

end if
end if

end // vector equals zero

For the goto part of the instruction we merely note that in the C2-CSM
gotos are simulated by ifs and whiles. In fact, low-level C2-CSM code
simulation of gotos is directly implemented by the br operation, in this case
m would be replaced by the appropriate grid address.
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Clearly the related instruction ‘goto m if Vi 6= 0’ is simulated with the
same resource usage. �

At this point we have given a simulation for each index-vector machine
operation. To summarise, in shift operations time is O(|Vj |) where Vj is
the index-vector defining the shift distance. For each other operation time

is O(log |Vmax|) where Vmax is the maximum length vector accessed in the
simulation of the operation. The resources grid, dyRange and spatialRes

are linear in the longest vector accessed.
Given a vector machine M we can design a C2-CSM M ′ that simulates

M . In particular, if vector machine M recognises a language L then we
can easily modify our simulation of vector machines so that M ′ decides L.
Combining this with Lemma 5.2.3 brings us to the following result.

Theorem 5.4.12 Let M be an index-vector machine that decides L ∈ {0, 1}∗
in time T (n) for input length n. Then L is decided by a C2-CSM M ′ in
O(T 2(n)) time, O(2T (n)) grid, spatialRes and dyRange.

Proof. By Lemma 5.2.3 M ’s index-vectors have length O(T (n)), while unre-
stricted vectors have length O(2T (n)). From the simulation theorems in this
chapter, any operation with unrestricted vector inputs and outputs only, is
simulated in log time in the length of the vectors. The remaining opera-
tions, right and left shift, are simulated in time that is linear in the length
of their index-vector input.

From these bounds it is easy to work out that M decides L in O(T 2(n))
time and that each of grid, spatialRes and dyRange is O(2T (n)). �

From the previous theorem, M ′ uses O(23T (n)) space to decide L, which cor-
responds to a cubic simulation in the space of the index-vector machine M .

Corollary 5.4.13 VI-TIME(T (n)) ⊆ C2-CSM-TIME(O(T 2(n)))

By Theorem 5.2.4 we get a relationship between space bounded Turing ma-
chines and time bounded C2-CSMs. This gives the main result of this chap-
ter.

Corollary 5.4.14 NSPACE(S(n)) ⊆ C2-CSM-TIME(O(S(n) + log n)4)

5.5 Discussion

Our main result was proved by simulation of vector machines, such simula-
tions are relatively rare in the literature [vEB90]. In addition to fulfilling
our needs of giving a lower bound on C2-CSM power, the results in this chap-
ter are useful to the practitioner since we have given a method to directly
translate vector machine algorithms to optical algorithms.
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The quadratic time bound for index-vector simulation is reasonably tight.
In a certain sense this is not surprising, since both are SIMD models. It is
probable that the power in the inclusion in Corollary 5.4.14 could be reduced
from 4 to 2 by a direct Turing machine simulation.

The simulation uses the reasonable (we argue) natural number represen-
tation of images. Using this addressing scheme we incur a dyRange cost.
For our simulation this cost is a constant times the longest vector. Since the
binary vector values are represented by images with constant dyRange, it
would be interesting if another addressing scheme could be employed that
works (say) on binary values (e.g. binary list image addresses). We believe
that dyRange could be reduced without a significant increase in the other
complexity measures. Simultaneously, a constant grid simulation might be
possible, the main problem is to simulate vector shifts while using only a
constant number of images. By using these trade-offs we conjecture that the
space could be reduced to linear in the space of the simulated index-vector
machine, with only a polynomial increase in time.

It is interesting to note that we did not make use of Fourier transfor-
mation in the vector machine simulation. Optical computers are sometimes
celebrated for having a constant time FT operation. Our results from this
chapter prove that the C2-CSM has remarkable power without explicitly us-
ing Fourier transformation. However in a more fine grained analysis, say
using the C2-CSM to design algorithms for NC and AC problems, some ad-
vantages of Fourier transformation might be observed.

We mentioned earlier that Simon’s [Sim77] construction shows that un-
restricted vector machines have no more power, up to a polynomial in time,
than index-vector machines. If we remove the space upper bound condition
from C2-CSMs then loads and stores, or multiplication and cut-off division, of
images are in a certain sense similar to unrestricted vector shift operations.
(Both generate huge objects in small time.) We conjecture that Simon’s
result could be applied to enlarge the class of CSMs that have equivalent
power to the C2-CSM , up to at least C2-CSMs without the space restriction.
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Upper bounds on C2-CSM power

6.1 Introduction

In this chapter we prove an upper bound on the computational power of
the C2-CSM. In particular we show that C2-CSMs computing in time T (n)
accept at most the languages accepted by Turing machines in O(T 2(n))
space:

C2-CSM-TIME(T (n)) ⊆ DSPACE(O(T 2(n))) . (6.1.1)

Combining this with the main result from the previous chapter gives the
following relationship between time on C2-CSMs and sequential space

NSPACE(SO(1)(n)) = C2-CSM-TIME(SO(1)(n)) ,

and thus the C2-CSM verifies the parallel computation thesis. We also obtain
a characterisation of NC in terms of the C2-CSM.

The inclusion in Eq. (6.1.1) is proved by giving a logspace uniform family
of circuits that simulate C2-CSMs. The circuits have size that is polynomial
in C2-CSM space and have depth that is quadratic in C2-CSM time. To
prepare for such a simulation we give a representation of images as binary
words. We then proceed to give a circuit that simulates each C2-CSM op-
eration. Some final circuits simulate C2-CSM control flow and configuration
change. We begin with a brief overview of circuits and uniformity.

6.2 Uniform circuits

There are many variations on the circuit model of computation. In this work
we are using logspace uniform circuits over the complete basis ∧, ∨ and ¬.
We briefly describe the meaning of these terms, for further details the reader
is referred to the literature, for example [Sav98, BDG88a, BDG88b].

A circuit is a finite directed acyclic graph. Each node computes a func-
tion and is one of three types; gates, inputs or constants. A gate is one of ∧,
∨ or ¬ , each having respective in-degree (or fan-in) of 2, 2 and 1. An input
is an element of {x1, . . . , xn} and has fan-in of 0. Finally constants are one
of 0 or 1 and have fan-in 0. Each node has out-degree (or fan-out) of 1. A
subset of the nodes are called the outputs.

62
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In a computation each input node is assigned a value from {0, 1}. The
computation then proceeds in the obvious way through the graph. If there
is only one output node then the circuit is a tree and computes a Boolean-
valued function.

A circuit family is a set of circuits C = {cn : n ∈ N} where each cn is a
Boolean circuit with exactly n input nodes. A language L ⊆ Σ∗ is decided by
the circuit family CL if the characteristic function of the language L∩{0, 1}n
is computed by cn, for each n ∈ N.

We analyse circuits in terms of the complexity measures size and depth.
The circuit family C has size complexity size(n) if and only if for all n, size(n)
is an upper bound on the number of gates in cn. C has depth complexity
depth(n) if and only if for all n, depth(n) is an upper bound on the length
of every path in cn.

Given a circuit cn, the gate-wise encoding of cn is a string of 4-tuples,
where each tuple encodes a single gate and is of the form

(g, b, gl, gr) ∈
(
{0, 1}+, {∧,∨,¬}, {0, 1}+ ∪∅, {0, 1}+ ∪∅

)

The tuple encodes a gate by specifying a gate label g, the operation b that
the gate computes and the two inputs, gl and gr, to the gate. For ¬ gates
exactly one of gl or gr is the special null symbol ∅.

Without further qualifying this definition we have nonuniform circuits.
Nonuniform circuits are a powerful model of computation; for each L ⊆
{0, 1}∗ there is a circuit family CL of exponential size that decides the mem-
bership problem for L. To see this, notice that our circuits are over a com-
plete basis and so compute any Boolean function. Moreover, for each n the
characteristic function of L∩{0, 1}n is a Boolean function, hence there exists
a cn that computes it. In this chapter we consider only logspace uniform
circuits.

Definition 6.2.1 (logspace uniformity) A circuit family C is logspace
uniform if there exists a transducer Turing machine such that for all n the
gate-wise encoding of C is computable using log(size(cn)) workspace.

When analysing transducer Turing machines we measure the space used by
the work tapes only. In many places we make use of the fact that the com-
position of two logspace reductions is a logspace reduction [Sav98, BDG88a].
We use only one notion of uniformity in this chapter, so we frequently write
“uniform” instead of “logspace uniform”.

Let U-SIZE,DEPTH(size(n),depth(n)) be the class of languages recog-
nised by logspace uniform bounded fan-in circuits of size and depth size(n)
and depth(n), respectively. The following result is well-known [Bor77, KR90].

