

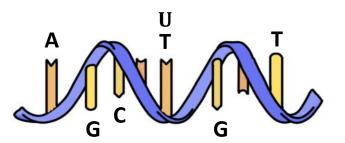
An efficient algorithm to compute the minimum free energy of interacting nucleic acid strands

Ahmed Shalaby

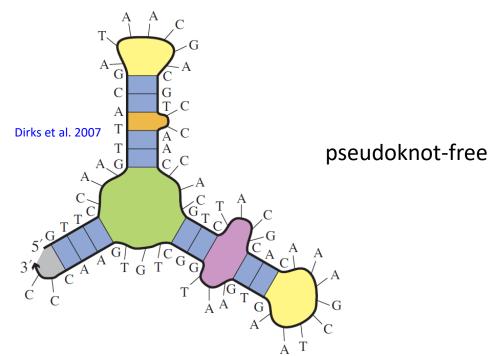
3rd year PhD

Supervisor: Damien Woods

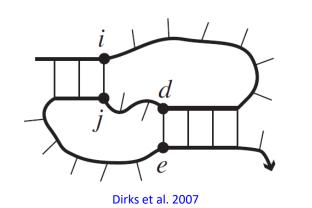
Secondary structure



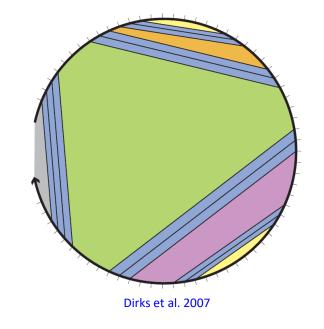
Single stranded **DNA/RNA**



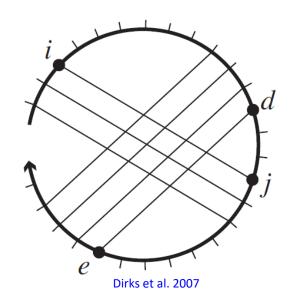
Secondary structure

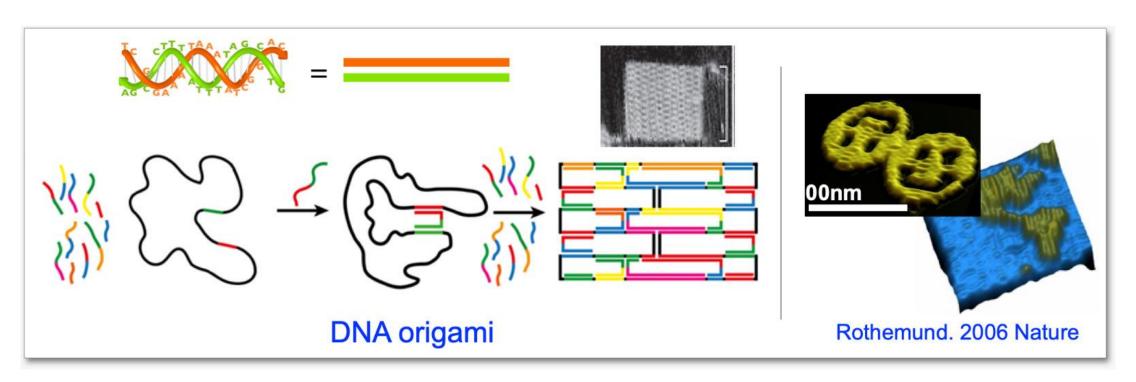


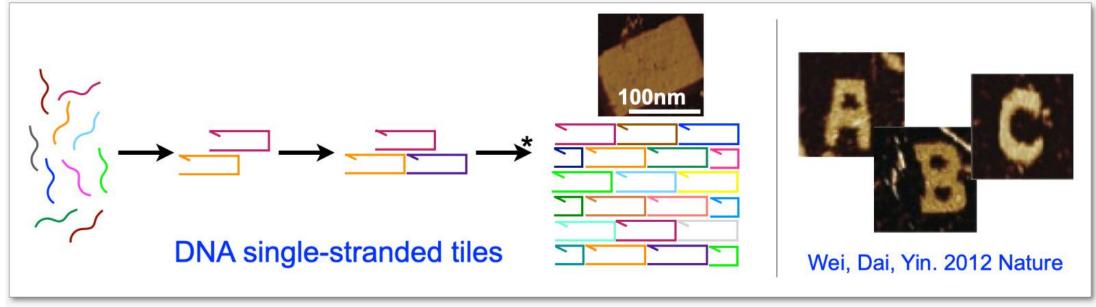
pseudoknotted



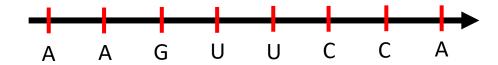
Polymer graph representation

