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Abstract

We describe a computational model for studying the complexity of self-assembled
structures with active molecular components. Our model captures notions of growth
and movement ubiquitous in biological systems. The model is inspired by biology’s
fantastic ability to assemble biomolecules that form systems with complicated structure
and dynamics, from molecular motors that walk on rigid tracks and proteins that
dynamically alter the structure of the cell during mitosis, to embryonic development
where large-scale complicated organisms efficiently grow from a single cell. Using this
active self-assembly model, we show how to efficiently self-assemble shapes and patterns
from simple monomers. For example, we show how to grow a line of monomers in time
and number of monomer states that is merely logarithmic in the length of the line.

Our main results show how to grow arbitrary connected two-dimensional geometric
shapes and patterns in expected time that is polylogarithmic in the size of the shape,
plus roughly the time required to run a Turing machine deciding whether or not a
given pixel is in the shape. We do this while keeping the number of monomer types
logarithmic in shape size, plus those monomers required by the Kolmogorov complexity
of the shape or pattern. This work thus highlights the efficiency advantages of active
self-assembly over passive self-assembly and motivates experimental effort to construct
general-purpose active molecular self-assembly systems.

∗Supported by NSF grants CCF-1219274, CCF-1162589, and 0832824—the Molecular Programming
Project, an NSF Graduate Fellowship, and The Caltech Center for Biological Circuit Design.
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Figure 1: (a) Increase in mass in embryonic mouse [29], cow [49], and human [45]. Gray lines highlight
a time interval of exponential growth in each species. (b) An abstract example of exponential growth
showing insertion and state change.

1 Introduction

We propose a model of computation that takes its main inspiration from biology. Embryonic
development showcases the capability of molecules to compute efficiently. A human zygote
cell contains within it a compact program that encodes the geometric structure of an
organism with roughly 1014 cells, that have a wide variety of forms and roles, with each
such cell containing up to tens of thousands of proteins and other molecules with their own
intricate arrangement and functions. As shown in Figure 1(a), early stages of embryonic
development demonstrate exponential [45] growth rates in mass and number of cells over
time, showing remarkable time efficiency. Not only this, but the developmental path from
a single cell to a functioning organism is an intricately choreographed, and incredibly
robust, temporal and spatial manufacturing process that operates at the molecular scale.
Development is probably the most striking example of the ubiquitous process of molecular
self-assembly, where relatively simple components (such as nucleic and amino acids, lipids,
carbohydrates) organize themselves into larger systems with extremely complicated structure
and dynamics (cells, organs, humans). To capture the potential for exponential growth
during development, an abstract model must allow for growth by insertion and rearrangement
of elements as well as for local state changes that store information that guides the process,
as shown for example in Figure 1(b).

Molecular programming, where nanoscale engineering is thought of as a programming
task, provides our second motivation. The field has progressed to the stage where we can
design and synthesize a range of programable self-assembling molecular systems, all with
relatively simple laboratory techniques. For example, short DNA strands that form ‘tiles’
can be self-assembled into larger DNA tile crystals [79] that are algorithmically-patterned
as counters or Sierpinski triangles [61, 8, 31, 9]. This form of passive self-assembly is
theoretically capable of growing arbitrarily complex algorithmically described shapes and
patterns. Indeed, the theory of algorithmic self-assembly serves as a guide to tell us what
kinds of structures are possible, and interesting, to implement with DNA tiles. DNA origami
can be used to create uniquely addressable shapes and patterns upon which objects can be
localized within six nanometer resolution [62]. These DNA tile and origami systems are
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static, in the sense that after formation their structure is essentially fixed. However, DNA
nanotechnology has seen increased interest in the fabrication of active nanostructures that
have the ability to dynamically change their structure [11]. Examples include DNA-based
walkers [10, 34, 35, 46, 52, 66, 67, 71, 81, 82], DNA origami that reconfigure [6, 36, 48],
and simple structures called molecular motors that transition between a small number of
discrete states [15, 22, 28, 33, 42, 44, 47, 72, 73, 83, 84]. In these systems the interplay
between structure and dynamics leads to behaviors and capabilities that are not seen in
static structures, nor in other well-mixed chemical reaction network type systems.

Here we suggest a model to motivate engineering of molecular structures that have
complicated active dynamics of the kind seen in living biomolecular systems. Our model
combines features seen in passive DNA-based tile self-assembly, molecular motors and other
active systems, molecular circuits that evolve according to well-mixed chemical kinetics, and
even reaction-diffusion systems. The model is designed to capture the interplay between
molecular structure and dynamics. In our model, simple molecular components form
assemblies that can grow and shrink, and individual components undergo state changes
and move relative to each other.

The model consists of a two-dimensional grid of monomers. A specified set of rules,
or a program, directs adjacent monomers to interact in a pairwise fashion. Monomers
have internal states, and a pair of adjacent monomers can change their state with a single
rule application. Monomers can appear and disappear from the grid. So far, the model
can be thought of as a cellular automaton of a certain kind (that is, a cellular automaton
where rules are applied asynchronously and are nondeterministic, and there is a notion of a
growth front). An additional rule type allows monomers to move relative to each other.
The movement rule is locally applied but propagates movement throughout the system in
very non-local fashion. This geometric and mechanical feature distinguishes our model, the
nubot model, from previous molecular models and cellular automata, and, as we show in this
paper, crucially underlies its construction efficiency. The system evolves as a continuous
time Markov process, with rules being applied to the grid asynchronously and in parallel
using standard chemical kinetics, modeling the distributed nature of molecular reactions.

The model can carry out local state changes on a grid, so it can easily simulate Turing
machines, walkers and cellular automata-like systems. We show examples of other simple
programs such as robotic molecular arms that can move distance n in expected time O(log n),
something that can not be done by cellular automata. By using a combination of monomer
movement, appearance, and state change we show how to build a line of monomers in time
that is merely logarithmic in the length of the line, something that is provably impossible in
the (passive) abstract tile assembly model [2]. We go on to efficiently build a binary counter
(a program that counts builds an n × log2 n rectangle while counting from 0 to n − 1),
within time and number of monomer states that are both logarithmic in n, where n is a
power of 2. We build on these results to show that the model is capable of building wide
classes of shapes exponentially faster than passive self-assembly. We show how to build
a computable shape of size ≤ n × n in time polylogarithmic in n, plus roughly the time
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needed to simulate a Turing machine that computes whether or not a given pixel is in the
final shape. Our constructions are not only time efficient, but efficient in terms of their
program-size: requiring at most polylogarithmic monomer types in terms of shape size, plus
that required by the Kolmogorov complexity of the shape.

For shapes of size ≤ n× n that require a lot (i.e. > n) of time and space to compute
their pixels on a Turing machine, the previous computable shape construction requires
(temporary) growth well beyond the shape boundary. One can ask if there are interesting
structures that we can build efficiently, but yet keep all growth “in-place”, that is, confined
within the boundary. It turns out that colored patterns, where the color of each pixel in the
pattern is computable by a polynomial time Turing machine, can be computed extremely
efficiently in this way. More precisely, we show that n× n colored patterns are computable
in expected time O(log`+1 n) and using O(s + log n) states, where each pixel’s color is
computable by a program-size s Turing machine that runs in polynomial time in the length
of the binary description of pixel indices (specifically, in time O(log` n) where ` is O(1)).
Thus the entire pattern completes with only a linear factor slowdown in Turing machine
time (i.e. log n factor slowdown). Furthermore this entire construction is initiated by a
single monomer and is carried out using only local information in an entirely distributed
and asynchronous fashion.

Essentially, our constructions serve to show that shapes and patterns that are expo-
nentially larger than their description length can be fabricated in polynomial time, with a
linear number of states, in their description length, besides the states that are required by
the Kolmogorov complexity of the shape.

Our active self-assembly model is intentionally rather abstract, however our results
show that it captures some of the features seen in the biological development of organisms
(exponential growth—with and without fast communication over long distances, active yet
simple components) as well those seen in many of the active molecular systems that are
currently under development (for example, DNA walkers, motors and a variety of active
systems that exploit DNA strand displacement). Also, the proof techniques we use, at a very
abstract level, are informed by natural processes. In the creation of a line, a simple analog of
cell division is used; division is also used in the construction of a binary counter along with
a copying (with minor modifications) process to create new counter rows; in the assembly
of arbitrary shapes we use analogs of protein folding and scaffold-based tissue engineering;
for the assembly of arbitrary patterns we were inspired by biological development where
growth and patterning takes places in a bounded region (e.g. an egg or womb) and where
many parts of the development of a single embryo occur in an independent and seemingly
asynchronous fashion.

Section 2 contains the detailed definition of our nubot model, which is followed by a
number of simple and intuitive examples in Section 3. Section 4 gives a polynomial time
algorithm for simulating nubots rule applications, showing that the non-local movement
rule is in a certain sense tractable to simulate and providing a basis for a software simulator
we have developed. In Section 5 we show how to grow lines and squares in time logarithmic
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in their size. This section includes a number of useful programming techniques and analysis
tools for nubots. In Sections 6 and 7 we give our main results: building arbitrary shapes and
patterns, respectively, in polylogarithmic time in shape/pattern size (plus the worst-case
time for a Turing machine to compute a single pixel) and using only a logarithmic number
of states (plus the Kolmogorov complexity of the shape/pattern). Section 8 contains a
number of directions for future work.