Theorem 6.2.2

NSPACE(SO(1)(n)) = U-SIZE,DEPTH(2n
O(1)

, SO(1)(n))



6 Upper bounds on C2-CSM power 64

Circuit depth is a measure of parallel time, hence logspace uniform circuits
verify the parallel computation thesis. More precisely [KR90]

NSPACE(S(n)) ⊆ U-SIZE,DEPTH(O(2S(n)), O(S2(n)))

and [BDG88b, KR90]

U-SIZE,DEPTH(2S(n), S(n)) ⊆ DSPACE(O(S(n))) . (6.2.1)

6.2.1 Subcircuits

Previously in Section 6.2 we gave the gate-wise encoding of a circuit as a
string of 4-tuples: one tuple for each gate. This encoding is rather cum-
bersome for our purposes. Below we define the subcircuit-wise encoding of
a circuit c as a string of tuples. Each tuple encodes a subcircuit of c (a
subcircuit is itself a circuit). The tuple also encodes any connections (graph
edges) between the subcircuits.

Definition 6.2.3 (subcircuit-wise encoding of a circuit) Given a cir-
cuit c the subcircuit-wise encoding of c is a string of 3-tuples. Each tuple
encodes a single subcircuit of c and is of the form

(csub, f, (csubin
))

where csub ∈ {0, 1}+ is the subcircuit label; f is the function (on binary
words) that the subcircuit computes; and (csubin

) is the sequence of inputs to
the subcircuit.

Given a well defined subcircuit-wise encoding where all subcircuits have
a well defined gate-wise encoding, then c is well defined. Moreover cn is
logspace uniform if for all n the subcircuit-wise encoding of cn is logspace
computable and for each of cn’s subcircuits the gate-wise encoding is logspace
computable.

6.3 Representation

Suppose we are simulating a C2-CSM M that has time, grid, spatialRes,
and dyRange of T (n), G(n), Rs(n), and Rd(n) respectively. (Recall that
in a C2-CSM both amplRes and phaseRes have constant value 2).

From the definition of the C2-CSM we have an upper bound on the space

S(n) of M in terms of time T (n)

S(n) = G(n)Rs(n)Rd(n)4

6 cG2T (n)cRs
2T (n)cRd

2T (n)
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where constants cG, cRs
and cRd

depend on the program. We redefine the
time of M to be

T ′(n) =
⌈
log(c2T (n))

⌉

for c = max(cG, cRs
, cRd

). Essentially this lengthens the computation of M
by an amount proportional to the constants in the above expression. This
trick appears in [BDG88b]. It saves us the bother of carrying around extra
constants in the our simulations and uniformity proofs. In the sequel we
write T ′(n) as T (n). Now that T (n) has been redefined to be T ′(n), space

is bounded above by
2T (n)2T (n)2T (n) ,

specifically each of grid, spatialRes and dyRange is bounded above by
2T (n).

We now make another adjustment to the complexity of M . First, let

G(n) = Gx(n)Gy(n) ,

Rs(n) = Rsx(n)Rsy(n) ,

where Gx(n) and Gy(n) are the number of images in the horizontal and
vertical directions respectively, and where Rsx(n) and Rsy(n) are the number
of pixels in the horizontal and vertical directions respectively. We define

Gx(n) = Gy(n) = Rsx(n) = Rsy(n) = 2T (n) .

So now grid and spatialRes have both been increased while dyRange

has not changed

G(n) = Rs(n) = 22T (n) ,

Rd(n) = 2T (n) .
(6.3.1)

We get our final upper bound on M ’s space

S(n) 6 22T (n)22T (n)2T (n) = 25T (n) .

Notice that these adjustments do not affect M ’s computation, we have sim-
ply defined M to be more time and space inefficient.

6.3.1 Word representation of C2-CSM grid

In the circuit simulation M ’s grid is represented by a single binary word G.
As M ’s configurations vary over time, the contents of G vary, however G
never changes in length: from the beginning of the simulation we define G
to represent the most ‘complex’ grid for all time. This point will be further
clarified after we define the structure of G with respect to M .
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The word G is composed of G(n) image subwords of equal length, if M
has grid G(n) then

G = G0G1 · · · GG(n)−1 .

For each image i in M there is an image subword Gi and vice versa. To
represent M ’s 2D array of images as a word, we order the images first
horizontally and then vertically; beginning with the lower leftmost image,
proceeding left to right and then bottom to top. Then the order of the image
subwords in G is given by

G = G0G1 · · · GGx(n)−1

GGx(n)GGx(n)+1 · · · G2Gx(n)−1

G2Gx(n)G2Gx(n)+1 · · · G3Gx(n)−1

...

G(Gy(n)−1)Gx(n)G(Gy(n)−1)Gx(n)+1 · · · GGy(n)Gx(n)−1.

For the purpose of readability the single word G is split over multiple lines.
Next we show how each pixel in image i is represented in the image

subword Gi. This representation scheme is analogous to the previous rep-
resentation of images as subwords. The image subword Gi is composed of
Rs(n) pixel subwords of equal length.

Gi = Gi[0]Gi[1] · · · Gi[Rs(n)− 1]

For each pixel j in image i there is a pixel subword Gi[j] and vice versa.
Analogous to the ordering on images, we order the pixels first by the hori-
zontal direction and then by the vertical direction, beginning with the lower
leftmost pixel. Then the order of the pixel subwords in Gi is given by

Gi = Gi[0]Gi[1] · · · Gi[Rsx(n)− 1]

Gi[Rsx(n)]Gi[Rsx(n) + 1] · · · Gi[2Rsx(n)− 1]

...

Gi[(Rsy − 1)Rsx(n)]Gi[(Rsy − 1)Rsx(n) + 1] · · · Gi[Rsy(n)Rsx(n)− 1] .

The single word Gi is split over multiple lines for readability.
From Definition 3.3.1 each C2-CSM has constant amplRes of 2 and

constant phaseRes of 2. Given dyRange of Rd(n) it follows directly that
the value (or range) of each pixel in a C2-CSM configuration is from the set
{0,±1

2 ,±1,±3
2 , . . . ,±Rd(n)} . To represent this set as a set of binary words

we use the 2’s complement binary representation of integers [Sav76], with a
slight modification: the binary sequence is shifted by one place to take care
of the halves. For example Table 6.3.1 gives the binary representations for
a C2-CSM with dyRange Rd(n) = 21

2 .
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pixel value 2’s complement pixel value 2’s complement

0 0000
1
2 0001 −1

2 1111
1 0010 −1 1110
11

2 0011 −1 1
2 1101

2 0100 −2 1100
21

2 0101 −2 1
2 1011

Table 6.3.1: The 2’s complement binary representations for pixel values in a
C2-CSM with constant dyRange of Rd(n) = 2 1

2 .

At this point we have defined the entire structure of the word G rep-
resenting M ’s grid. The length of G is |G| = Rs(n)G(n)dlog(4Rd(n) + 1)e.
Hence if M ’s space complexity is O(S(n)) then |G| is also O(S(n)). Sub-
stituting for Eq. (6.3.1) allows us to define |G| in terms of time

|G| = 22T (n)22T (n)
⌈
log(4 · 2T (n) + 1)

⌉
.

Specifically the length of each pixel subword is

|Gi[j]| =
⌈
log(4 · 2T (n) + 1)

⌉

and the length of each image subword is

|Gi| = 22T (n)
⌈
log(4 · 2T (n) + 1)

⌉
(6.3.2)

These expressions will be useful for giving bounds on circuit complexity in
terms of time.

To simulate the T (n) computation steps of the C2-CSM M we will design
a uniform circuit cM that is of size SO(1)(n) and depth O(T 2(n)).

6.3.2 Word representation of C2-CSM configuration

A C2-CSM configuration 〈c, e〉 (see Definition 2.2.3) is represented as a binary
word, which we write1 as (ctrl,G) where ctrl is a binary word of length 2T (n)
and G is as given above. Usually we interpret the ‘instruction pointer’ ctrl
as a number that indexes the location of the next C2-CSM operation.

6.3.3 Word representation of C2-CSM constants and addresses

In order to simulate the C2-CSM operations ld, st and br, the circuit simu-
lating a C2-CSM must somehow simulate or compute the address encoding

1The configuration (ctrl,G) would be written as “ctrlG” in an actual circuit simulation.
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function E : N → N . In the C2-CSM definition we said that E is decidable
by a logspace Turing machine. Hence E, and its inverse, are computable by
a logspace transducer Turing machine.

The circuit has access to the first 2T (n) = Gx(n) = Gy(n) elements of E,
given explicitly as a word. Specifically, for the range E we write

E2T (n) = addr0addr1 · · · addr2T (n)−1 (6.3.3)

where E2T (n)(i) = addri is called address image word i. Image words and
address image words have the same length. The domain of E is a list of
(represented) numbers written as

E
−1
2T (n) = 0T (n), 0T (n)−11, 0T (n)−210, · · · , 1T (n) (6.3.4)

where the commas are for human-readability purposes only.