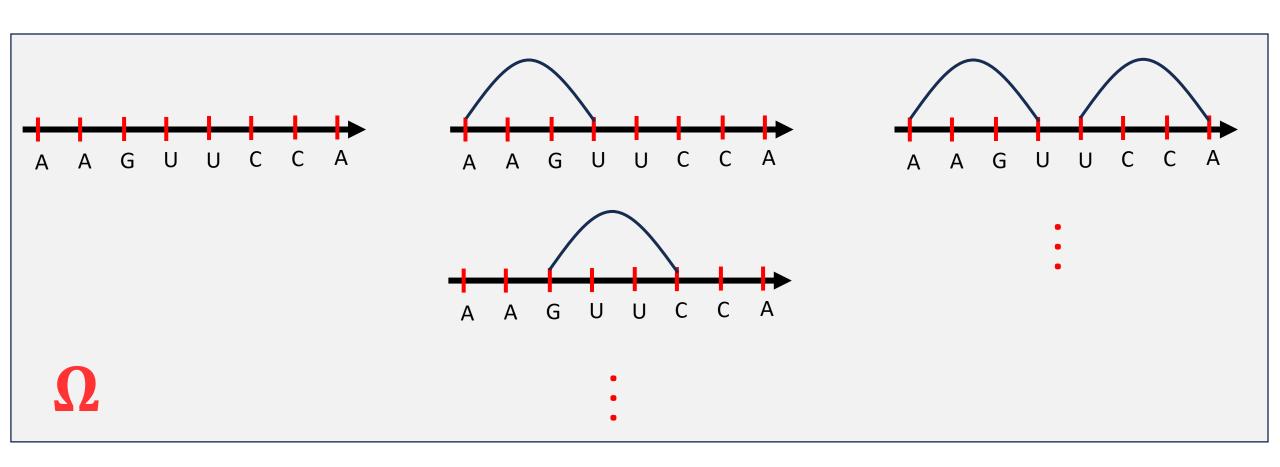






Secondary structure

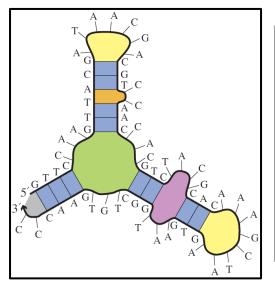


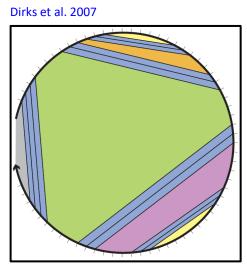


Which secondary structure is more favourable?

Energy models, Minimum Free Energy and Partition Function

Single stranded system



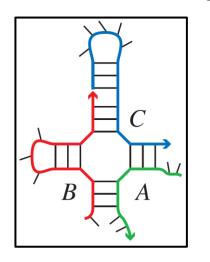


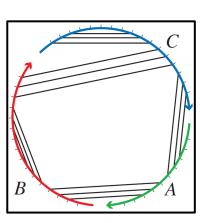
 $\Delta G(S)$

Energy model

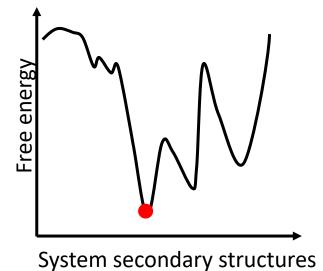
Capture the free energy of secondary structure

Multi stranded system of *c* strands





Dirks et al. 2007



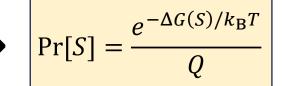
 $MFE = \min_{S \in \Omega} \Delta G(S)$