1.1 Related work

Although our model takes inspiration from natural and artificial active molecular processes, it
posesses a number of features seen in a variety of existing theoretical models of computation.
We discuss some such related models here.

The tile assembly model [75, 76, 63] formalizes the self-assembly of molecular crystals [61]
from square units called tiles. This model takes the Wang tiling model [74], which is a
model of plane-tilings with square tiles, and restricts it by including a natural mechanism
for the growth of a tiling from a single seed tile. Self-assembly starts from a seed tile that
is contained in a soup of other tiles. Tiles with matching colors on their sides may bind to
each other with a certain strength. A tile can attach itself to a partially-formed assembly
of tiles if the total binding strength between the tile and the assembly exceeds a prescribed
system parameter called the temperature. The assembly process proceeds as tiles attach
themselves to the growing assembly, and stops when no more tile attachments can occur.
Tile assembly is a computational process: the exposed edges of the growing crystal encode
the state information of the system, and this information is modified as a new tiles attach
themselves to the crystal. In fact, tile assembly can be thought of as a nondeterministic
asynchronous cellular automaton, where there is a notion of a growth starting from a seed.
Tile assembly formally couples computation with shape construction, and the shape can be
viewed as the final output of the tile assembly “program”. The model is capable of universal
computation [75] (Turing machine simulation) and even intrinsic universality [26] (there
is a single tile set that simulates any tile assembly system). Tiles can efficiently encode
shapes, in the sense that there is a close link between the Kolmogorov complexity of an
arbitrary, scaled, connected shape and the number of tile types required to assemble that
shape [69]. There have been a wide selection of results on clarifying what shapes can and
can not be constructed in the tile assembly model, with and without resource constraints
on time and the number of required tile types (e.g. see surveys [55, 24]), showing that the
tile assembly model demonstrates a wide range of computational capabilities.

There have been a number of interesting generalizations of the tile assembly model.
These include the two-handed, or hierarchical, tile assembly model where whole assemblies
can bind together in a single step [3, 18, 14], the geometric model where the sides of
tiles have jigsaw-piece like geometries [30], rotatable and flipable polygon and polyomino
tiles [19], and models where temperature [3, 38, 70], concentration [12, 16, 39, 23] or mixing
stages [18, 20] are programmed. All of these models could be classed as passive in the sense
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that after some structure is grown, via a crystal-like growth process, the structure does
not change. Active tile assembly models include the activatable tile model where tiles pass
signals to each other and can change their internal ‘state’ based on other tiles that join
to the assembly [53, 54, 37]. This interesting generalization of the tile assembly model is
essentially an asynchronous nondeterministic cellular automaton of a certain kind, and may
indeed be implementable using DNA origami tiles with strand displacement signals [53, 54].
There are also models of algorithmic self-assembly where after a structure grows, tiles can
be removed, such as the kinetic tile-assembly model [77, 78, 17] (which implements the
chemical kinetics of tile assembly) and the negative-strength glue model [25, 59, 56], or the
RNAse enzyme model [1, 57, 21]. Although these models share properties of our model
including geometry and the ability of tile assemblies to change over time, they do not share
our notion of movement, something that is fundamental to our model and sets it apart from
models that can be described as asynchronous nondeterministic cellular automata.

As a model of computation, stochastic chemical reaction networks are computationally
universal in the presence of non-zero, but arbitrarily low, error [7, 68]. Our model crucially
uses ideas from stochastic chemical reaction networks. In particular our update rules are all
unimolecular or bimolecular (involving at most 1 or 2 monomers per rule) and our model
evolves in time as a continuous time Markov process; a notion of time we have borrowed
from the stochastic chemical reaction network model [32].

Our active-self assembly model is capable of building and reconfiguring structures. The
already well-established field of reconfigurable robotics is concerned with systems composed
of a large number of (usually) identical and relatively simple robots that act cooperatively
to perform a range of tasks beyond the capability of any particular special-purpose robot.
Individual robots are typically capable of independent physical movement and collectively
share resources such as power and computation [51, 64, 80]. One standard problem is
to arrange the robots in some arbitrary initial configuration, specify some desired target
configuration, and then have the robots collectively carry out the required reconfiguration
from source to target. Crystalline reconfigurable robots [13, 64] have been studied in this
way. This model consists of unit-square robots that can extend or contract arms on each
of four sides and attach or detach from neighbors. For this model, Aloupis et al [5] give
an algorithm for universal reconfiguration between a pair of connected shapes that works
in time merely logarithmic in shape size. As pointed out by Aloupis et al in a subsequent
paper [4], this high-speed reconfiguration can lead to strain on individual components, but
they show that if each robot can displace at most a constant number of other robots, and
reach at most constant velocity, then there is an optimal Θ(n) parallel time reconfiguration
algorithm (which also has the desired property of working “in-place”). Reif and Slee [60]
also consider physicaly constrained movement, giving an optimal Θ(

√
n) reconfiguration

algorithm where at most constant acceleration, but up to linear speed, is permitted. Like our
nubot model, these models and algorithms implement fast parallel reconfiguration. However,
here we intentionally focus on growth and reconfiguration algorithms that use very few
states (typically logarithmic in assembly size) to model the fact that molecules are simple
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and ‘dumb’—however, in reconfigurable robotics it is typically the case that individual
robots can store the entire desired configuration. Our model also has other properties that
don’t always make sense for macro-scale robots such as growth and shrinkage (large numbers
of monomers can be created and destroyed), a presumed unlimited fuel source, asynchronous
independent rule updates and Brownian motion-style agitation. Nevertheless we think it
will make interesting future work to see what ideas and results from reconfigurable robotics
apply to a nanoscale model and what do not.

Klavins et al [40, 41] model active self-assembly using conformational switching [65] and
graph grammars [27]. In such work, an assembly is a graph, which can be modified by graph
rewriting rules that add or delete vertices or edges. Thus the model focuses attention on the
topology of assemblies. Besides permitting the assembly of static graph structures, other
more dynamic structures—such as a walker subgraph that moves around on a larger graph—
can be expressed. Our model also has the ability to change structure and connectivity
in a way that takes inspiration from such systems, but additionally includes geometric
constraints by virtue of the fact that it lives on a two-dimensional grid. Lindenmayer
systems [43] are another model where a graph-like structure is modified via insertion and
addition of nodes, and where it is possible to generate beautiful movies of the growth of
ferns and other plants [58]. Although it is indeed a model of (potentially fast) growth via
insertion of nodes, it is quite different in a number of ways from our own model.

2 Nubot model description
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Figure 2: (a) A monomer in the triangular grid coordinate system. (b) Examples of monomer
interaction rules, written formally as follows: r1 = (1, 1, null, ~x)→ (2, 3, null, ~x), r2 = (1, 1, null, ~x)→
(1, 1, flexible, ~x), r3 = (1, 1, rigid, ~x) → (1, 1, null, ~x), r4 = (1, 1, rigid, ~x) → (2, 3, flexible, ~x),
r5 = (b, empty, null, ~x) → (1, 1, flexible, ~x), r6 = (1, a, rigid, ~x) → (1, empty, null, ~x), and r7 =
(1, 1, rigid, ~x) → (1, 2, rigid, ~y). For rule r7, the two potential symmetric movements are shown
corresponding to two choices for arm and base, one of which is nondeterministically chosen.

This section contains the model definition. We also give a number of simple example
constructions in Section 3, which may aid the reader here.

The model uses a two-dimensional triangular grid with a coordinate system using axes
x and y as shown in Figure 2(a). For notational convenience we define a third axis w, that
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runs through the origin and parallel to the vector ~w in Figure 2(a), but only axes x and y
are used to define coordinates. In the vector space induced by this coordinate system, the
axial directions D = {~w, −~w, ~x, −~x, ~y, −~y} are the unit vectors along the grid axes. A
pair ~p ∈ Z2 is called a grid point and has the set of six neighbors {~p+ ~u | ~u ∈ D}.

The basic assembly unit is called a nubot monomer. A monomer is a pair X = (sX , ~p(X))
where sX ∈ Σ is one of a finite set of states and ~p(X) ∈ Z2 is a grid point. Each grid
point contains zero or one monomers. Monomers are depicted as state-labelled disks of unit
diameter centered on a grid point. In general, a nubot is a collection of nubot monomers.

Two neighboring monomers (i.e. residing on neighboring grid points) are either connected
by a flexible bond or a rigid bond, or else have no bond between them (called a null bond).
A flexible bond is depicted as a small empty circle and a rigid bond is depicted as a solid
disk. Flexible and rigid bonds are described in more detail in Definition 2.2.