6.4 Circuit simulation of C2-CSM

We simulate a language deciding C2-CSM M , where M ’s input word w is
of length n. M is simulated by the circuit cM in the following way. At the
first step of the simulation the circuit cM is presented with the input word

(ctrlsta,Gsta)

that represents M ’s initial configuration (including M ’s input). The circuit
cM has T (n) layers numbered 0 (the input layer) to T (n) − 1 (the output
layer), each layer is composed of a number of subcircuits.

We give a separate simulation for each of the CSM’s operations (the
operations were given in Definition 2.2.4 and Figure 2.2.1). Each C2-CSM
operation op is simulated by a circuit cop, where the circuit encoding func-
tion 1n → cop is computable by a transducer Turing machine in space
log size(cop).

6.4.1 Circuits computing +, ···, ∗, ρ, h and v

We begin by simulating the + operation. Addition of two nonnegative in-
tegers written in binary is performed by an unbounded fan-in circuit of size
O(m2) and constant depth and so is an AC

0 problem (the algorithm is called
the carry look-ahead and is well known, for example see [KR90] or [Vol99]).
Hence this problem is also in NC

1. Krapchenko [Kra70], and Ladner and
Fischer [LF80] give tighter NC

1 adders that have depth O(logm) and lower
the size bound to O(m) [Weg87].

Theorem 6.4.1 (circuit simulation of +) The C2-CSM operation + is
simulated by a logspace uniform circuit ca:=a+b of size O(22T (n)T (n)) and
depth O(log T (n)).
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Proof. Circuit: To add two pixel words we use Ladner and Fischer’s NC
1 ad-

dition algorithm mentioned above. Extending this algorithm to work for the
2’s complement binary representation is straightforward: the addition cir-
cuit is augmented by having four separate cases depending on whether both,
or only one of, the inputs are positive or negative (for example see [Sav76]).
Circuit size is thus increased by a multiplicative constant of 4 and a small
additive constant, while circuit depth is increased only by a small additive
constant.

Recall that the C2-CSM operation + adds images a and b in a parallel
point by point fashion and places the result in a. The circuit ca:=a+b has
one adder subcircuit for each pixel j in a. Under the representation scheme
described above, pixel word Ga[j] is added to pixel word Gb[j], resulting in
a new word Ga′ [j]. The circuit ca:=a+b consists of 22T (n) adders and has the
subcircuit-wise encoding

ca:=a+b =
{

(Ga′ [j], adderj, (Ga[j], Gb[j]) )
∣∣∣ 0 6 j 6 22T (n) − 1

}
.

The outputs are ordered by j. Each adder subcircuit has O(log p) depth and
size O(p) where p =

⌈
log(4 · 2T (n) + 1)

⌉
is pixel word length. Since there are

22T (n) adders (and each has size O(T (n))) the circuit has size O(22T (n)T (n)).
The circuit has depth

O(log p) = O
(
log
⌈
log(4 · 2T (n) + 1)

⌉)
= O(log T (n))

Uniformity: We show that a logspace transducer can compute 1n → ca:=a+b.
Recall that we count only the workspace for transducers. At any step
in the computation the transducer will have at most the encoding of the
current gate and a constant number of counters on its worktapes. Since
the circuit has O(22T (n)T (n)) gates, each of the gate labels in ca:=a+b has
length O(T (n)). Hence each gate label is computable in space log |ca:=a+b| =
O(T (n)). There is a counter for the number of the current gate and another
for the number of the current adder subcircuit. Each adder subcircuit is
logspace uniform and hence a constant number of counters is sufficient to
construct each one. Again each of these counters has length O(T (n)). All
gates and counters are computable in space log |ca:=a+b|. �

As with addition there are NC
1 circuits for multiplication of binary num-

bers [KR90]. The best NC circuit is Schönage and Strassen’s [SS71] NC
1

circuit, which uses the DFT. It has size O(m logm log logm) and depth
O(logm). Unlike addition, Furst, Saxe and Sipser [FSS84] showed that
multiplication is not in AC

0, by showing that parity is not in AC
0 [BS90]. In

the following theorem we make use of the above NC
1 multiplication circuit.

We omit the proof as it is almost the same as the previous one: the only
difference is that we use a polynomial sized NC

1 multiplication circuit as
opposed to the linear sized NC

1 adder we used previously.
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Theorem 6.4.2 (circuit simulation of ···) The C2-CSM operation ··· is sim-
ulated by a logspace uniform circuit ca:=a···b of size O(22T (n)T 2(n)) and depth
O(log T (n)).

Each pixel in a C2-CSM is integer valued, hence the ∗ (complex conju-
gation) operation is the identity function. So we have the following easy
theorem.

Theorem 6.4.3 (circuit simulation of ∗) The C2-CSM operation ∗ is sim-
ulated by a logspace uniform circuit ca:=a∗ of size O(22T (n)) and constant
depth.

Proof. The circuit is the identity circuit (¬¬ a) which is logspace uniform.�

Theorem 6.4.4 (circuit simulation of ρ) The C2-CSM operation ρ is
simulated by a logspace uniform circuit ca:=ρ(a,zl,zu) of size O(22T (n)T 2(n))
and depth O(log T (n)).

Proof. Circuit: First we build a circuit cu>v that tests if the integer rep-
resented by one pixel word is greater than another. It is straightforward
to give constant size and depth circuits that tell if two bits b1, b

′ ∈ {0, 1}
are equal and if one is greater than the other: The circuits cb≡b′ and cb>b′

respectively compute the ≡ and > expressions

b ≡ b′ = (b ∧ b′) ∨ (¬b ∧ ¬b′) ,
b > b′ = b ∧ ¬b′ .

Using these we define the following Boolean expression on pixel words u and
v.

u > v =

|u−1|∨

m=0

(
(um > vm) ∧

(
m−1∧

k=0

(uk ≡ vk)
))

.

We build cu>v as follows. For each m the circuit computing
∧m−1
k=0 (uk ≡ vk)

is realised as a O(m) size, O(logm) depth tree. There are |u| such trees, the
root of each will have a ∧ test with the constant depth circuit for um > vm.
Then we take the OR of these ANDs using a log |u| depth OR tree. Therefore
the circuit cu>v has O(|u|2) size and O(log |u|) depth.

Using a similar construction we build the circuit cu<v, this has the same
complexity as cu>v. Moreover these circuits would be extended to work
on the 2’s complement representation with only a multiplicative constant
increase in size and additive constant increase in depth. We combine these
circuits to create the pixel thresholding circuit cv:=ρ(v,l,u) that evaluates to
l if cv<l ≡ 1, to u if cv>u ≡ 1 and to v otherwise.

Recall that the operation ρ(a, zl, zu) thresholds image a in a parallel
point by point fashion and places the result in a. The circuit ca:=ρ(a,zl,zu)
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has one pixel thresholding subcircuit for each pixel j in a. Pixel word Ga[j]
is thresholded below by pixel word Gzl [j] and above by pixel word Gzu [j]
resulting in a new word Ga′ [j]. The circuit ca:=ρ(a,zl,zu) consists of 22T (n)

parallel pixel thresholding subcircuits and is encoded as

ca:=ρ(a,zl,zu) =
{

(Ga′ [j], threshj, (Ga[j], Gzl [j], Gzu [j]))
∣∣∣ 0 6 j 6 22T (n) − 1

}

ordered by j. Each threshj subcircuit has O(log p) depth and size O(p2)
where p =

⌈
log(4 · 2T (n) + 1)

⌉
is pixel word length. Since there are 22T (n)

pixel thresholding subcircuits (each has size O(T 2(n))) the circuit has size
O(22T (n)T 2(n)). The entire circuit has depth

O(log p) = O
(
log
⌈
log(4 · 2T (n) + 1)

⌉)
= O(log T (n))

Uniformity: By stepping through the construction and applying the argu-
ments given in Theorem 6.4.1 we see that the length of each gate label is
bounded by O(T (n)) and a constant number of variables is sufficient to
construct the circuit encoding. �

Next we give the simulations of the C2-CSM operations h and v. Recall
that in the definition of the C2-CSM, operations h and v compute the DFT
in the horizontal and vertical directions respectively. Fast Fourier transform
(FFT) circuits are used to simulate h and v. (The FFT algorithm has a long
history, but its entrance into computer science is usually cited to [CT65].)
With input length m the FFT circuit is uniform and has size bounded above
by 2m logm and depth bounded above by 2 logm (see [Sav98] for details).

Theorem 6.4.5 (circuit simulation of h) The C2-CSM horizontal DFT
operation h is simulated by a uniform circuit ca:=h(a) of size O(22T (n)T (n))
and depth O(T (n)).

Proof. For each row of pixel words in image word a, the circuit ca:=h(a) has
a single FFT subcircuit. The output is an image word a′ such that each row
in a′ is the DFT of the same row in a. It is straightforward to verify the
size, depth and uniformity conditions. �

The circuit ca:=v(a) that simulates C2-CSM vertical DFT operation v
is constructed in a similar manner to ca:=h(a), except we replace the word
“row” with “column”. We omit the proof of the following theorem.