Minimum Free Energy

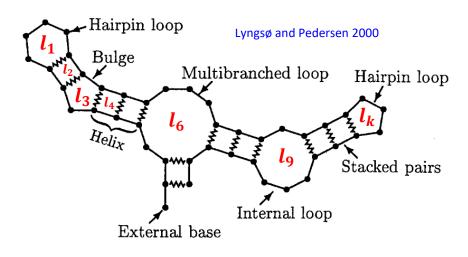
Boltzmann weighted sum

$$Q = \sum_{S \in \Omega} e^{-\Delta G(S)/k_{\rm B}T}$$

Partition Function

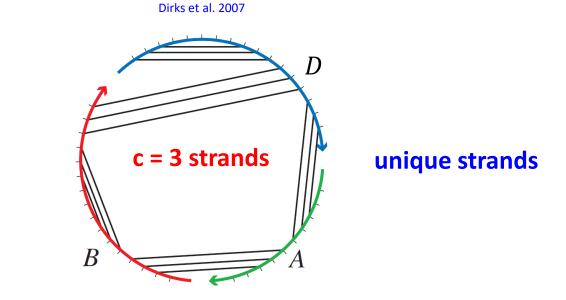


Energy model: Nearest neighbour model



$$\Delta G(S) = \Delta G(l_1) + \Delta G(l_2) + \dots + \Delta G(l_k)$$

$$\Delta G(S) = \sum_{l \in S} \Delta G(l)$$

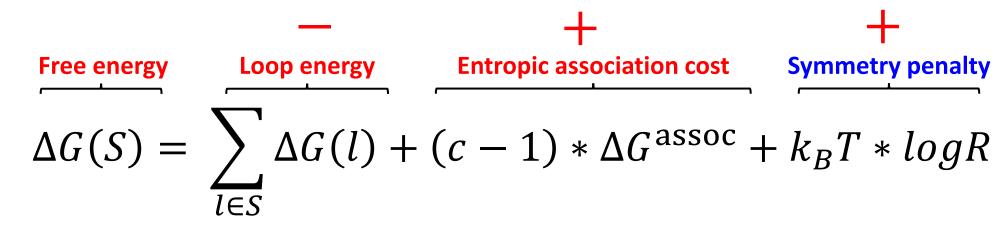


$$\Delta G(S) = \sum_{l \in S} \Delta G(l) + (c - 1) \Delta G^{\text{assoc}}$$

 $\min_{S\in\Omega}\Delta G(S)$

 Ω : the set of all secondary structures

Energy model: Nearest neighbour model (allowing repeated strands)



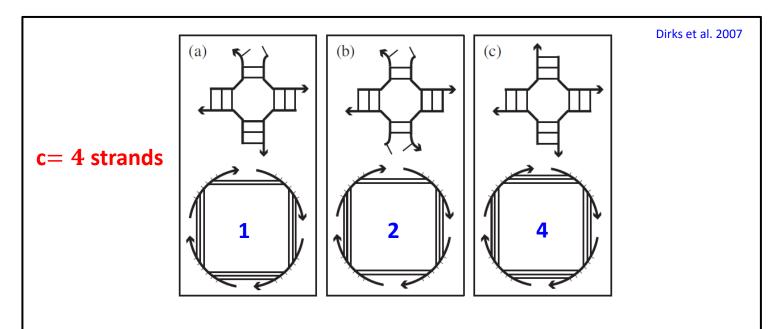


Fig. 2.2 Sample secondary structures and polymer graphs for a complex of four indistinguishable strands. (a) 1-fold (i.e., no) rotational symmetry. (b) 2-fold rotational symmetry. (c) 4-fold rotational symmetry.

 $\min_{S \in \Omega} \Delta G(S)$

 Ω : the set of all <u>connected</u> structures

R: degree of rotational symmetry

Computational complexity of Minimum Free Energy algorithms

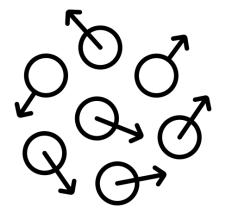
Input Type		MFE
Single Strand	Nussinov et al. 1980	$O(N^4)$
Multiple unique Strands, Bounded ($\leq c$)	Dirkis er al. 2007	$O(N^4(c-1)!)$
Multiple Strands allowing repeats, Bounded ($\leq c$)		?
Multiple Strands, Unbounded	Condon et al. 2021	NP — Complete
		N bases, c strands