A connected component is a maximal set of adjacent monomers where every pair of
monomers in the set is connected by a path consisting of monomers bound by either flexible
or rigid bonds.

A configuration C is defined to be a finite set of monomers at distinct locations and
the bonds between them, and is assumed to define the state of an entire grid at some time
instance. A configuration C can be changed either by the application of an interaction rule
or by a random agitation, as we now describe.

2.1 Rules

Two neighboring monomers can interact by an interaction rule, r = (s1, s2, b, ~u) →
(s1′, s2′, b′, ~u′). To the left of the arrow, s1, s2 ∈ Σ ∪ {empty} are monomer states, at
most one of s1, s2 is empty (denotes lack of a monomer), b ∈ {flexible, rigid, null} is the
bond type between them, and ~u ∈ D is the relative position of the s2 monomer to the
s1 monomer. If either of s1, s2 is empty then b is null, also if either or both of s1′, s2′ is
empty then b′ is null. The right is defined similarly, although there are some restrictions
on the rules (involving ~u′) which are described below. The left and right hand sides of the
arrow respectively represent the contents of the two monomer positions before and after the
application of rule r. In summary, via suitable rules, adjacent monomers can change states
and bond type, one or both monomers can disappear, one can appear in an empty space, or
one monomer can move relative to another by unit distance. A rule is only applicable in the
orientation specified by ~u, and so rules are not rotationally invariant. The rule semantics
are defined next, and a number of examples are shown in Figure 2b.

A rule may involve a movement (translation), or not. First, let us consider the case
where there is no movement, that is, where ~u = ~u′. Thus we have a rule of the form
r = (s1, s2, b, ~u)→ (s1′, s2′, b′, ~u). From above, we have the restriction that at most one of
s1, s2 is the special empty state (hence we disallow spontaneous generation of monomers
from completely empty space). State change and bond change occurs in a straightforward
way and a few examples are shown in Figure 2b. If si ∈ {s1, s2} is empty and s′i is not,
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then the rule induces the appearance of a new monomer. If one or both monomers go from
being non-empty to being empty, the rule induces the disappearance of monomer(s).

A movement rule is an interaction rule where ~u 6= ~u′. More precisely, in a movement
rule d(~u, ~u′) = 1, where d(u, v) is Manhattan distance on the triangular grid, and none
of s1, s2, s1′, s2′ is empty. If we fix ~u ∈ D, then there are exactly two ~u′ ∈ D that
satisfy d(~u, ~u′) = 1. A movement rule is applied as follows. One of the two monomers is
nondeterministically chosen to be the base (which remains stationary), the other is the
arm (which moves). If the s2 monomer, denoted X, is chosen as the arm then X moves
from its current position ~p(X) to a new position ~p(X)− ~u+ ~u′. After this movement (and
potential state change), ~u′ is the relative position of the s2′ monomer to the s1′ monomer,
as illustrated in Figure 2b. If the s1 monomer, Y , is chosen as the arm then Y moves
from ~p(Y ) to ~p(Y ) + ~u− ~u′. Again, ~u′ is the relative position of the s2′ monomer to the
s1′ monomer. Bonds and states can change during the movement, as dictated by the rule.
However, we are not done yet, as during a movement, the translation of the arm monomer A
by a unit vector may cause the translation of a collection of monomers, or may in fact be
impossible; to describe this phenomenon we introduce two definitions.

The ~v-boundary of a set of monomers S is defined to be the set of grid locations located
unit distance in the ~v direction from the monomers in S.

Definition 2.1 (Agitation set) Let C be a configuration containing monomer A, and let
~v ∈ D be a unit vector. The agitation set A(C,A,~v) is defined to be the minimal monomer
set in C containing A that can be translated by ~v such that: (a) monomer pairs in C that
are joined by rigid bonds do not change their relative position to each other, (b) monomer
pairs in C that are joined by flexible bonds stay within each other’s neighborhood, and (c)
the ~v-boundary of A(C,A,~v) contains no monomers.

It can be seen that for any non-empty configuration the agitation set is always non-empty.
Using this definition we define the movable set M(C,A,B,~v) for a pair of monomers

A,B, unit vector ~v and configuration C. Essentially, the movable set is the minimal set that
can be moved without disrupting existing bonds or causing collisions with other monomers.

Definition 2.2 (Movable set) Let C be a configuration containing adjacent monomers
A,B, let ~v ∈ D be a unit vector, and let C ′ be the same configuration as C except that C ′

omits any bond between A and B. The movable set M(C,A,B,~v) is defined to be the
agitation set A(C ′, A,~v) if B 6∈ A(C ′, A,~v), and the empty set otherwise.

Figure 3 illustrates this definition with two examples.
Now we are ready to define what happens upon application of a movement rule. If

M(C,A,B,~v) 6= {}, then the movement where A is the arm (which should be translated
by ~v) and B is the base (which should not be translated) is applied as follows: (1) the
movable set M(C,A,B,~v) moves unit distance along ~v; (2) the states of, and the bond
between, A and B are updated according to the rule; (3) the states of all the monomers
besides A and B remain unchanged and pairwise bonds remain intact (although monomer
positions and bond orientations may change).
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Figure 3: Two movable set examples. (a) The movement rule is (a, a, rigid,−~w) → (c, c, rigid, ~x),
where the rightmost of the two monomers is nondeterministically chosen as the arm. (b) Example
with a non-empty movable set. (b1) Current configuration of the system. (b2) Computation of
the movable set. The movable set is highlighted in green, and numbers in parentheses indicate the
sequence of incorporation of monomers into the movable set via Algorithm 4.1. Monomers move
as shown in (b3). Finally, (b4) shows the configuration of the system after the application of the
movement rule. (c) Example with an empty movable set. (c1) A configuration that is identical
to the configuration in b1, except for a single rigid bond highlighted in black. (c2) Algorithm 4.1
completes at the pink monomer, which is blocked by the base monomer B, and hence returns an
empty movable set. Thus the movement rule can not be applied.

If M(C,A,B,~v) = {}, the movement rule is inapplicable (the pair of monomers A,B
are “blocked” and thus A is prevented from translating).

Section 4 describes a greedy algorithm for computing the movable set M(C,A,B,~v) in
time linear in assembly size.

We note that flexible bonds are not required for any of the constructions in this paper
(they are used in the construction in Figure 11 but they can be removed if we add extra
monomers and rules), however we retain this aspect of the model because we anticipate
that flexible bonds will be useful for future studies.

2.2 Agitation

Agitation is intended to model movement that is not a direct consequence of a rule application,
but rather results from diffusion, Brownian motion, turbulent flow or other undirected inputs
of energy. An agitation step, applies a unit vector movement to a monomer. This monomer
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then moves, possibly along with many other monomers in a way that does not break rigid
nor flexible bonds. More precisely, applying a ~v ∈ D agitation step to monomer A causes
the agitation set A(C,A,~v) (Definition 2.1) to move by vector ~v. During agitation, the only
change in the system configuration is in the positions of the constituent monomers in the
diffusing component, and all the monomer states and bond types remain unchanged.

None of the constructions in this paper exploit agitation, and all work correctly regardless
of its presence or absence (due to the fact that our constructions are stable, see below).
However, we feel it is important enough to be considered as part of the model definition.
We leave open the possibility of designing interesting systems that exploit agitation (e.g. by
having components interact by drifting into each other as is typical in a molecular-scale
environment).

2.3 Stability

The following definition is useful for proving correctness of many of our constructions.

Definition 2.3 (Stable) A configuration C is stable if for all monomers A in C and for
all 6 unit vectors ~v ∈ D, the agitation set A(C,A,~v) is the entire set of monomers in C.

In other words, translating any monomer by any of the 6 unit vectors in D results in the
translation of the entire set. This happens when monomers have a bond structure such
that under agitation all monomers move together unit distance, and their relative positions
remain unchanged. Hence, stable configurations have a bond structure that allows the
entire structure to be “pushed” or “pulled” around by the movement of any individual
monomer, without changing the relative location of any monomer to any other monomer in
the configuration. Essentially, this can be used as a tool to show that a structure does not
unintentionally become disconnected or end up in an unintended configuration. This is a
very useful property when proving the correctness and carrying out time analysis of our
constructions, and is extensively used in this paper.

2.4 System evolution

An assembly system T = (C0,R) is a pair where C0 is the initial configuration, and R is
the set of interaction rules. Consider two configurations Ci and Cj . If Cj can be derived
from Ci by a single step agitation, we write Ci `A Cj . Let the relation `∗A be the reflexive
transitive closure of `A. If Ci `∗A Cj , then Ci and Cj are called isomorphic configurations,
which is denoted as Ci ∼= Cj . (Notice that the relative position of monomers may differ for
two isomorphic configurations, although their connectivity is identical.) If Cj can be derived
from Ci by a single application of a rule r ∈ R, we write Ci `r Cj . If Ci transitions to Cj by
either a single agitation step or a single application of some rule r ∈ R, we write Ci `T Cj .
Let the relation `∗T be the reflexive transitive closure of `T . The set of configurations that
can be produced by an assembly system T = (C0,R) is Prod(T ) = {C | C0 `∗T C}. The set
of terminal configurations are Term(T ) = {C | C ∈ Prod(T ) and @D̃ � C s.t. C `∗T D̃}.