Theorem 6.4.6 (circuit simulation of v) The C2-CSM horizontal DFT
operation v is simulated by a uniform circuit ca:=v(a) of size O(22T (n)T (n))
and depth O(T (n)).
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6.4.2 Circuits computing ld and st

From Eq. (6.3.4) each address image i is encoded by a length T (n) binary
number. In the following lemma we show how to encode i into an image
word.

Lemma 6.4.7 (cE(i)) A binary number i ∈ {0, 1}T (n) is encoded to an ad-

dress image word by a uniform circuit cE(i) of size O(23T (n)T 2(n)) and depth
O(T (n)).

Proof. Circuit cE(i) takes i and E2T (n) as input. Circuit cE(i) uses 2T (n)

parallel equality testing circuits to test i for equality with each number
j ∈ {0, . . . , 2T (n) − 1}. This initial part of cE(i) has size O(2T (n)T (n)) and
depth O(log T (n)).

Recall the representation of image words addrj in Eq. (6.3.3). For each
j, the output of equality test j is ANDed with each symbol of addrj (using
|addrj| AND gates for each j). Note that we are using fan-out > 1 here, we
decrease the fan-out to 1 by repeating the input 2T (n)T (n) times. At this
stage of the computation we have a word that is composed of 2T (n) subwords
in the following way

0|addr0|0|addr1| · · · 0|addri−1| addri 0
|addri+1| · · · 0|addr

2T (n)−1
|
.

To ‘extract’ the address image word addri we simply OR the kth symbol
from each subword (in parallel) using k OR trees.

A constant number counters, each of length O(T (n)), is sufficient for a
transducer TM to compute 1n → cE(i), hence the circuit is uniform. The cir-

cuit (using only fan-out 1 gates) has size O(23T (n)T 2(n)) and depth O(T (n)).
�

We can efficiently test equality of images as the next lemma shows.

Lemma 6.4.8 (ci≡i′) Equality testing of two image words i and i′ is com-
putable by a uniform circuit ci≡i′ of size O(22T (n)T (n)) and depth O(T (n)).

Proof. For each bit b in i and i′ we use a ib ≡ i′b circuit (see Theorem 6.4.4).
From Eq. (6.3.2) there are |i| = 22T (n)

⌈
log(4 · 2T (n) + 1)

⌉
such b and hence

the same number of circuits. The outputs of these circuits are combined in
an OR tree. The circuit has size O(22T (n)T (n)) and depth O(T (n)).

Clearly, an OR tree on the output of bit equality tests is uniform. �

The technique used in in Lemma 6.4.7 could be called ‘selecting’ a single
address word from a sequence of address words. This technique is used,
with only slight modifications, to construct a circuit that ‘selects’ an image
word from the grid word G. We can construct a uniform circuit cselectImage(i)
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that inputs G and a binary number i, and outputs (or selects) the ith image
word Gi. To test images for equality cselectImage(i) uses the circuit from

Lemma 6.4.8. cselectImage(i) has size O(24T (n)T (n)) and depth O(T (n)).
In the same way we can construct a circuit cselectPixel(j) that ‘selects’ a

pixel word from the grid word G. This uniform circuit takes a binary number
j and the grid word G as input. It outputs the j th pixel word in the grid
word G. cselectPixel(j) has size O(24T (n)T (n)) and depth O(log T (n)). This
circuit will be used in our ld simulation.

Equality testing of image words will be a useful tool in our simulation
of the ld addressing mechanism. Specifically, it is used in the next circuit
that computes the function E

−1
2T (n)(addri) for some input address image word

addri [see (6.3.4)].

Lemma 6.4.9 (cE−1(addri)) An address image word addri is decoded to a

binary number i by a uniform circuit cE−1(addri) of size O(22T (n)T (n)) and
depth O(T (n)).

Proof. (Sketch). The circuit cE−1(addri) is constructed in manner very similar
to cE(i′) in Lemma 6.4.7, The overall layout of the circuit is the same, only
now we are computing the inverse function so we swap binary numbers for
image address words. Additionally we use the circuit from Lemma 6.4.8 to
do the initial image equality test. �

A näıve simulation of ld might simply copy the rectangle of image words
to be loaded into the image word a. This works fine when the rectangle
consists of exactly one image: The rectangle word and the image word a are
of the same length. However the rectangle to be loaded may contain up to
Rs(n)G(n) = 24T (n) pixel words. Image word a contains exactly 22T (n) pixel
words. Copying all 24T (n) pixel words to Ga will cause the length of G to
increase, causing G to lose its structure. However, it turns out that there is
a simple method to sidestep this problem.

Lemma 6.4.10 In the computation of C2-CSM M , any rectangle of images
defined by the ld or st parameters contains at most 22T (n) distinct image
values.

Proof. For ld the proof is by contradiction. From Eq. (6.3.1) M has spatialRes

22T (n). Let the rectangle being loaded be defined by the grid coordinates
(ξ1, η1), (ξ2, η2). Let image f be the union of these (ξ2− ξ1 +1)(η2− η1 +1)
images. Suppose there strictly greater than 22T (n) values in the range of f .
After the ld operation, image a has spatialRes strictly greater than 22T (n),
which is a contradiction.

For st we simply observe that a contains at most 22T (n) pixels, hence the
stored rectangle contains the same number of distinct image values. �
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a

ξ1 ξ2

η1

η2

ld

st

Figure 6.4.1: Illustration of Lemma 6.4.10. The spatialRes in this example
is Rs = Rsx

·Rsy
= 2 ·2 = 4. The pixel with the lowest index in each distinct

region of the ld rectangle is highlighted.

So we have only to select Rs(n) = 22T (n) representative pixel words out of
the total 22T (n)(ξ2−ξ1 +1)(η2−η1 +1). We choose the pixel with the lowest
index in each (possibly) distinct region. This is illustrated in Figure 6.4.1.
For each pixel word i in image word a, the pixel j to be loaded is defined as

j = col(i) + row(i) · Rsx ·Gx (6.4.1)

such that

col(i) = (i mod Rsx)(ξ2 − ξ1 + 1) + (Rsxξ1)

row(i) =

⌊
i

Rsx

⌋
(η2 − η1 + 1) + (Rsyη1)

and as usual Rsy = Rsy = Gx = 2T (n).

Lemma 6.4.11 (cpixelPosition) The circuit cpixelPosition that evaluates
Eq. (6.4.1) for a single i has size O(22T (n)T (n)) and depth O(T (n)), and is
uniform. The circuit cpixelPosition takes the following binary number inputs:
i, ξ1, η1, ξ2, η2. The output is a binary number j defined by Eq. (6.4.1).

Proof. We have already mentioned that +, − and · have NC
1 circuits.

2T (n) is a constant for cpixelPosition so it is not difficult to write a uniform
circuit for i mod 2T (n) (the T (n) least significant bits of i are left untouched
and the rest are set to 0 by a linear size, constant depth circuit).

The value i is bounded above by 22T (n) hence
⌊

i
2T (n)

⌋
6 2T (n). So we

can multiply 2T (n) by each of {0, . . . , 2T (n)} (in parallel), then extract the
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smallest result that is greater than or equal to i. The circuit that com-
putes

⌊
i

2T (n)

⌋
is constructed in a uniform way using multipliers; > circuits;

and AND trees. The size and depth are bounded above by O(22T (n)T (n))
and O(T (n)) respectively.

Given that we can compute each operation of Eq. (6.4.1) with a uni-
form circuit we can make a circuit for the entire expression. We have ex-
plicit bounds on the complexity of all operations so its easy to verify that
cpixelPosition has size O(22T (n)T (n)) and depth O(T (n)). �

We have gathered enough tricks to give the simulation of ld.

Theorem 6.4.12 (circuit simulation of ld by ca:=[(ξ′1,η
′
1),(ξ′2,η

′
2)])

The C2-CSM operation ld (ξ′1, η
′
1, ξ

′
2, η

′
1) is simulated by the uniform circuit

ca:=[(ξ′1,η
′
1),(ξ′2,η

′
2)] of size O(26T (n)T (n)) and depth O(T (n)). This circuit takes

as input the image words ξ ′1, η1, ξ
′
2 and η′2, and outputs an image word a.

Proof. The address image words ξ ′1, η1, ξ
′
2, η

′
2 are decoded into four binary

number words by four circuits, each computes one of

E
−1
2T (n)(ξ

′
1) = ξ1 , E

−1
2T (n)(η

′
1) = η1 ,

E
−1
2T (n)(ξ

′
2) = ξ2 , E

−1
2T (n)(η

′
2) = η2 ,

as given by Lemma 6.4.9. In the next step we want to select 22T (n) pixels (as
illustrated in Figure 6.4.1) from the grid word G. For each pixel i in image
word a we have a subcircuit. Subcircuit i gives i as input to cpixelPosition

(Lemma 6.4.11) which outputs j (the index of the pixel we want to ‘load’).
Note that the circuit cpixelPosition also takes the values ξ1, η1, ξ2, η2 as input.
The binary number j is passed to cselectPixel (given in the text). The output
of subcircuit i represents the ith pixel in image a after a ld operation.