Open problem for ≈ 20 years

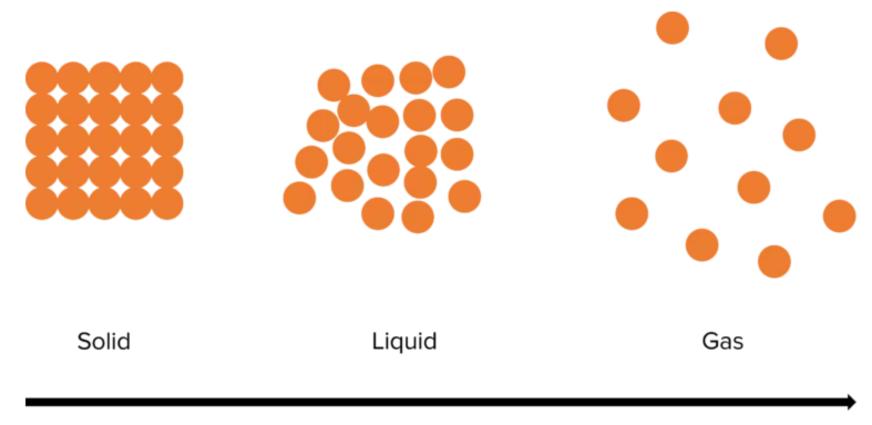
8

Why symmetry makes that difference?

Entropy

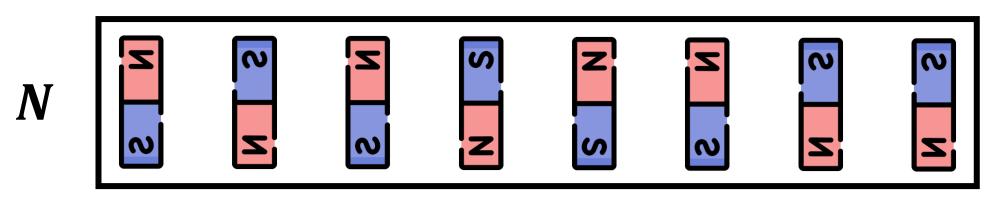


ΔG Free energy **Enthalpy Entropy**

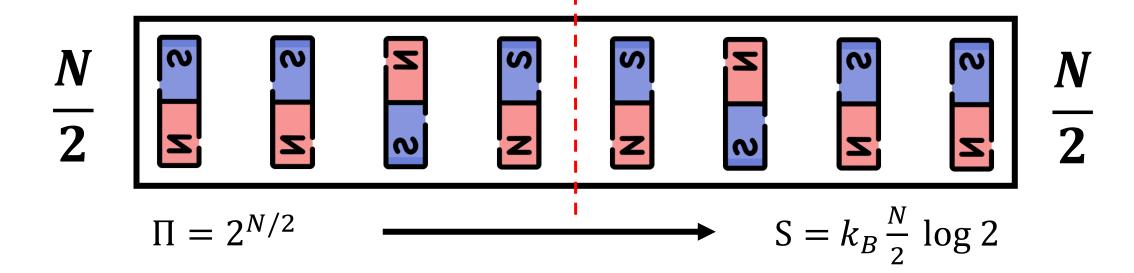


Increasing Entropy

$$S = k_B \log \Pi$$



The total number of states of the N magnets is $\Pi = 2^N$ $S = k_B N \log 2$



$$\Delta G(S) = \sum_{l \in S} \Delta G(l) + (c - 1) * \Delta G^{assoc} + k_B T * log R$$

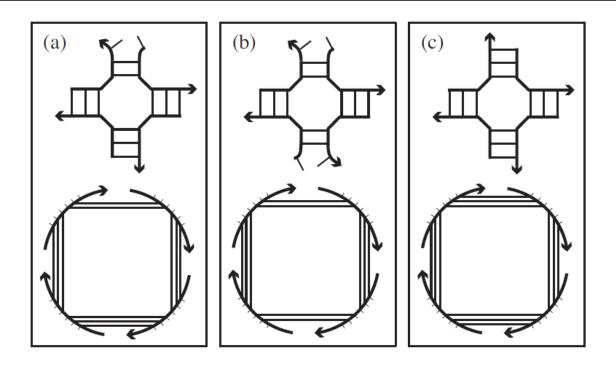


Fig. 2.2 Sample secondary structures and polymer graphs for a complex of four indistinguishable strands. (a) 1-fold (i.e., no) rotational symmetry. (b) 2-fold rotational symmetry. (c) 4-fold rotational symmetry.

Why is this difficult?

Why symmetry makes it difficult?