11



An assembly system T uniquely produces C if ∀D̃ ∈ Term(T ), C ∼= D̃. A trajectory is a
finite sequence of configurations C1, C2, . . . , Ck where Ci `T Ci+1 and 1 ≤ i ≤ k − 1.

An assembly system evolves as a continuous time Markov process. For simplicity, when
counting the number of applicable rules for a configuration, a movement rule is counted
twice, to account for the two symmetric choices of arm and base. If there are k applicable
transitions for a configuration Ci (i.e. k is the sum of the number of rule and agitation steps
that can be applied to all monomers), then the probability of any given transition being
applied is 1/k, and the time until the next transition is an exponential random variable
with rate k (i.e. the expected time is 1/k). The rate for each rule application and agitation
step is 1 in this paper (although more sophisticated rate choices can be accommodated by
the model). The probability of a trajectory is then the product of the probabilities of each
of the transitions along the trajectory, and the expected time of a trajectory is the sum
of the expected times of each transition in the trajectory. Thus,

∑
t∈T Pr[t]time(t) is the

expected time for the system to evolve from configuration Ci to configuration Cj , where T
is the set of all trajectories from Ci to any configuration isomorphic to Cj , that do not pass
through any other configuration isomorphic to Cj , and time(t) is the expected time for
trajectory t.

The following lemma is useful for the time analysis of the constructions in this paper.

Lemma 2.4 Given an assembly system T in which all configurations in Prod(T ) have at
most one stable connected component, the expected time from configuration Ci to configura-
tion Cj is the same with or without agitation steps.

Proof: Assembly system T has a corresponding Markov process M . We consider another
Markov process M ′. Each state SC in M ′ corresponds to all configurations in Prod(T ) that
are isomorphic to a particular configuration C, which by hypothesis are all stable. For each
transition in M from configuration Cx to Cy, there is also a transition from SCx to SCy
with the same transition rate. The expected time from configuration Ci to configuration Cj
in the assembly system T is the same as the expected time from state SCi to first reach SCj
in Markov process M ′ since every trajectory in M corresponds to a trajectory in M ′.
Furthermore, all agitation steps in T corresponds to self-loops in M ′. Therefore, removing
the agitation steps in T is equivalent to removing some self-loops in M ′ and does not change
the expected time to transition from one state to another. 2

Since all of our constructions satisfy the assumption that all producible configurations
have only a single connected stable component, we ignore agitation steps in the time analysis
of the constructions in this paper.

3 Examples

Figures 4 to 8 show a number of examples. Figure 4 depicts a simple assembly system
that grows a line of monomers. Figure 4b shows the initial configuration C0, which consists
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r_i
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where i >  0

System evolution
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r_k r_k-1
0 0 k-2

r_k-2 r1
0 0 00

Unique terminal configuration
A linear chain of k+1 monomers

Figure 4: Growth of a linear chain. (a) Rule set: Rk = {ri | ri = (i, empty, null, ~x) → (0, i −
1, rigid, ~x), where 0 < i ≤ k}. (b) Initial configuration of the system. (c) Evolution of a system
trajectory over time.

of a single monomer with state k ∈ N. This system evolves as shown in Figure 4c, and
uniquely produces a linear chain with k + 1 monomers, with each monomer having a final
state of 0. Since the system involves k sequential events each with unit expected time, it
takes expected time k to complete.
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1
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r1 r3

Figure 5: Autonomous unidirectional motion of a walker along a linear track. (a) Rule set:
r1 = (1, 1, null,−~w)→ (2, 1, rigid,−~w), r2 = (1, 2, rigid, ~y)→ (1, 1, null, ~y), and r3 = (1, 1, rigid, ~w)→
(1, 1, rigid, ~y). (b) Evolution of an example initial configuration. (c) A subroutine abstraction.

Figure 5 depicts the autonomous unidirectional motion of a single-monomer “walker”
along a linear track of monomers. It takes O(n) expected time for a monomer to move n
steps. The rules depicted in Figure 5a implement the subroutine depicted in Figure 5c.

Figure 6 describes insertion of a single monomer between two other monomers, which
occurs in constant expected time.

Figure 7 describes the rotation of a long arm. As the motion of each monomer is
independent of the motion of the other monomers, it takes O(log n) expected time to
complete the rotation of an arm of n monomers. Interestingly, this example captures a kind
of movement and speed that is impossible to achieve with cellular automata, but has an
analog in reconfigurable robotics [5].

Figure 8 shows a simple Turing machine example. The Turing machine program is
stored in the rule set and directs the tape head monomer to walk left or right, and to update
the relevant tape monomer. The Turing machine state is stored in the tape monomer,
currently the Turing machine is in state q. If the Turing machine requires a longer tape,
new tape cell monomers are created to the left or right of the end of tape marker B. This
example shows that the model is capable of algorithmically directed behavior.
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Figure 6: Insertion of a single monomer between two others. (a) Rule set: r1 = (1, empty, null, ~y)→
(1.1, 0, rigid, ~y), r2 = (0, x, null,−~w)→ (0, x.1, rigid,−~w), r3 = (1.1, x.1, rigid, ~x)→ (1.1, x.1, null, ~x),
r4 = (0, x.1, rigid,−~w) → (0.1, x.1, rigid, ~x), r5 = (1.1, 0.1, rigid, ~y) → (2, 2, rigid, ~x), and r6 =
(2, x.1, rigid, ~x)→ (2, x, rigid, ~x). (b) Evolution of an example initial configuration. (c) A subroutine
abstraction.
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Figure 7: Rotation of a long arm. (a) Rule set: r1 = (1, 1, rigid, ~w)→ (1, 1, rigid, ~y). (b) Evolution
of an example initial configuration to a terminal configuration. (c) A subroutine abstraction.

4 System simulation

In this section we show that there is an algorithm that simulates one of the trajectories
of an assembly system in time O(tn2) where t is the number of configuration transitions
in the trajectory and n is the maximum number of monomers of any configuration in the
trajectory. This shows that simulation of individual trajectories is tractable in terms of the
number of rule applications, and in terms of the number of monomers.1 In fact, it is not
difficult to imagine other variations on the model where simulation of a single, non-local,
rule is an intractable problem. The existence of our algorithm gives evidence that our rules,
in particular the movement rule, are in some sense reasonable.

1This forms the basis of our software simulator for the model.
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Figure 8: Turing machine example. The Turing machine program is stored in the rule set. New
tape monomers can be created as needed.

4.1 Simulation of a single step

The continuous-time Markov process that describes a trajectory is simulated using a discrete
time-algorithm. Essentially, the algorithm examines the grid contents and using a local
neighborhood of radius 2, a list of potentially applicable rules are generated. The list also
contains 6n potentially applicable agitation steps (6 directions for each of the n monomers).
All of this can be done in O(n) time. The algorithm then, uniformly at random, picks an
event from the list to apply, if the rule or agitation step can indeed be applied the grid
contents are updated accordingly. Besides the movement rules and agitation steps, the
other rule types can be easily simulated in time O(n), since at most two grid sites are
affected. As described below, movement is simulated in time O(n2). Hence a single step is
simulated in time O(n2).

Due to its non-local nature, the movement rule is the most complicated rule type to
simulate. Algorithm 4.1 below calculates the moveable set for a given movement rule in
time O(n). We may have to try this algorithm < n times before we can find a non-empty
movable set and can apply a movement rule, or decide that there is no applicable movement
rule. Applying a rule simply involves translating < n monomers by unit distance, which
can be done in O(n) time. Hence movement can be simulated in O(n2) time. Agitation is
simulated similarly.

4.2 Computing the movable set

We describe a greedy algorithm for computing the movable set M(C,A,B,~v) of monomers
for a movement rule where C is a configuration, A is an arm monomer, B is a base monomer
and ~v ∈ D the unit vector describing the translation of A. The algorithm takes time linear
in the number of monomers. Figure 3 shows two examples of computing the movable set.

Algorithm 4.1 Compute movable set M(C,A,B,~v).

• Step 1. Let M← {A}, F ← {A}, B ← {}.

• Step 2. Compute the blocking set B for the frontier set F along ~v, as follows.
For each monomer X ∈ F , do:
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1. If ~p(X) + ~v is occupied by Y /∈M, then B = B ∪ {Y };
2. If X is bonded to Y /∈M, and if translating X by ~v without translating Y would

disrupt the bond between X and Y , then B = B ∪ {Y }; (Ignore the special case
where X = A, Y = B).

• Step 3. Inspect the blocking set:

1. If B ∈ B, return {};
2. If B = {}, return M;

3. Otherwise, let M←M∪B, F ← B, B ← {}, and go to Step 2.

Lemma 4.2 Algorithm 4.1 identifies the movable set M(C,A,B,~v) in time O(n), where
n is the number of monomers in C.