The proof mentions only three subcircuits, each is of which is uniform.
Furthermore these subcircuits are reused and connected in a uniform way.
The size and depth conditions are straightforward to verify since we have
shown the size and depth of all subcircuits. �

Each of the operations simulated so far affects only the contents of image
a. Next we simulate st, this differs in the fact that a rectangle of images
defined by the coordinates (ξ1, η1) and (ξ2, η2) is affected.

Before giving the simulation of st we define [in a manner similar to
Eq. (6.4.1) used for ld] the set of pixels that are stored to. Let i be the
index of a pixel word in image word a. From a single i, the index j of each
pixel word that will be stored to, satisfies

j = (col(i) + u) + (row(i) + v) ·Rsx ·Gx, for 0 6 u 6 ξ2 − ξ1,
and 0 6 v 6 η2 − η1.

(6.4.2)
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Functions col(i) and row(i) were given in Eq. (6.4.1) and Rsx = Gx = 2T (n).
For example, in Figure 6.4.1; if i = 0 (the lowest and leftmost pixel in a)
then the grey rectangle2 of pixels satisfy Eq. (6.4.2).

In the next lemma we give a circuit that computes a mask representing
the (rectangle of) pixel words j that a given pixel word i in a is stored to.

Lemma 6.4.13 (cstPixel(i)) The circuit cstPixel(i) has size O(26T (n)T 5(n))
and depth O(T (n)), and is uniform. The circuit cstPixel(i) takes the following
binary number inputs: i, ξ1, η1, ξ2, η2, and outputs a binary word m (called
a mask) whose j ′ th symbol is 1 if and only if j ′ satisfies Eq. (6.4.2) for these
inputs.

Proof. The circuit cstPixel(i) evaluates Eq. (6.4.2) for a single i ∈ {0, . . . , 22T (n)}.
It consists of 24T (n) subcircuits (one for each pixel word in G). For each
j′ ∈ {0, . . . , 24T (n)− 1} there is a subcircuit that evaluates Eq. (6.4.2) for all
u′, v′ ∈ {0, . . . , 2T (n)−1} that satisfy the conditions on u and v respectively.
If and only if the result of this evaluation equals j ′ then a 1 is output (j ′

satisfies Eq. (6.4.2) for the given i).
The results from each j ′ ∈ {0, . . . , 24T (n)−1} are output as a single word

m, |m| = 24T (n). For the given i the mask m has the property that symbol
m′
j = 1 if and only if j ′ satisfies Eq. (6.4.2).

To evaluate Eq. (6.4.2) we make use of the circuit given in Lemma 6.4.11.
By stepping through the construction of cstPixel(i) we get size O(26T (n)T 5(n))
and depth O(T (n)). The uniformity follows from the fact that all subcircuits
used have been shown to be uniform and they are connected in a uniform
way. �

Theorem 6.4.14 (circuit simulation of st by c[(ξ′1,η′1),(ξ′2,η
′
2)]:=a)

The C2-CSM operation st (ξ′1, η
′
1, ξ

′
2, η

′
1) is simulated by a logspace uniform

circuit c[(ξ′1,η′1),(ξ′2 ,η′2)]:=a of size O(212T (n)T 6(n)) and depth O(T (n)). This
circuit takes as input the image words ξ ′1, η1, ξ

′
2 and η′2. It outputs a word

of length |G| that contains the rectangle (defined by (ξ ′1, η
′
1), (ξ

′
2, η

′
2)) of image

words to be stored and zeros at all other positions.

Proof. The address image words ξ ′1, η
′
1, ξ

′
2, η

′
2 are decoded into binary num-

bers (as in Theorem 6.4.12) to be used in cstPixel(i). The circuit c[(ξ′1,η′1),(ξ′2,η′2)]:=a

uses i subcircuits as follows. For each pixel word i in image word a: Subcir-
cuit i ANDs the jth symbol in pixel word i with each of the 24T (n) outputs
of cstPixel(i). At this stage of the computation we have i grid words; the ith

grid word is 0 everywhere except for the ‘rectangular’ part of the grid that
pixel i is to be stored to. These i grid words are ORed using an OR tree,
giving the final output grid word as defined in the theorem statement.

2The grey rectangle consists of the lowest and leftmost 15 pixels of equal value.
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This final output word is a called a mask and contains the ‘stored rect-
angle’ and all other pixel words contain only zeros.

By stepping through the construction we get size O(212T (n)T 6(n)) and
depth O(T (n)). The high order in the size analysis is due the reuse of
many subcircuits (in parallel) that compute over grid masks. The uniformity
follows from the fact that all subcircuits used have been shown to be uniform
and are connected in a uniform way. �

6.4.3 Control flow

C2-CSM control flow is straightforward to simulate. Recall from Section 6.3.2
that the binary word ctrl represents the C2-CSM control (or instruction
pointer). Simulating br involves finding the new value for ctrl from the br
parameters.

Theorem 6.4.15 (circuit simulation of br by c br (ξ′,η′))
The C2-CSM branch operation br (ξ ′, η′) is simulated by a logspace uniform
circuit c br (ξ′,η′) of size O(22T (n)T (n)) and depth O(T (n)).

Proof. The circuit c br (ξ′,η′) decodes its address image word parameters into
the binary numbers ξ1 and η2 by using two (parallel) instances of the circuit
cE−1(·) given in Lemma 6.4.9. These values are translated into an image
word index i by evaluating the expression i = ξ+ η ·Gx. The index i points
to the image word encoding the next operation to be executed. �

Simulating sequential program control flow simply involves an update to
ctrl.

Theorem 6.4.16 (ccontrolFlow) The circuit ccontrolFlow that simulates C2-CSM
control flow has size O(24T (n)T (n)) and depth T (n). The circuit ccontrolFlow

has inputs G and a binary number ctrl, and outputs a new value for ctrl.

Proof. Using cselectImage(ctrl) the circuit selects the image word Gctrl with
index ctrl in G. It then updates ctrl by a value that is dependant on Gctrl.
Specifically, if Gctrl represents

• one of {h, v, ∗, ···,+}, then increment ctrl by 1;

• ρ, then increment ctrl by 3;

• one of {ld, st}, then increment ctrl by 5;

• br, then execute circuit c br (ξ′1,η
′
2) from Lemma 6.4.15, its output over-

writes ctrl;

• hlt, then do not change the value of ctrl.

�
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Theorem 6.4.17 (circuit simulation of C(i) `M C(i+1) by cstep) Let M
be a C2-CSM. The uniform circuit cstep simulates C(i) `M C(i+1) and is of

size O(212T (n)T 6(n)) and depth O(T (n)).

Proof. The representation of configurations as words was given in Section 6.3.2.
The circuit cstep computes the mapping

(ctrl(i),G(i))→ (ctrl(i+1),G(i+1)) .

cstep uses ccontrolFlow, from Theorem 6.4.16, to compute

(ctrl(i),G(i))→ ctrl(i+1) .

Another subcircuit, coperation, computes

(ctrl(i),G(i))→ G(i+1)

as follows.
coperation selects the image word ‘op’ pointed to by ctrl(i) and tests which

element of {h, v, ∗, ···,+, ρ, ld, st, br, hlt} op represents. This circuit simulates
op in two steps:

In the first step the relevant circuit

cop ∈ {ca:=h(a), ca:=v(a), ca:=a∗ , ca:=a···b, ca:=a+b, ca:=ρ(a,zl,zu),

ca:=[(ξ′1,η
′
1),(ξ

′
2,η

′
2)], c[(ξ′1,η′1),(ξ′2 ,η′2)]:=a, c br (ξ′1,η

′
2), chlt} ,

is executed with the appropriate parameters. All of these circuits were
defined earlier in this chapter except for chlt, here we define hlt to compute
the empty word.

In the second step the output of cop and is written to the new grid word
G(i+1). This is done by coperation in one of three ways ((i)–(iii) below) that
depends on op.

(i) If op ∈ {h, v, ∗, ···,+, ρ, ld} then op alters image a only, so we want to
overwrite image word a and leave the rest of G alone. The circuit coperation

contains a pixel mask ma that has one bit b for every pixel word in G. If the
bth pixel word in G is in image word a, then the bth bit in ma is 1. Otherwise
bit b is 0.

The bth symbol in ¬ma is ANDed with each symbol in the bth pixel word
in G(i). We call this process “masking”. Simultaneously, the output from
cop is replicated to form a word of length |G| which is then masked with ma.
These two masked outputs are ORed to give G(i+1).

