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Secondary structure
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Single stranded DNA/RNA
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Secondary structure Polymer graph representation
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DNA origami

Rothemund. 2006 Nature
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Secondary structure
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Which secondary structure is more favourable?




Energy models, Minimum Free Energy and Partition Function

Single stranded system Multi stranded system of ¢ strands
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Boltzmann weighted sum
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Free energy
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Energy model: Nearest neighbour model

Hairpin loop

Lyngsg and Pedersen 2000

Multibranched loop  Hairpin loop

X
A Internal loop
External base

AG(S) = AG(ly) + AG(L,) + -+ + AG(ly)

AG(S) = Z AG(1)

LES

Dirks et al. 2007

¢ = 3 strands unique strands

AG(S) = Z AG(D) + (c — 1) AG3ssoc
lES

S€E)

min AG(S)

Q: the set of all secondary structures ;




Energy model: Nearest neighbour model (allowing repeated strands)
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Free energy Loop energy Entropic association cost Symmetry penalty

AG(S) = Z AG(l) + (c — 1) * AG?3°¢ + kgT * logR
l€S

Dirks et al. 2007
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c= 4 strands

H
E[- 2 min AG (S)
SEQ

): the set of all connected structures
R: degree of rotational symmetry

Fig. 2.2 Sample secondary structures and polymer graphs for a complex of four indistinguishable
strands. (a) 1-fold (i.e., no) rotational symmetry. (b) 2-fold rotational symmetry. (c)
4-fold rotational symmetry.




Computational complexity of Minimum Free Energy algorithms

Input Type ____ MFE_____

Snge strant
Multiple unique Strands, Bounded (< ¢)

Multiple Strands allowing repeats, Bounded (< ¢)

Multiple Strands, Unbounded

Open problem for = 20 years

O(N*)
O(N*(c— 1)

NP — Complete

N bases, ¢ strands




Why symmetry makes that difference?

Entropy

g
gd



AG

Free energy

/\

Enthalpy Entropy



Solid

Liquid

Increasing Entropy
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S = kglogll

The total number of states of the N magnets is [1 = 2V

S = kgN log 2




Free energy Loop energy Entropic association cost Symmetry penalty

AG(S) = Z AG(l) + (c — 1) * AG?35°¢ + kgT = logR
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Fig. 2.2 Sample secondary structures and polymer graphs for a complex of four indistinguishable
strands. (a) 1-fold (i.e., no) rotational symmetry. (b) 2-fold rotational symmetry. (c)
4-fold rotational symmetry.




Why is this difficult?



Why symmetry makes it difficult?

Input Type M

Single Strand O(N%) } Dynamic
_ _ programming
< e — 1!
Multiple unique Strands, Bounded (< ¢) O(N*(c—1))) algorithms
Multiple Strands, Bounded (< c) ?

N bases, ¢ strands

All of these are dynamic programming algorithms

Subproblems -————— s s—) Big problem
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All of these are dynamic programming algorithms

Subproblems ———) Bjg problem

Local point of view ?

Global property
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Our solution
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Sxand S,
Admissible cut
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Upper bound
Y=< (o (v(m)) — v())
_|_
S, S,ands, N2/16

Asymmetric Admissible cut

Adjusting the backtracking algorithm to
go through energy levels sequentially
S starting from the MFE level.

Symmetric
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Computational complexity of Minimum Free Energy algorithms

Input Type _ MREE

Single Strand O(N%)
Multiple unique Strands, Bounded (< ¢) 0(N4(c — 1Y
Multiple Strands, Bounded (< ¢) O(N4(c — 1)!)

Multiple Strands, Unbounded NP — Complete

N bases, ¢ strands
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