Proof: To argue that the algorithm identifies the movable set we consider two cases: the
algorithm completes with (1) a non-empty set, and (2) an empty set.

In Case (1) when the algorithm completes with a non-empty set M, we only need to
prove the following claims: (1.1) M contains A but not B, (1.2) M can move unit distance
along ~v without causing monomer collision nor bond disruption, and (1.3)M is the minimal
set that satisfies (1.1) and (1.2).

Claim (1.1) follows directly from step 1 and step 3.1.
To prove Claim (1.2), assume, for contradiction, that there exists a monomer Y /∈M

that blocks a monomer X ∈M. Therefore, when X gets first incorporated intoM, Y must
be incorporated into M in the next round of execution of step 2. This contradicts Y /∈M.
Therefore, Claim (1.2) must be true.

To prove Claim (1.3), assume, for contradiction, that there exists a set C ⊂ M, A ∈ C
such that C can move by ~v. The first monomer in M \ C that gets incorporated in M
must block some monomer in C, which contradicts that C can move a unit distance along ~v.
Therefore, Claim (1.3) holds.

In Case (2), we know from Claim (1.3) that any movable set that contains A must
contain every monomer in M and thus contain B. Therefore, the movable set must be
empty. 2

We note that the nondeterministic choice of which monomer is the arm and which is
the base can make a difference in the resulting configuration: for example switching the
arm and base monomers in Figure 3a will induce a different movable set. In this paper we
do not exploit such asymmetric nondeterministic choices.

5 Efficient growth of simple shapes: lines and squares

In this section, we show how to efficiently construct lines and squares in time and number
of monomer types logarithmic in shape size. We give a fast (logarithmic time) method to
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Figure 9: Building a line of length n ∈ N by decomposing into O(log n) lines whose lengths are
distinct powers of 2.

synchronize a line of monomers: the procedure detects in logarithmic time in line length
whether all monomers in the line are in the same state. We also give a Chernoff bound
lemma that aids in the time-analysis of these and other systems.

5.1 Line

Theorem 5.1 A line of monomers of length n ∈ N can be uniquely produced in expected
time O(log n) and with O(log n) states.

Proof: We first describe the construction, then prove correctness and conclude with a time
analysis.

Description: To build a line of length n, from the start monomer s.n, we first (se-
quentially) generate a short line of p = O(log n) monomers with respective states K =
{k1, k2, . . . , kp}, where

∑
k∈K 2k = n. Figure 9 illustrates this first step. Then, each

monomer with state k ∈ K efficiently builds a line of length 2k as described below.
Figure 10 gives an overview of the main construction, as well as many of the rules. The

idea is to quickly build a line of length 2k, by having the start monomer, s.k, create 2
monomers (one of which is in state k − 1), which in turn create 4 monomers (2 of which
are in state k − 2), and so on until there are 2k monomers with state 0. An overview
of a possible trajectory of the system is given in Figure 10a3. However, as the model is
asynchronous, most trajectories are not of this simple form.

The construction can be described using the two subroutines shown in Figure 10a2.
Subroutine (1) consists of a single rule that is applied only once, to the seed monomer.
Subroutine (2) consists of k−1 sets of rules, one for each x where k > x > 0. A schematic of
one of these k− 1 rule sets is given in Figure 10b, with an example execution of Subroutines
(1) and (2) in Figure 10c.

Subroutine (2) begins with a single pair of monomers with states x, 0 and ends with four
monomers in states x−1, 0, x−1, 0. Monomers are shown as left (purple), right (blue) pairs
to aid readability. The rules for Subroutine (2) are given in Figure 10b and an example
can be seen in Figure 10c. The subroutine works as follows. Each monomer on the line
has a left/right component to its state: left is colored purple, right is colored blue. The
initial xleft, 0right monomers send themselves to state x− 1left, 0right while inserting two new
monomers to give the pattern x− 1left, 0right, x− 1left, 0right, as indicated in Subroutine (2).
To achieve this, the initial pair of monomers create a “bridge” of 2 monomers on top, and
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Figure 10: Construction that builds a length 2k line in expected time O(k). (a) Overview: 1
monomer in state x ∈ N creates 2 in state x− 1, and this happens independently in parallel along
the entire line as it is growing. The blue/purple colors are for readability purposes only. (b) Rules
for subroutines (1) & (2), for all x where k > x > 0. (c) Example execution of 13 steps, starting
with a left-right pair of monomers. The “stick and dot” illustrations emphasize bond structure,
representing bonds and monomers respectively. (d) Example configuration, in stick and dot notation,
that emphasizes parallel asynchronous rule applications. Each gray box shows the application of a
subroutine.
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by using movement and appearance rules two new monomers are inserted. The bridge
monomers are then deleted and we are left with four monomers. Throughout execution, all
monomers are connected by rigid bonds so the entire structure is stable. Subroutine (2)
completes in constant expected time 13.

Subroutine (2) has the following properties: (i) during the application of its rules to
an initial pair of monomers xleft, 0right it does not interact with any monomers outside
of this pair, and (ii) a left-right pair creates two adjacent left-right pairs. Intuitively,
these properties imply that along a partially formed line, multiple subroutines can execute
asynchronously and in parallel, on disjoint left-right pairs, without interfering with each
other.

Correctness: We argue by induction that the line completes with 2k monomers in state
0. The initial rule (Subroutine (1) in Figure 10a2) creates a left-right pair of monomers
k− 1left, 0right; the base case. For the inductive case, consider an arbitrary, even length, line
of monomers `j where all monomers are arranged in left-right pairs of the form xleft, 0right,
where either x ∈ N. For any left-right pairs of the form 0left, 0right, no rules are applicable
(they have reached their final state). For all other left-right pairs xleft, 0right Subroutine
(2) is applicable. Choose any such left-right pair, and consider the new line `j+1 created
after applying Subroutine (2). The new line `j+1 is identical to `j except that our chosen
pair xleft, 0right has been replaced by x − 1left, 0right, x − 1left, 0right. Line `j+1 shares the
following property with line `j : all monomers are in left-right pairs. Hence, except for
(already completed) 0left, 0right pairs, Subroutine (2) is applicable to every left-right pair
of `j+1, and so by induction we maintain the property that rules can be correctly applied.
Furthermore, application of Subroutine (2) leaves one 0 state untouched, creates a new 0
state, and creates two new x− 1 states. Hence, eventually we get a line where all states are
0 and no rules are applicable. The fact that the line grown from the monomer with state
s.k has length 2k follows from a straightforward counting argument.

Time analysis: Consider any pair of adjacent monomers 0left, 0right in a final line of
length 2k. The number of rule applications from the start monomer s.k to this pair is k (i.e.
using Figure 10a2, apply Subroutine (2) k times to get this pair). Given that these k rule
applications are applied independently (without interference from other rules that are acting
on other monomers on the line) and in sequence the expected time to generate our chosen
pair is O(k). There are 2k−1 of these 0left, 0right pairs in a final line of length 2k, giving an
O(k log 2k−1) = O(k2) bound on the expected time for the line to finish. In a line of length
n ∈ N we have O(log n) lines, each of length a power of 2, being generated in parallel (using
the technique in Figure 9), giving an expected time of O(log2 n log logn) for the length n
line to complete. This analysis can be improved using Chernoff bounds. Specifically, in
Lemma 5.2 we choose m = n/2 and a1, a2, . . . , am to be the n/2 rule applications that
generate the n/2 pairs of 0left, 0right monomers in the final configuration. Each ai requires
k ≤ 2 log2 n insertions to happen before it. Therefore, the expected time for the line to
finish is O(k) = O(log n).
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Number of states: Subroutine (1) has 1 rule. Subroutine (2) has O(1) states for each
x ∈ 1, . . . , k − 1, hence the total number of states is O(k). 2

Lemma 5.2 In an assembly system, if there are m rule applications a1, a2, . . . , am that
must happen, and

1. the desired configuration is reached as soon as all m rule applications happen,

2. for any specific rule application ai among those m rule applications, there exist at
most k rule applications r1, r2, . . . , rk such that ai = rk and for all j, rj can be
applied directly after r1, r2, . . . , rj−1 have been applied, regardless of whether other
rule applications have happened or not,

3. m ≤ ck for some constant c,

then the expected time to reach the desired configuration is O(k).

Proof: From the assumptions, the time Ti at which the rule application ai happens is
upper bounded by the sum of k mutually independent exponential variables, each with
mean 1 for every k. Using Chernoff bounds for exponential variables [50], it follows that

Prob[Ti > k(1 + δ)] ≤
(1 + δ

eδ
)k
.

Let T be the time to first reach the desired configuration. From the union bound, we know
that

Prob[T > k(1 + δ)] ≤ m
(1 + δ

eδ
)k ≤ (c(1 + δ)

eδ
)k ≤ cke− kδ2 , for all δ ≥ 3.