(ii) If op = st then the part of the grid to be updated is dependent on
the st parameters. The circuit c[(ξ′1,η′1),(ξ′2,η′2)]:=a (that simulates st and was
given in Theorem 6.4.14) outputs a mask mst of length |G| that contains the
‘stored rectangle’ and is 0 everywhere else. We now make another mask by
executing 22T (n) parallel instances of cstPixel(i), each instance gets a different



6 Upper bounds on C2-CSM power 79

i ∈ {0, . . . , 22T (n)} as input. (cstPixel(i) was given in Lemma 6.4.13). The

outputs from these 22T (n) computations are ANDed to give a mask whose
bth bit is 1 if and only if pixel b is in the rectangle to be stored by st. We
use the masks in a similar fashion to (i) above to get G(i+1).

(iii) The last case is for op ∈ {br, hlt}. In this case we simply copy G(i)

to G(i+1).
We have proved that cstep simulates the configuration update C(i) `M

C(i+1).

The size of O(212T (n)T 6(n)) and depth of O(T (n)) is derived by stepping
through the construction. The size complexity of the st operation dominates
all others.

Uniformity: The circuit cstep contains a large number of subcircuits. Each
subcircuit is logspace computable and these are composed in a logspace
uniform way. �

Next we give the resource use for our circuit simulation of a C2-CSM.

Theorem 6.4.18 (circuit simulation of M by cM) Let M be a C2-CSM
that computes for time T (n). The uniform circuit cM simulates M and is
of size O(212T (n)T 7(n)) and depth O(T 2(n)).

Proof. cM is the composition of T (n) instances of cstep from the previous
theorem. The circuit is given the initial configuration of M

(ctrlsta,Gsta)

as input. After O(T 2(n)) parallel timesteps cM outputs the word represen-
tation of the final configuration of M . �

The size bound in the previous theorem seems quite high, however one
should keep in mind that M has space of S(n) 6 O(23T (n)). (This was the
original space bound on M before we redefined space to suit our simula-
tions).

SupposeM is a language deciding C2-CSM. In this case cM is augmented
so that it ORs the contents of the output image word, thus computing
a {0, 1}-valued function. The resulting circuit has only a constant factor
overhead in the size and depth of cM . From this we state the following.

Corollary 6.4.19

C2-CSM-TIME(T (n)) ⊆ U-SIZE,DEPTH(O(212T (n)T 7(n)), O(T 2(n))) .

From the inclusion given by Eq. (6.2.1):

Corollary 6.4.20 C2-CSM-TIME(T (n)) ⊆ DSPACE(O(T 2(n))) .
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Combining the above result with Theorem 5.4.14 from the previous chap-
ter gives a relationship between nondeterministic sequential space, C2-CSM
time and deterministic space.

Corollary 6.4.21

NSPACE(S(n)) ⊆ C2-CSM-TIME(O(S(n) + log n)4)

⊆ DSPACE(O(S(n) + log n)8))

Our simulations could possibly be improved to reduce the degree of the
above polynomials, maybe even to a quadratic. Any improvement beyond
that would be difficult, since it would imply an improvement to the quadratic
bound in Savitch’s theorem.

To summarise, the C2-CSM verifies the parallel computation thesis:

Corollary 6.4.22 NSPACE(SO(1)(n)) = C2-CSM-TIME(SO(1)(n))

This establishes a link between space bounded sequential computation and
time bounded C2-CSM computation. For example:

Corollary 6.4.23 C2-CSM-TIME(nO(1)) = PSPACE

From the proof methods used in Chapter 5 and this chapter we can
strengthen this result by restricting the C2-CSM.

Corollary 6.4.24 The C2-CSM without the operations h and v verifies the
parallel computation thesis.

Proof. Operations h and v were not used in the C2-CSM simulation of index-
vector machines. �

Let a 1D-C2-CSM be a C2-CSM where grid and spatialRes are both
constant in either the vertical or the horizontal direction.

Corollary 6.4.25 The 1D-C2-CSM verifies the parallel computation thesis.

Proof. The index-vector machine simulation used only constant grid and
spatialRes in the vertical direction. So we easily have the statement for
the case where grid and spatialRes are constant in the vertical direc-
tion. Moreover by rotating the grid layout and all images by 90◦ we obtain
a simulation where grid and spatialRes are constant in the horizontal
direction. �

The parallel computation thesis relates parallel time to sequential space,
however in our simulations we explicitly gave all resource bounds. As a final
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result we show that the class of C2-CSMs that simultaneously use polynomial
space and polylogarithmic time decide exactly the languages in NC. Let

C2-CSM-SPACE,TIME(S(n), T (n))

be the class of languages decided by C2-CSMs that use space S(n) and time

T (n), respectively. Analogously let

VI -SPACE,TIME(S(n), T (n))

be the class of languages decided by index-vector machines that use space
S(n) and time T (n) respectively. Recall [KR90]

VI -SPACE,TIME(nO(1), logO(1) n) = NC ,

and for uniform circuits

U-SIZE,DEPTH(nO(1), logO(1) n) = NC

From the resource overheads in our simulations we get

VI-SPACE,TIME(O(2T (n)), T (n))

⊆ C2-CSM-SPACE,TIME(2O(T (n)), TO(1)(n))

⊆ U-SIZE,DEPTH(2T
O(1)(n), TO(1)(n)) .

For the case where T (n) = logO(1) n

Corollary 6.4.26

NC ⊆VI-SPACE,TIME(nO(1), logO(1) n)

⊆ C2-CSM-SPACE,TIME(nO(1), logO(1) n)

⊆ U-SIZE,DEPTH(nO(1), logO(1) n)

⊆ NC .

6.5 Discussion

We have shown an upper bound on C2-CSM power in terms of uniform
circuits. Combining this with the lower bound from the previous chapter;
the C2-CSM verifies the parallel computation thesis. In our proofs we gave
explicit bounds on all resources. This enabled us to show that C2-CSMs with
polynomial space and polylogarithmic time decide exactly the languages
in NC.

As noted in the text, our simulations could probably be improved to
get a tighter relationship between C2-CSM time and sequential space. For
example, the size bounds on the circuit simulation of ld and st could be
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improved. If so, this would enable us define a tighter bound on simultaneous
resource usage between the C2-CSM and (say) uniform circuits, in the hope
of exactly characterising NC

k by varying a parameter k to the model. We
leave this as future work.

Our simulations have enabled us to place a number of restrictions on
the class of C2-CSMs. Fourier transformation gives no more power up to a
polynomial. This is not so suprising since the DFT is efficiently computed
on parallel machines. Also, two dimensions give no more power up to a poly-
nomial, since we may keep grid and spatialRes in one of the dimensions
as constants. Of course, in a more fine grained analysis we might see the
advantages of these aspects of the model.

On a different note, our results show that the kind of optics modelled by
the C2-CSM is simulated in reasonable time on any of the parallel architec-
tures that verify the parallel computation thesis.
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Nonuniformity and the CSM

7.1 Introduction

Here we show that CSM with arbitrary real inputs decides the membership
problem for any language L ⊆ Σ∗. We prove this result by showing the CSM
with real inputs simulates the analog recurrent network (ARNN) model.
Our simulation includes an efficient matrix multiplication algorithm, this
efficiency is not dependent on the use of real inputs.

The chapter is an improved version of what appears in [WN05]. Firstly,
the simulations in [WN05] required exponential spatialRes, here
spatialRes is quadratic. Secondly the results in [WN05] were given in
low-level CSM code, here we use the programming language introduced in
Chapter 4. Thus our proofs are more concise and straightforward. Finally,
in the reference mentioned we gave a simulation of the general ARNN model,
followed by a simulation of a language deciding ARNN. For brevity we give
only the latter simulation here.

7.2 ARNNs and nonuniform circuits

ARNNs [SS94, Sie99] are finite size feedback first-order neural networks with
real weights. The state of each neuron at time t + 1 is given by an update
equation of the form

xi(t+ 1) = σ




N∑

j=1

aijxj(t) +
M∑

j=1

bijuj(t) + ci


 , i = 1, . . . , N (7.2.1)

where N is the number of neurons, M is the number of inputs, xj(t) ∈ R are
the states of the neurons at time t, uj(t) ∈ Σ+ are the inputs at time t, and
aij , bij , ci ∈ R are the weights. An ARNN update equation is a function of
discrete time t = 1, 2, 3, . . . . The network’s weights, states, and inputs are
often written in matrix notation as A,B and c, x(t), and u(t), respectively.
The function σ is defined as

σ(x) =





0, if x < 0
x, if 0 6 x 6 1
1, if x > 1 .

83
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A subset P of the N neurons, P = {xk1 , . . . , xkp
}, P ⊆ {x1, . . . , xN},

are called the p output neurons. The output from an ARNN computation
is defined as the states {xk1(t), . . . , xkp

(t)} of these p neurons over time
t = 1, 2, 3, . . . .