Input Type	MFE
Single Strand	$O(N^4)$
Multiple unique Strands, Bounded ($\leq c$)	$O(N^4(c-1)!)$
Multiple Strands, Bounded ($\leq c$)	?

Dynamic programming algorithms

N bases, c strands

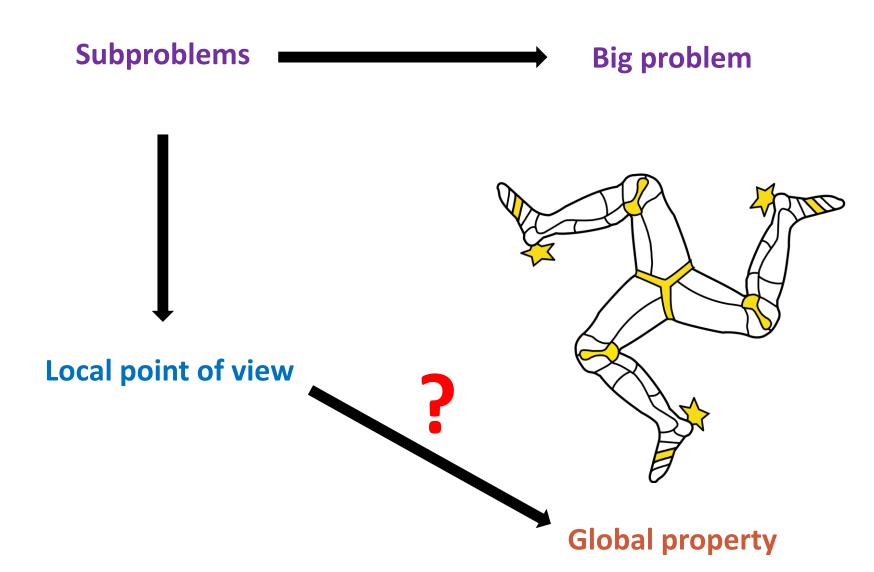
All of these are dynamic programming algorithms

Subproblems Big problem

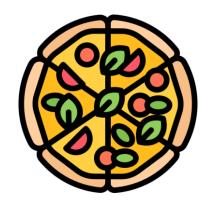
Level	Input Type	MFE
1	Single Strand (Maximum matching)	$O(N^3)$
2	Single Strand (Loop model)	$O(N^3)$
3	$\text{Multiple } \underline{\text{unique}} \text{ Strands, Bounded } (\leq c)$	$O(N^3(c-1)!)$
4	$\text{Multiple Strands, Bounded } (\leq c)$?

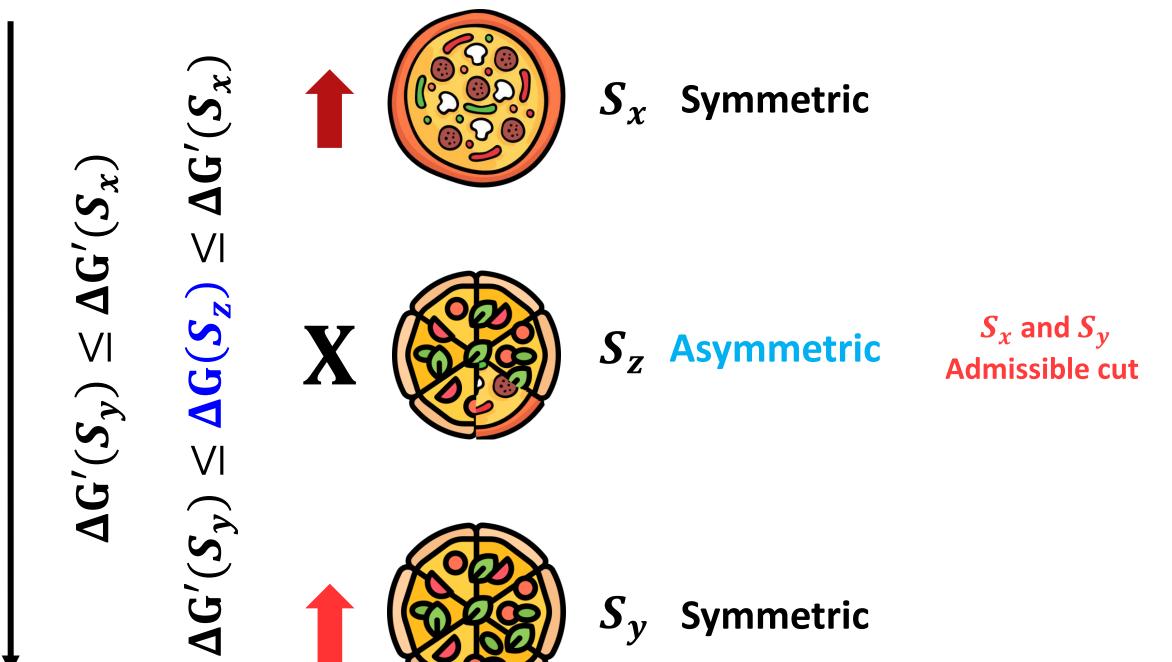
All of these are dynamic programming algorithms