Therefore, the expected time is E[T ] = O(k). 2

For some constructions it is useful to have a procedure to efficiently (in time and states
logarithmic in n) detect when a large number (n) of monomers are in a certain state. Here
we give such a procedure. Specifically, we show that after growing a line, we can use a fast
signaling mechanism to synchronize the states of all the monomers in the completed line.

Theorem 5.3 (Synchronized line) In time O(log n), with O(log n) states, a line of
length n ∈ N can be uniquely produced in such a way that each monomer switches to a
prescribed final state, but only after all insertions on the line have finished.

Proof: The basic idea is to build a synchronization row of monomers below the line. This
row is grown only in regions of the line that have finished growth (are in state 0), and takes
time O(log n) time to grow. The bond structure of the synchronization row is such that
upon the completion of the entire line, a relative shift of the synchronization row to the line
occurs (in O(1) time), informing the line monomers to switch to a prescribed final state.
Finally, the synchronization row is deleted, in O(log n) time.
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Figure 11: Synchronization mechanism for Theorem 5.3 that quickly, in O(log n) expected time,
sends a signal to n monomers in a line. Stick and dot notation is used to emphasize the bond
structure throughout. A single movement, or shift, between configurations (7) and (8) sends the
signal to all monomers. The structure maintains stability throughout execution.

Figure 11 describes the synchronization mechanism. Starting from a seed monomer we
grow a line (1), as each monomer on the line reaches state 0 (and so has finished inserting) it
grows a synchronization monomer (in black) below it (2), joined to the line with a rigid bond.
In the following we want to always ensure that the entire structure is stable. Neighboring
synchronization monomers form horizontal rigid bonds (3). Any synchronization monomer
that is joined with its two horizontal neighbors changes its bond to the line from rigid
to flexible (the rightmost monomer is a special case, it changes to flexible immediately
upon bonding with a horizontal neighbor). According to this rule we eventually get to
configuration (7) where the entire synchronization row is bonded to the backbone row by
flexible bonds, except for the leftmost pair. At this time, the leftmost pair is, for the first
time, able to execute a movement rule (8) which shifts the synchronization row to the right,
relative to the backbone row. Backbone monomers can detect this shift.
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From here on the aim is to delete the synchronization row, while maintaining the property
of stability. This is achieved in a manner inversely analogous to before: synchronization
monomers create rigid bonds with the backbone, then delete their bonds to their horizontal
neighbors only when the neighbors have formed vertical rigid bonds.

From Theorem 5.1 the expected time to grow the unsynchronized line, and to then
grow the additional synchronization row is O(log n) (the addition of the synchronization
row requires O(1) for each monomer in the unsynchronized line). The movement rule
that underlies the synchronization then takes expected time O(1), and a further O(log n)
expected time is required to delete the length n synchronization row. the number of states
is dominated by the O(log n) states to build a line (Theorem 5.1), as the synchronization
mechanism itself can be executed using O(1) states (Figure 11). 2

5.2 Square

Square building is a common benchmark problem in self-assembly.

Seed (1) Backbone assembly (2) Expansion (3) Growth (4) Contraction (5) Bonding

Figure 12: Building a square in O(log n) time, using O(log n) states.

Theorem 5.4 An n× n square can be constructed in time O(log n) using O(log n) states.

Proof: Figure 12 contains an overview. Using the construction in Theorem 5.3, we first
assemble a horizontal backbone line of length n. When a given monomer pair on the line
finishes insertion (i.e. reach states 0, 0), the line then expands by a factor of 3 at that
location. Every third monomer in the expanded backbone grows a vertical line of length n,
the previous expansion ensures that each vertical line has sufficient space to grow. Each
vertical line synchronizes upon completion. This synchronization signals to the backbone
line to contract by factor of 3, essentially bringing all n vertical lines into contact. Adjacent
vertical lines form rigid bonds, so that the final shape is fully connected.

To analyze the expected time to completion we first consider the expected time for
the n vertical rows to be a situation where all synchronization rows have grown and they
are about to apply the synchronization steps. Each synchronization monomer can grow
independently of all others, and depends only on ≤ 4dlog2 ne prior insertion events to
happen. By setting m = n2 − n in Lemma 5.2 and k = O(log n) the expected time is
O(log n). The synchronizations then apply in expected time O(log n), as do the final folding
and bonding steps. The number of states to build and synchronize each line is O(log n), a
constant number of other states are used in the construction. 2
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6 Computable shapes

Let |n| = dlog2 ne be the length of binary string encoding n ∈ N.
Theorem 6.1 An arbitrary connected computable 2D shape of size ≤

√
n ×
√
n can be

constructed in expected time O(log2 n+ t(|n|)) using O(s+ log n) states. Here, t(|n|) is the
time required for a program-size s Turing machine to compute, given the index of a pixel n,
whether the pixel is present in the shape.

The remainder of this section contains the proof.

6.1 Construction overview

Figure 13 gives an overview of the construction. We first assemble a binary counter that
writes out the n binary numbers {0, 1 . . . , n − 1}, and where each row of the counter
represents a pixel location in the

√
n×
√
n square that contains the final shape. The counter

completes in expected time O(log2 n). The counter has an additional backbone column of
monomers of length n. After the counter is complete, each row of the counter acts as a finite
Turing machine tape: the binary string on the tape represents an input i ∈ {0, . . . n− 1} to
the Turing machine. For each such i, there is a monomer that encodes the Turing program
and acts as a tape head. If the head needs to increase the length of the tape, new monomers
are created beyond the end of the counter row as needed. Eventually the simulated Turing
machine finishes its computation on input i, and the head transmits the yes/no answer to a
single backbone monomer. All Turing machines complete their computation in expected
time O(t(|n|)), where t(|n|) is the worst case time for a single Turing machine to finish
on an input of length |n| = O(log n). The Turing machine head monomers then cause the
deletion of the counter rows. A synchronization on the backbone occurs after all backbone
monomers encode either yes or no. The entire backbone then “folds” into a square, using a
number of parallel “arm rotation” movements. Folding runs in expected time O(log2 n).
After folding, the “no” pixels (monomers) are deleted from the shape in a process called
“carving”, which happens in O(1) expected time. After carving is complete we are left with
the desired connected shape, all in expected time O(log2 n+ t(|n|)) and using O(s+ log n)
states.

6.2 Binary counter

Figure 14 gives an overview of a binary counter that efficiently writes out the binary
strings that represent 0 to n− 1 ∈ N in O(log2 n) time, and O(log n) states. The counter
construction builds upon the line construction in Theorem 5.1 (and Figure 10). The
essential idea is to build a line in one direction while simultaneously building counter rows
in an orthogonal direction. The counter begins with a single seed monomer as shown in
Figure 14(0) and ends with a configuration of the form shown in Figure 14(8), growing in
an unsynchronized manner.
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Figure 13: Construction of an arbitrary connected computable shape.
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Figure 14(1)–(6) illustrates the construction by making the (unlikely, but valid) as-
sumption that at configuration (1) we have created a counter that has already counted
the set {0, 1, 2, 3}, and then gives a number configurations along a trajectory to compute
the set {0, 1, . . . , 8}. (Note that the system is asynchronous so very few trajectories are of
this nice form). A line is efficiently grown using the technique in Theorem 5.1, but where
the 0 monomers from the line are denoted with a monomer with no state name in the
counter (to simplify the presentation). Starting from configuration (1), insertion events
independently take place across the entire line. Each counter row in (1) is separated by
unit distance, which enables multiple insertion routines to act independently (each uses
a pair of monomers to form “bridge” monomers b.∗, similar to Figure 10). Insertion of a
pair of monomers triggers copying of a counter row, as seen in configuration (4). While a
row is being copied, a 0 monomer is appended to one copy and a 1 monomer is appended
to another copy. Insertion of two monomers and the growth of the new counter row takes
O(log n) expected time: this comes from the fact that insertion works in constant time,
and that copying of the O(log n) monomers takes O(log n) expected time. After copying
and generation of the new 0 or 1 monomers is complete, a signal is sent to the line. The
line can then continue the insertion process. Growing a line takes expected time O(log n),
but we’ve replaced each O(1) time insertion event with an expected time O(log n) copying
process, hence the overall expected time is O(log2 n).

From Theorem 5.1, the number of states to build the backbone line is O(log n), a further
O(1) states can be used to carry out counter row growth and copying.

Correctness for the counter essentially follows from that of the line: We can consider
that each insertion on the line is paused while counter row copying completes. After the
copying the line monomers can continue their insertions, and eventually will complete. The
copying and bit-flipping mechanism guarantees that the rows of the counter encode the
correct bit sequences.

6.2.1 Counter synchronization

After the counter is complete, the backbone synchronizes. More precisely, after the backbone
has grown to its full length n, and all counter rows have finished their final copying (i.e.
configuration (8) in Figure 14 is reached), the synchronization routine from Theorem 5.1 is
executed to inform all backbone monomers that the counter is complete, in expected time
O(log n).

6.3 Turing machine computations

The next part of the construction involves simulating n2 Turing machines (in parallel) in
order to determine which of the n2 pixels in the n× n canvas are in the desired shape, and
which are not.