7.2.1 Formal net deciding language membership

ARNN input/output (I/O) mappings can be defined in many ways [SS94].
We present a CSM that simulates a specific type of ARNN called a formal
net. Formal nets are ARNNs that decide language membership problems
and have the following I/O encodings. A formal net has two binary input
lines, called the input data line (D) and the input validation line (V ), respec-
tively. If D is active at a given time t then D(t) ∈ Σ, otherwise D(t) = 0.
V (t) = 1 when D is active, and V (t) = 0 thereafter (when D is deactivated
it never again becomes active). An input to a formal net at time t has the
form u(t) = (D(t), V (t)) ∈ Σ2. The input word w = w1 . . . wk ∈ Σ+ where
wi ∈ Σ, 1 6 i 6 k, is represented by uw(t) = (Dw(t), Vw(t)), t ∈ N, where

Dw(t) =

{
wt if t = 1, . . . , k

0 otherwise
, Vw(t) =

{
1 if t = 1, . . . , k

0 otherwise
.

A formal net has two output neurons Od, Ov ∈ {x1, . . . , xN}, called the
output data line and output validation line, respectively. Given a formal
net F with an input word w and initial state xi(1) = 0, 1 6 i 6 N , w is
classified in time τ if the output sequences have the form

Od = 0τ−1ψw0ωωω, Ov = 0τ−110ωωω, (7.2.2)

where ψw ∈ Σ and ωωω = |N|. If ψw = 1 then w is accepted, if ψw = 0 then w
is rejected. We now give a definition of deciding language membership by
ARNN (from [SS94]).

Definition 7.2.1 (Formal net deciding language membership) The
membership problem for the language L ⊆ Σ+ is decided in time TTT by the
formal net F provided that each word w ∈ Σ+ is classified in time τ 6 TTT (|w|)
and ψw = 1 if w ∈ L and ψw = 0 if w /∈ L.

Siegelmann and Sontag [SS94] prove that for each language L ⊆ Σ+ there
exists a formal net FL to decide the membership problem for L. Recall
(from Section 6.2) the definition of a nonuniform circuit family CL that
decides a language L, and the fact that nonuniform circuits of exponential
size decide all L ∈ {0, 1}∗. The formal net FL contains a real weight that
encodes CL. Let sizeCL

: N → N be the size of CL. For a given input word
w ∈ Σ+, FL retrieves the encoding of circuit c|w| from its real weight and
simulates this encoded circuit on input w to decide membership in L, in time
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TTT (|w|) = O(|w|[sizeCL
(|w|)]2). Essentially the real weight is being used as an

oracle. Given polynomial time, formal nets decide the nonuniform language
class P/poly. Given exponential time, formal nets decide the membership
problem for all languages.

7.3 CSM simulation of formal nets

We first describe a representation of ARNN matrices as images. Then we
give a simulation of the ARNN update equation for a single ARNN timestep
t, followed by some remarks on the efficiency of our algorithm.

7.3.1 Image representation of ARNNs

As usual we let κ be the image representation of κ. The following represen-
tations are used in Theorem 7.3.2. Recall our representation of matrices by
list-matrix images from Definition 4.2.6 and illustrated in Figure 4.2.1(e).

The ARNN weight matrices A, B, and c are represented by N × N ,
N ×M , and N × 1 list-matrix images A, B, and c, respectively. The state
vector x is represented by a 1 × N list-matrix image x. The dimensions
of the above matrices, N and M , are represented by the natural number
images N and M . These images define the ARNN.

For an ARNN timestep t, the ARNN input vector u(t) is represented by
a 1×M list-matrix image u.

We also make use of the constant images f(x, y) = 0 and f(x, y) = 1,
denoted 0 and 1, respectively. Natural number images are used as addresses.

7.3.2 ARNN simulation overview

From the neuron state update equation Eq. (7.2.1), each xj(t) is a component
of the state vector x(t). From x(t) we define the N ×N matrix X(t) where
each row of X(t) is the vector x(t). Therefore X(t) has components xij(t),
and for each j ∈ {1, . . . N} it is the case that xij = xi′j , ∀i, i′ ∈ {1, . . . N}.
From u(t) we define the N × M matrix U(t) where each row of U(t) is
the vector u(t). Therefore U(t) has components uij(t), and for each j ∈
{1, . . . M} it is the case that uij = ui′j , ∀i, i′ ∈ {1, . . . N}. Using X(t) and
U(t) we rewrite Eq. (7.2.1) as

xi(t+1) = σ




N∑

j=1

aijxij(t) +

M∑

j=1

bijuij(t) + ci


 , i = 1, . . . , N . (7.3.1)

In the simulation we generate N×N andN×M list-matrix imagesX and
U representing X(t) and U(t), respectively. We then simulate, in parallel,
the affine combination in Eq. (7.3.1) using the CSM’s + and · operators.
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We use the CSM’s amplitude filtering operation ρ to simulate the ARNN σ
function.

Lemma 7.3.1 The CSM operation ρ simulates σ(x) in constant time.

Proof. From the definition of ρ in Eq. (2.2.6), we set zl(x, y) = 0 (denoted
0) and zu(x, y) = 1 (denoted 1) to give

ρ(f(x, y), 0, 1) =





0, if |f(x, y)| < 0

|f(x, y)| , if 0 6 |f(x, y)| 6 1

1, if |f(x, y)| > 1 .

Using our representation of ARNN state values by images, ρ(x, 0, 1) sim-
ulates σ(x). Also, ρ is a CSM operation hence simulating σ(x) requires
constant time. �

Using the representations given above we state the following.

Theorem 7.3.2 For a single timestep t the formal net update, given by
Eq. (7.2.1), is simulated by a CSM M in O(N) time, O(N 2) grid, O(N)
dyRange, O(N 2) spatialRes and freq, ∞ amplRes and constant
phaseRes.

Proof. The CSM has multiplication, addition and thresholding operations,
hence it is clear that the M can compute Eq. (7.2.1). We must show that
the update is computed within the resource bounds given. The following
CSM program computes the update. Essentially, the program transforms
Eq. (7.2.1) to Eq. (7.3.1), and parallelises the relevant multiplications and
additions. Finally the CSM operation ρ is used to simulate the ARNN
thresholding function (see Lemma 7.3.1).

The program calls two functions. The function create matrix(x, N ; X)
creates a list-matrix image X where each row is a copy of the vector image
x. To do this, N copies of image x are placed in N vertically juxtaposed
images. Then all N images are rescaled to one image in a single step. The
function requires O(N) time and O(N) grid.

The function sum columns(AX , N ; ΣAX) rescales the list-matrix image
AX over N horizontally juxtaposed images, then sums all of these images.
The rescaling is done in one step, the summation in O(N) time and O(N)
grid.
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update (A, B, c, x, u, N , M ; x )

// constants: 0, 1.
// variables: tmp, affine-comb.

// Matrix vector multiplication
create matrix(x, N ; X)
··· ( A , X ; AX )
sum columns(AX , N ; ΣAX)

// same procedure for ΣBU
create matrix(u, N ; U)
··· ( B , U ; BU )
sum columns(BU , M ; ΣBU)

// Sum vectors and threshold
+( ΣAX , ΣBU ; tmp )
+( c , tmp ; affine-comb )
ρ ( affine-comb , 0 , 1 ; x )

end // update

In a formal net, M = 2 hence we ignore M in our asymptotic complexity
analysis. The function update(·) requires O(N) time. We need O(N 2)
grid since create matrix(·) and sum columns(·) rescale in the vertical and
horizontal directions respectively. We are using natural number images as
addresses, hence we need O(N) dyRange to rescale the list-matrix images
in the horizontal and vertical directions. O(N 2) spatialRes and freq is
needed to represent the N×N list-matrix images. phaseRes has a constant
value of 2 since we are using real values only. Finally,∞ amplRes is required
to represent real-valued ARNN weight matrices. �

By making a few extra assumptions the above algorithm could be im-
proved to O(logN) time. Firstly we can change the representation. Our
list-matrix image is basically a spatially separated set of delta functions
(when analysing our algorithms we pixelate these delta functions). Now,
lets assume we use a representation of matrices where each matrix value is
represented by a constant valued pixel. Also, we’ll make the assumption
that all matrices have dimensions that are powers of two (N = 2k for some
constant k). Given this new setup it becomes possible to compute the up-
date in O(logN) time. The function sum columns(AX , N ; ΣAX) can be
computed in O(logN) time, by placing the left half of AX in image a, the
other half in image b, add a and b, halve again, and repeat.

Even better, the function create matrix(x, N ; X) can be computed in
constant time. Using the new pixel-like representation, x and X are the
same image (remember that X contains N vertically juxtaposed copies of
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x), so create matrix(·) is the identity function on x.
With the extra assumptions in place we are matching the well-known

O(logN) time parallel (e.g. PRAM) matrix multiplication algorithms. (Al-
though, from the results in previous chapters we can guess that this would
be possible.) Since CSM space, is the product of all non-time measures, we
see no improvement over standard parallel algorithms that use O(n3) space.

Could further improvements be made? For example Reif [RT97] uses the
DFT for constant time matrix multiplication over an ordered ring. Here,
we are computing over the reals so we could consider using the FT. How-
ever, our simulation will require infinite freq (at least if its going to be
similar to what we have described above). With finite freq, every Fourier
transformation will degrade our representation, and thus we will not have
the infinite precision we need to simulate an ARNN.