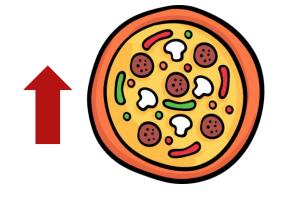
N bases, c strands



Our solution





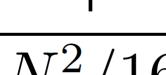


S_x Symmetric

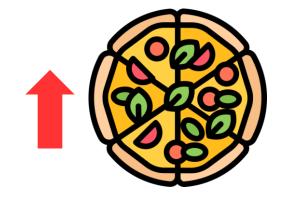
 S_z Asymmetric

 S_x and S_y Admissible cut

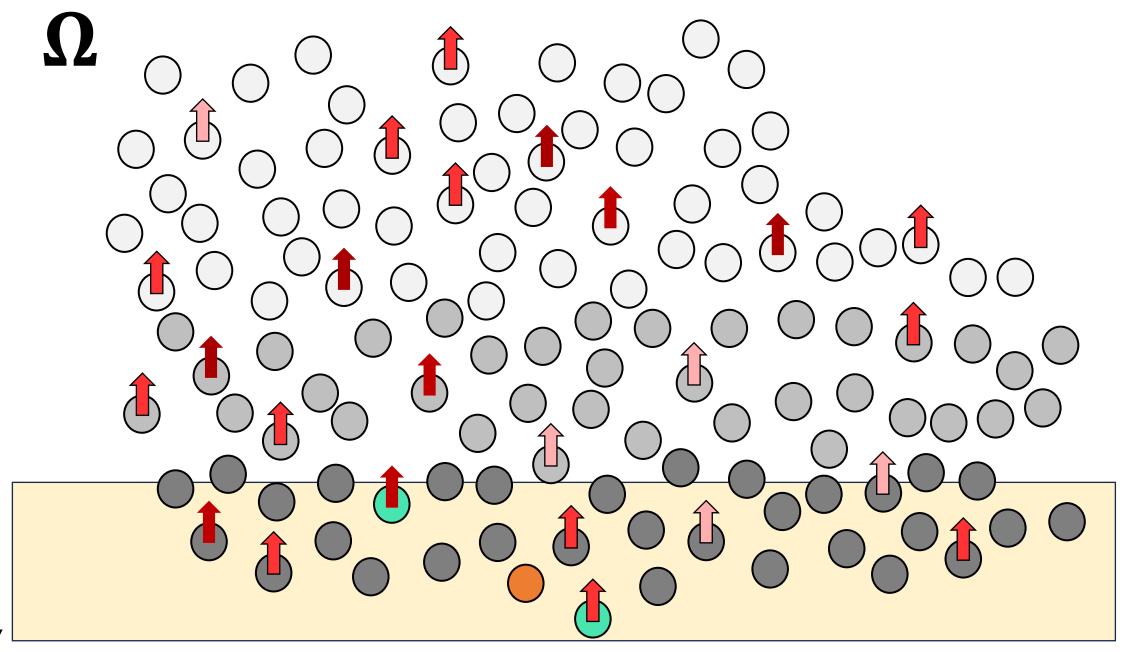
$$\frac{N-c}{v(\pi)}(\sigma(v(\pi))-v(\pi))$$