We begin with the synchronized counter described in the previous section. After
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Figure 14: A binary counter that efficiently writes out the binary strings that represent all integers
from 0 to n − 1, in O(log2 n) time and O(log n) states. The counter grows in an unsynchronized
fashion, some example configurations are shown in (0)–(8), although many other trajectories are
possible. A backbone line is efficiently grown using the technique in Theorem 5.1. The configuration
shown in (1) represents a count of 0 to 3. In this example the backbone then expands (6) by a factor
of 2, with each expansion a row of the counter is copied, with a 0 appended to one copy and a 1
appended to another copy (4). To save space the grid is rotated anti-clockwise.

synchronization the counter changes its bond structure so that it is of that shown in
Figure 13(2). Each row can do this independently, by a straightforward application of
Lemma 5.2, this takes O(log n) time.

The counter then expands by a factor of 2 (in the ~y direction), and each row grows a
single “head” monomer on top as shown in Figure 13(3). The “head” monomer acts as a
Turing machine tape head, as in Figure 8, and treats the counter row as a finite Turing
machine tape. The input to the Turing machine is the binary number i ∈ {0, 1, . . . , n2 − 1}
stored on the tape. The Turing machine program executed by the head is of size s and is
stored explicitly in the rules that are applicable to the head monomer, this gives the O(s)
term of monomer states in the statement of Theorem 6.1. If the Turing machine requires
more than log2 n tape space (the length of the counter row), then new monomers are
grown to the left as required (we assume that the turing machine runs on a single, one-way
infinite tape). When the Turing machine enters an accept or reject state, the head moves
to the right, deleting each tape monomer along the way, and communicates this bit to the
backbone row, as shown in Figure 13(5). Each tape head then deletes itself, and n2 backbone
monomers undergo a synchronization when all tape head monomers are deleted. We are
left with n2 monomers as shown in Figure 13(6), each of which stores a bit representing
whether or not it represents a pixel in the final desired shape.

We have n2 Turing machines to simulate in parallel. In the folding step below we modify
the Turing machine program so each machine first computes a simple inequality, which
causes each simulated Turing machine to run for time t(n) = Ω(log2 n). Then, by setting
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m = n2, and k = t(|n|) in Lemma 5.2, all Turing machines finish their computations in
expected time O(t(|n|)).

6.4 Folding

In this part of the construction the line of n2 monomers folds itself into an n× n square.
The folding process is outlined in Figure 13(7)–(9), and is accomplished as follows.

In the previous section, we used a Turing machine computation on the ith row of a
counter was to decide whether or not pixel i ∈ {0, 1, . . . n2} is in the final shape. We
use these same Turing machines to carry out an additional computation. We can see in
Figure 13(6)–(9) that the line of monomers is divided into alternating segments, each of
length n, that fold in one of two ways. In particular, the monomers highlighted in green
each carry out a sequence of 3 clockwise rotations with respect to their left neighbor. This
can be done using rules similar to the single rule in the arm rotation example shown in
Figure 7. For each monomer to know whether it should rotate (green) or not (blue), we have
the Turing machine check if i satisfies the inequality (2j − 1)n ≤ i < 2jn, and if so this bit
is communicated to the ith backbone monomer (along with the yes/no pixel information).
Then after the synchronization described in the previous section, monomers with indices i
that satisfy the inequality rotate as shown in Figure 13(6)–(9). A synchronization takes place
for each rotating arm, after the second rotation of each monomer, as shown in Figure 13(8).

The expected time for the Turing machine monomer head to compute the inequality is
Ω(log n), as it requires reading the entire input (given our orientation of binary strings),
and this is already accounted for in Section 6.3 above. The expected time to rotate an arm
(twice) so that it is in the position shown in Figure 13(8) is O(log n), for each individual arm.
By letting m = n2/2 and k = log n in Lemma 5.2, the expected time for all n arms to rotate
to the configuration shown in Figure 13(8) is O(log n). Then we apply n synchronization
steps, each of which runs in expected time O(log n), giving an expected time of O(log2 n).
As with the first rotations, the final rotations occur in expected time O(log n), to give a
total expected time of O(log2 n) for the folding step. The number of states used for folding
is O(1).

6.5 Bonding and carving

The goal here is to delete those pixels that should not be in the final stage, and to do this
in a way such that the shape does not become unintentionally disconnected (otherwise if
we delete too early, e.g. before all “arms” have folded or all bonds have formed, part of the
shape could become disconnected). In Figure 13 “yes” pixels belonging to the final shape
are highlighted in gray, and “no” pixels that should be deleted are in white. After folding,
i.e. when green and blue outlined monomers begin to come into horizontal (~x) contact, as
shown in Figure 13(9), these monomers bond to all of their neighbors. Then the following
distributed carving algorithm is executed, a “no” pixel is deleted if and only if either (a) it
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Figure 15: Construction of an n× n pattern in expected time polylogarithmic in n, without growing
outside the pattern borders. No long range communication (synchronization) is used and so the
computation happens in a completely asynchronous and distributed fashion. Final configuration
adapted from M. C. Escher, Sky & Water I, woodcut, 1938.

is bonded to its 6 neighbors and they have the maximum number of bonds to each other
(b) all neighbors that have not been deleted already are bonded to it and to each other.

This procedure prevents the shape from becoming disconnected by the following argu-
ment. Any two adjacent regions, one containing as yet unbonded monomers, and the other
containing deleted monomers are bordered by a connected path of rigid bonds. The only
way for monomers on this rigid path to be deleted are if neighboring unbonded monomers
become bonded, thereby maintaining the connectedness of the boundary and making more
monomers available for safe deletion.

Assuming folding has completed, bonding is a local operation that for each individual
monomer runs in time O(1). The same is true for carving. The expected time for all
monomers to bonding and carving is O(log n).

This completes the construction for Theorem 6.1.

7 Efficient computation of patterns

Let |n| = dlog2 ne.
Theorem 7.1 An arbitrary finite computable 2D pattern of size ≤ n×n, where n = 2p, p ∈
N, with pixels whose color is computable on a polynomial time O(log` n) (inputs are of
length O(log n)), linear space O(|n|), program-size s Turing machine, can be constructed in
expected time O(log`+1 n), with O(s+ log n) monomer states and without growing outside
the pattern borders. Moreover, this can be done without explicitly using synchronization.

The construction is described in the remainder of this section. Figure 15 gives an
overview. For simplicity, the figure is drawn on a square grid. It should be noted that the
construction occurs in a completely asynchronous distributed fashion. For ease of exposition,
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we first describe a construction where n is a double power of 2, i.e. n = 22
p

for p ∈ N, and
then in Section 7.3 we describe how to modify it for n = 2p.
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Figure 16: Sketch of a procedure to efficiently reconfigure a counter into a straight line.

7.1 Vertical and horizontal binary counters

The construction begins by growing a counter, shown in Figure 15(1), that contains all
binary numbers from 1 to n/ log2 n. The counter is described in Section 6.2, and illustrated
in Figure 14. The only difference here is that we omit the final synchronization steps from
Section 6.2. Notice that such a counter contains exactly n monomers; i.e. n/ log2 n rows
each of length log2(n/ log2 n). The counter rows then expand so that they are of length
log2 n (we omit the details, but this is easy to achieve with the number of states permitted
in the theorem statement). As counter rows finish, we want to rotate them so that they
stand in a column as shown in Figure 15(2), although due to the asynchronous nature of
the computation they will most likely not do this as shown. As can be seen in Figure 14,
the counter is stable throughout its entire construction.

Figure 16 shows how this is accomplished. After a counter row completes, the backbone
monomer that is attached to that counter row expands vertically by log2 n monomers. Then
the counter row rotates from a horizontal, to a vertical position as shown in Figure 16.
Finally the binary string stored in the counter row is copied to the expanded backbone
monomers, and the counter row deletes itself. All of this is carried out while maintaining
stability (Definition 2.3). By the time all rows rotate we have a backbone of height n.

After row i rotates to the vertical orientation, it immediately initiates growth of a second,
horizontal, counter which counts while copying the binary number i. Note that i can not
be stored in single monomer (as this would require Ω(n) states for the entire construction),
instead the entire strip of log2 n monomers encoding i is copied as the second counter grows.
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Figure 17: A strip of monomers of length log2 n. (1) The entire strip acts as an input tape and work
tape for a Turing machine that uses log2 n, whose head is denote in green. (2) After the first Turing
machine has completed its computation the second machine is initialized, and so on until machine
log2 n completes its computation. (4) The output, yes or no, from each machine is denoted as solid
green or white.

A sketch is shown in row i of Figure 15(3). This second counter works as follows. Its
backbone line grows horizontally, starting from the top monomer of the i strip. During
each insertion event, the log2 n monomers that encode i are copied. At the same time
these log2 n monomers are used to encode the values being generated by second counter
(essentially, while copying i we execute the copying and bit flip idea seen in Figure 14 to get
a new value j). By the time row i finishes it contains n vertical strips of log2 n monomers,
and each strip encodes a distinct pair (i, j) where j ∈ {0, 1, . . . n− 1}.