Corollary 7.3.3 A CSM D with real inputs decides any L ∈ {0, 1}∗ in
O(TTTN) time, O(|w| + N 2) grid, O(|w| + N) dyRange, O(|w| + N 2)
spatialRes and freq, ∞ amplRes and constant phaseRes, where TTT
is the time of the formal net that decides L.

Proof. D is a language deciding CSM that takes input as list & natural
number images (see Definition 4.3.2). The input word w is represented as a
list image fw. D rescales fw over |w| horizontally juxtaposed images. Then
D repeatedly calls update(·) (from Theorem 7.3.2) and feeds one bit of w
at a time as input through the input image u. After each call to update(·),
D examines the appropriate position of x to see if the simulated output
validation line from Eq. (7.2.2) has value 1. When this happens the value
of simulated output data line (i.e. the appropriate value from image x) is
copied to D’s output image and the computation halts.

The resource usage follows from Theorem 7.3.2. �

Siegelmann and Sontag [SS94] show that when deciding a language from
the nonuniform class P/poly, in the worst case the time function TTT is poly-
nomial in input word length. When deciding an arbitrary language, in the
worst case TTT is exponential in input word length. These results carry over
to the CSM, through the above simulation, when we permit real inputs.

Linear precision (in time TTT) suffices for the ARNN model [SS94]. Using
our simulation the associated cost would be exponential amplRes complex-
ity in TTT.

7.4 Discussion

The CSM we used in this chapter is essentially a C2-CSM that has real
inputs. Natural number images are used as addresses. We improved the
space bound in [WN05] from exponential to polynomial, by using list and
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list-matrix images rather than stack and stack-matrix images. We gave a
linear time matrix multiplication algorithm and discussed an improvement
to log time by further changing our representation.

In software engineering terms we introduced a data refinement and opti-
misation. In principle such transformations could be built into a compiler for
our language, and automatically applied to many of our other algorithms.

At the present time there is a debate over the applicability of results such
as those in this chapter. For example two opposing views can be found in
a single volume [Dav04, Sta04]. Many pages of text have been published on
this subject and we have nothing essentially new to add. From the physical
viewpoint (using current and any currently predicted future technology) we
can not purposely set up an optical experiment that encodes an arbitrary
language. On the other hand lets suppose that an optical set-up happens
to be deciding an arbitrary language (or some omnipotent deity has set it
up to do so). We can read the result, but in general we do not know the
problem that has been solved.

By allowing arbitrary real inputs, we are essentially getting access to a
Turing-uncomputable oracle for free. Allowing real inputs in this way does
not help us understand the complexity of the problems we are solving.

On another note, it is interesting that Siegelmann’s approach differs to
ours in the following sense. Siegelmann uses the complexity measure ‘num-
ber of bits’ to assert that linear precision (in time) suffices [Sie99, SS94]. In
our set-up we are representing real values by amplitude. Using our amplRes

resource measure we incur an exponential cost in ‘number of bits’ of pre-
cision. We use amplRes as a complexity measure since it corresponds to
a real world resource in optical information processing. By representing a
number using the magnitude of some physical quantity we are essentially
using a unary encoding. In this light our (more expensive) resource seems
more sensible than counting the number of bits.
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Conclusion

8.1 Discussion

We have explored the computational power of a model of computation in-
spired by optical information processing. We have established links between
the model and computational complexity theory.

A large number of complexity measures were defined for the model, these
seem natural with respect to resource usage in Fourier optical computing.
We investigated the growth of these resources under each of the model’s
operations. Some resources grow in a way similar to well-known parallel
models of computation. By allowing operations like Fourier transformation
we are mixing the continuous and discrete worlds, hence some measures
grow to infinity in one timestep. This motivates the definition of a variant
of our model, the C2-CSM. The C2-CSM is in many ways close to physical
optical computers. Also, as we have shown, it is more suited to analysis
using standard methods from complexity theory.

We gave a convenient programming language and a number of data rep-
resentations for the CSM. Our language simplifies programming while facili-
tating a straightforward complexity analysis of algorithms. We have argued
that our data representations are natural and reasonable.

One of our main results is that the C2-CSM verifies the parallel com-
putation thesis. This gives a characterisation of the C2-CSM in terms of
sequential and parallel complexity theory. Thus the C2-CSM, and the optics
it models, exhibit a type of parallelism frequently found in models of com-
putation. We have shown that C2-CSMs operating in polylogarithmic time

and polynomial space accept exactly the class NC.
Our results were given by explicit simulations. Hence, within the con-

straints of our model, we have given a direct method for scientists to trans-
late any reasonable and efficient parallel algorithm into an efficient optical
one. Due to the unusual nature of the model our simulations have a unique
flavour.

Finally we have shown the hideous power of allowing arbitrary real inputs
to the CSM.
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8.2 Further work

The framework we have developed suggests a number of avenues for further
research. We outline some possible ideas. Some of these points were already
discussed in previous chapters.

1. How far can we loosen the definition of the C2-CSM, so that it still ver-
ifies the parallel computation thesis? For example, some models have
restrictions similar to our space restriction [Par87, Gol82], while oth-
ers do not [Sim77, TLR92]. Simon [Sim77] has shown that unrestricted
shifts give no extra power to vector machines, up to a polynomial in
time. This result was subsequently applied [TLR92] to prove a similar
result for PRAMs with shift instructions. Can we apply this work to
the C2-CSM or does our instruction set cause problems? Our conjec-
ture is that the space restriction can be removed from the C2-CSM
definition.

2. On the other hand, what further restrictions can we put on the C2-
CSM such that it still satisfies the parallel computation thesis? For
example, we know that we can remove either of the FT operations h or
v. Also we have shown that the addressing function E can be restricted
so that it maps to natural number images only. Can we further restrict
the set of operations, or at least restrict how they interact?

3. What kind of resource trade-offs can we find for the C2-CSM? For
example, can the amplRes condition be swapped for an analogous
dyRange condition in the C2-CSM definition, without changing the
power of the model? Even stronger, we conjecture that this can be
done in such a way as to reduce grid to a constant, with only a polyno-
mial increase in time. Thus swapping constant amplRes for constant
dyRange and grid. Since we have defined a large number of com-
plexity measures, it is probable that there are many other interesting
trade-offs.

4. The size bound on the circuit simulation in Chapter 6 could probably
be lowered. Moreover, it would be interesting to see how tight we
can make the simulations in both of Chapters 5 and 6, for example by
getting as close as possible to the quadratic bound implied by Savitch’s
theorem.

5. We have characterised the classes NC and AC in terms of the C2-CSM.
However, can we give an exact characterisation of NC

k or AC
k by

varying some parameter k to the model? Can such a characterisation
be found for some of our resources and not for others, or are they
interchangeable?
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6. It would be interesting to explore the issue of analog computation with
the CSM, for the case that the inputs are finite rationals or integers.
What would be the most natural way to define analog complexity
classes for the CSM? How would analog classes for the CSM correspond
with results for other analog models and with discrete parallel models?
By exploring this avenue of research can we put forward a parallel
computation thesis for analog models?



Notation

CSM continuous space machine
DFT discrete Fourier transform
FT Fourier transform
I set of all images f : [0, 1) × [0, 1)→ C
κ representation of κ (e.g. representation of κ as an image)

q
rep
=⇒ p q is represented as p

fn n-valued constant image; fn(x, y) = i, n ∈ C, x, y ∈ [0, 1)
fw stack or list image representing w ∈ {0, 1}∗; x, y ∈ [0, 1)
E : N→ N Address encoding function
N non-negative integers
N+ integers strictly greater than 0
Q integers
R reals
C complex numbers
ω cardinality of N
{0, 1}∗ set of all words of length > 0 over alphabet {0, 1}
{0, 1}+ set of all words of length > 0 over alphabet {0, 1}
|w| length of the word w ∈ {0, 1}∗
|z| amplitude of z ∈ C
i

√
−1

fk(n) polynomial of f , e.g. f 2(n) = (f(n))2

f (k)(n) function composition, e.g. f (2)(n) = f(f(n))
h CSM horizontal Fourier transform operation
v CSM vertical Fourier transform operation
+ CSM point by point image addition operation
· CSM point by point image multiplication operation
ρ CSM image threshold operation
st CSM store image(s) from address a operation
ld CSM load image(s) to address a operation
br CSM branch operation
hlt CSM halt operation
T (n) CSM time complexity
G(n) CSM grid complexity
Ra(n) CSM amplRes complexity
Rs(n) CSM spatialRes complexity
Rp(n) CSM phaseRes complexity
Rd(n) CSM dyRange complexity
ν(n) CSM freq complexity
S(n) CSM space complexity
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[Pău00] Gheorghe Păun. Computing with membranes. Journal of
Computer and System Sciences, 61(1):108–143, August 2000.



BIBLIOGRAPHY 100
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