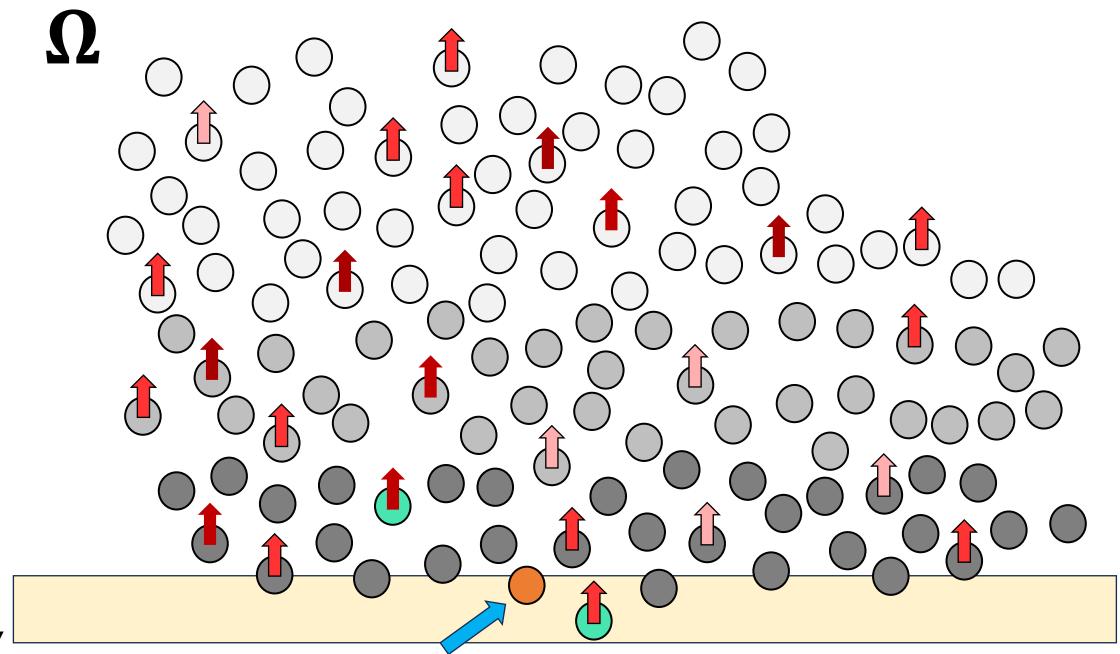


Adjusting the backtracking algorithm to go through energy levels sequentially starting from the MFE level.



 S_y Symmetric



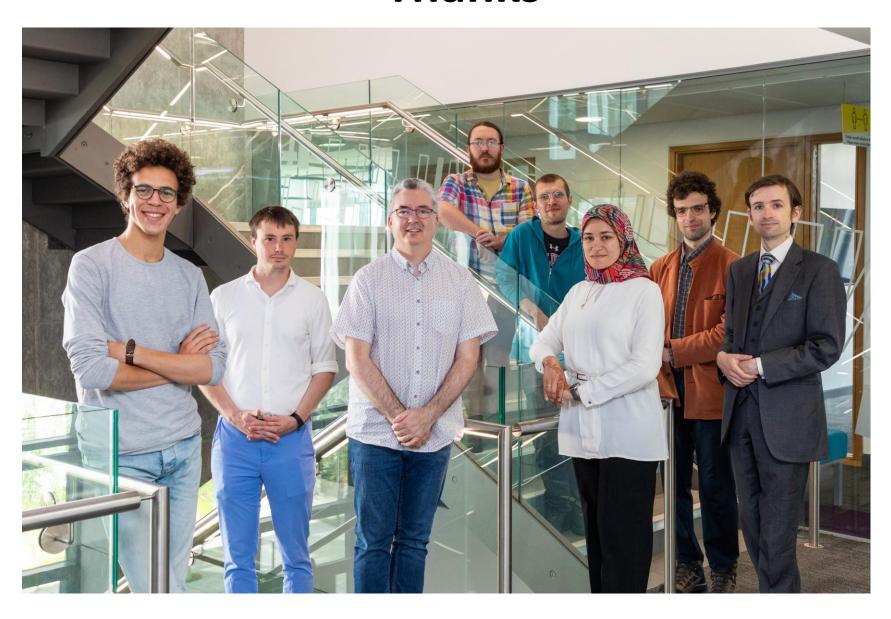


Computational complexity of Minimum Free Energy algorithms

Input Type	MFE
Single Strand	$O(N^4)$
Multiple unique Strands, Bounded ($\leq c$)	$O(N^4(c-1)!)$
Multiple Strands, Bounded (≤ c)	$O(N^4(c-1)!)$
Multiple Strands, Unbounded	NP — Complete

N bases, c strands

Thanks



dna.hamilton.ie/shalaby

We're hiring!