To find the expected time to complete all strips notice that each strip (i, j) can grow
independently from all others, and each strip depends on only O(log2 n) events to happen in
order for that strip to be complete. Hence we can apply Lemma 5.2 by setting m = n2/ log n
(the number of strips), and k = O(log2 n), to get an expected time of O(log2 n) for all strips
to complete.

7.2 Turing machine computations

We will treat each strip (i, j) as a Turing machine tape. After a strip completes, a signal is
sent from the top to the bottom of the strip, successively writing out one of the integers
p ∈ {1, 2, . . . , log2 n} in each of the log2 n monomers. This signal also tells the topmost
monomer that it now encodes a Turing machine tape head, as shown in green in Figure 17(1).
The encoded tape head moves up and down the strip as required. By the theorem hypothesis,
the Turing machine requires at most log2 n space, which is exactly the strip length. These
Turing machine are assumed to takes as input three integers (i, j, p) which provide a unique
coordinate for each monomer in the entire n× n pattern. In time polynomial in its input
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length |n| = log2 n, the first Turing machine decides whether pixel (i, j, 1) is black or white,
communicates this bit to the topmost monomer, and moves on to the second from top
monomer, which has coordinate (i, j, 2). This process continues until all log2 n monomers
in the strip are colored either black or white.

Each Turing machine runs in time O(log` n), which takes expected time O(log` n) to
simulate. We can apply the Chernoff bound in Lemma 5.2 by setting m = n2/ log n (the
number of strips) and k = O(log`+1 n) (the expected time for all log2 n Turing machines
to finish on a single strip) to get an expected running time of O(log`+1 n) for all Turing
machine computations to complete.

The overall time bound for the entire construction is O(log2 n+ log`+1 n) = O(log`+1 n)
since we know ` ≥ 1 (because our Turing machines are required to read their entire input).

7.3 Patterns with diameter a power of 2

The previous construction works for when n is a double power of 2. The following text shows
how to modify the construction so it works for n being a single power of 2, i.e. n = 2p ∈ N.
In this case, the counter that builds Figure 15(1) is modified so that it does not produce
the final (bottom) row with index dn/ log ne. Let k = n − bn/ log nc log n, and observe
that k < log n. Now, the bottoms row has index b = bn/ log nc. Row b triggers growth of
a counter as before, however when each column (of length log2 n) of the counter finishes,
it grows an additional k monomers, each with a unique id i ∈ {1, . . . , k}. This results in
a counter of size n × (k + log n). When all counters complete in the entire construction,
the canvas is of size n× (k + bn/ log nc log n) = n× n. The Turing machine computations
proceed as follows. As each column of the counter in row b completes, the log n Turing
machine computations in that column proceed as before. When they are finished, an
additional k Turing machine computations are triggered, which run one after the other, and
use k + log n workspace in the column (which is more than enough), and the unique IDs of
the k extra monomers in order to decide whether or not each of those k pixels belong in
the pattern. These additional aspects of the construction merely add a constant factor to
the time analysis.

8 Discussion and future work

We have introduced a model of computation called the nubot model, and explored its ability
to construct shapes and patterns. We have shown that the model is capable of efficiently
generating a wide variety of shapes and patterns exponentially quickly. The intention for
our model is to explore the abilities of molecules to compute in ways that are seen in nature
and that we are starting to see in the laboratory. This perspective leaves a lot of room for
future work.

One interesting direction is to explore the algorithmic limits of dynamic structures. In
this paper we have used our active self-assembly model to grow shapes and patterns that
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are ultimately static. One can also consider shapes and patterns that are forever dynamic.
Cellular automata are a well-studied model from this point of view, although they are
incapable of expressing our notion of movement and active self-assembly. What kinds of
dynamic structural systems can, and can not, be modeled by nubots?

One possible objection to our model, on physical grounds, is the lack of any realistic
notion of persistence length (which is also absent from many models of self-assembly). On
the one hand, it is clear that there are natural and artificial structures of high aspect ratio
coupled with high tensile strength or persistence length (hair, actin filaments, microtubules).
On the other hand, ‘high’ does not mean ‘infinite’ ! One could introduce complexity measures
of tensile strength or persistence length and analyze the capabilities of the nubots model
with respect to these resources. The important point here would be to appropriately
define these measures so that they capture what is observed at the molecular scale in the
laboratory.

For the topic of tensile strength, one could take inspiration from cellular migration and
adhesion in developmental biology: nubot monomers could have variable strength bonds
which break if there is enough movement in one direction. For example, bonds could have
strength s ∈ [0, 1] ⊆ R where 0 is not bonded, 1 is fully bonded, and other values are of
intermediate strength. Objects are pulled apart if enough movement rules are applicable
and so that their bond strength, or tensile strength, can not overcome the strength of
movement. What are the classes of systems that can and can not be built under such
constraints? If we have to pay for bond strength, in general, is it possible to place bounds
on this cost in terms of the shapes, patterns or dynamics we wish to model?

As noted in the introduction, the field of reconfigurable robotics considers a wide range
of models that share a number of features with our nubot self-assembly model. In particular,
reconfigurable modular robots with a similar long-range movement primitive to ours can
achieve arbitrary reconfiguration in time logarithmic in shape size [5], and are capable of
linear parallel time reconfiguration with more realistic physical constraints [4]. It remains
as future work to compare such models to ours. What would be particularly interesting
would be to explore the differences in model capabilities that are solely due to the inherent
differences in macro-scale and molecular-scale self-assembly (in molecular systems we are
typically unconcerned with gravity and friction; energy in the form of fuel molecules may
be freely available in the environment; temperature, brownian motion and other forms of
agitation play a major role).

There are also some more technical questions arising from our work. We use a Chernoff
bound in Lemma 5.2 to simplify the time analysis of our constructions. However, many
assembly systems that are expressible in our model do not satisfy the conditions of this
lemma. It would be nice to find other tools, perhaps more general, to aid in the time
analysis of nubots systems. For example, starting from a single monomer, if the longest
sequence of rule applications that can lead to some ‘terminal’ monomer type is k, then is
Õ(k) the expected time for all rules to complete?

The pattern construction in Section 7 terminates with an assembly that is not completely
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connected (however, it is stable and connected). In that construction we intentionally
did not use synchronization over long distances, but by using synchronization it is indeed
possible (and relatively easy) to modify the final pattern so that it is completely connected.
However, given that synchronization has such power, it is interesting to ask what can
be done in its absence. Without using synchronization, or any similar form of rapid
communication over long (> log n) distances, is it possible to deterministically assemble an
n× n completely-connected square in time polylogarithmic in n?

Without the movement rule, the nubot model is a kind of asynchronous and nonde-
terministic cellular automaton. Thus in the absence of movement in our model, cellular
automata are a good starting point to assess its computational complexity (how efficiently
can problems be solved?). However, with movement, it is clear that our model can carry
out certain tasks that cellular automata, or indeed Turing machines, can not (even under
reasonable encodings). What are the upper bounds and lower bounds on the computa-
tional complexity of our model? For example, Section 4 gives a polynomial (in nubots
time plus number of monomers) time algorithm for simulating a nubots trajectory. If
nubots time is merely polylogarithmic in the maximum number of monomer types, then
is it possible to simulate nubots in polylogarithmic time on a parallel computer (e.g. on
polylogarithmic-depth Boolean circuits)?

One could consider variations on the rules. Already it is the case that movement
rules facilitate non-local interactions. One could take this even further, as we now discuss.
Consider a variant on the movement rule where the application of a movement rule r
remotely triggers the application of another movement rule r′. More precisely, let A be
an arm monomer bonded to base monomer B, and let M(C,A,B,~v) 6= {} be the movable
set for the application of rule r to monomers A,B. Also, in the same configuration C,
there is another pair of bonded monomers D,E, with an applicable movement rule r′, and
where D ∈M(C,A,B,~v) and E /∈M(C,A,B,~v), and where r′ translates D by ~v. When
r is applied it triggers the application of r′: i.e. when monomer D moves because of the
remote application of r, both D and E change state as if rule r′ was applied; hence r and
r′ are applied at the same time. We do not consider this kind of remote rule triggering in
this paper, but we mention it here as a way for potential future work to model non-local
interactions that can occur due to movement. This is one possible way to model systems
where interactions occur in a decentralized manner.

The model uses both rigid and flexible bonds. Besides simple examples given early in
the paper, the only construction that uses flexible bonds is synchronization, and it turns
out that one can design a synchronization routine that does not use flexible bonds that
works in the presence of agitation (by building a rigid row immediately below, and parallel
to, the synchronization row—see Figure 11—that stops monomers floating away). What
classes of (perhaps scale-invariant) shapes can be assembled by exploiting flexible bonds
that can not be assembled otherwise?

Finally, since the model is directly inspired by a wide election of natural and artificial
molecular systems, this begs the question: can nubots be implemented at the molecular
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scale in the laboratory?
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