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Thermodynamically favourable computation
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Typical molecular computers are thermodynamically 
unfavourable (leak, errors, spurious nucleation, etc.)
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Today: Thermodynamically favoured 
computation on our 

Scaffolded DNA Computer
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Wang, Thachuk et al. 2017 

What the system is designed 

to reach! 

What the system thermodynamically 

tends towards 
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B. Key design concepts for thermodynamically favoured computation

A. Scaffolded DNA Computer

Scaffolded DNA Computer: strand-based model
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Scaffolded DNA Computer example: Bit-Copy

Input domain
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Pr[ ] ≫ 

𝑐 

Pr[

GOAL

At equilibrium

𝑐 ∶ 𝑖𝑠 𝑎𝑛𝑜𝑡ℎ𝑒𝑟 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛]

0 0 0 0 0 0

1 1 1 1 1 1

…

Target configuration



Single stranded DNA Secondary structure Polymer graph representation 

Secondary structure

𝐍𝐏 − 𝐇𝐚𝐫𝐝

pseudoknot-free

pseudoknotted 
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Energy models, Minimum Free Energy and Partition Function

Single stranded system

Δ𝐺 𝑆 =  

𝑙∈𝑆

Δ𝐺 𝑙

Free energy Loop energy

Δ𝐺 𝑆 =  

𝑙∈𝑆

Δ𝐺 𝑙 + 𝑙 − 1 ∗ ∆𝐺assoc

Free energy Loop energy Entropic cost

MFE =  min
𝑆∈Ω

Δ𝐺 𝑆

System secondary structures
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𝑄 = 

𝑆∈Ω

𝑒−Δ𝐺 𝑆 /𝑘B𝑇
Pr[𝑆] =

𝑒−Δ𝐺 𝑆 /𝑘B𝑇

𝑄

Boltzmann weighted sum

Multi stranded system of 𝒍 strands

⇒
6

Dirks et al. 2007

Lyngsø and Pedersen 2000

Minimum Free Energy
Partition Function



DOMAIN BASED ensemble of secondary structures for Scaffolded DNA Computer 

Secondary structure 

⇕ 
Scaffolded DNA Computer 

configuration

Scaffolded DNA Computer 
configuration space

Ω

• How many different configurations we will have?      (Exponential in the # of scaffold domains)  
Ω = (𝒌 + 𝟏)𝑵 7



DOMAIN BASED energy model for the Scaffolded DNA Computer 

Δ𝐺 𝑋 =  

𝑠∈𝑋

Δ𝐺 𝑀(𝑠) + 

𝑠𝑖,𝑠𝑖+1 ∈ 𝑋

Δ𝐺 𝑅 𝑠𝑖 , 𝐿 𝑠𝑖+1 + 𝑙 ∗ Δ𝐺assoc

Toehold domain matching termMiddle domain binding term Entropic cost term

𝑋 is a configuration of size 𝑙

MFE = min
𝑋∈𝛀

{Δ𝐺 𝑋 }

𝑄 = 

𝑋∈𝛀

𝑒−Δ𝐺 𝑋 /𝑘B𝑇
Pr[target]  =

𝑒− Δ𝐺 target  /𝑘B𝑇

𝑄

𝐌𝐅𝐄

≫ 

𝑐

Pr[𝑐 ∶ 𝑖𝑠 𝑎𝑛𝑜𝑡ℎ𝑒𝑟 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ]Pr[ ]

GOAL

At equilibrium
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𝛀

Configuration 𝐴 of size 2



Input Type MFE Partition Function

Single Strand 𝑂(𝑛3) 𝑂(𝑛3)

Multiple Strands, Bounded (≤ s) ? 𝑂 𝑛3 s − 1 !

Multiple Strands, Unbounded 𝑁𝑃 − Complete ?

Computational complexity of Minimum Free Energy and the Partition Function

Pr[ ] ≫
At equilibriumGOAL

Efficiently

NUPACK
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Condon et al.

McCaskillNussinov et al.



𝑐 

Pr[𝑐 ∶ 𝑖𝑠 𝑎𝑛𝑜𝑡ℎ𝑒𝑟 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛]

𝑛 bases, 𝑠 strands 
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𝛀Is there recursive way to build 
these classes?

𝛀 𝐚

a
𝟏 𝟐

a

b

c

d

𝛀 𝝐
𝛀 𝐜

b c

a c

c

𝛀 𝐛

b
𝛀 𝐝

b d

a d

d

Ω = (𝒌 + 𝟏)𝑵 = 𝟗

𝑄 = 

𝑋∈𝛀

𝑒−Δ𝐺 𝑋 /𝑘B𝑇
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. . .. . .1 𝒌𝟑

0

1

2

3

There is a 1-1 
correspondence between 
each class of higher layers 

and a sub-class of any class 
in the current layer.

Layer = Domain

Ωa

Ωa⟷s

a

a a

a

a a

s

s s

s

s

s

s

s s

Ωa

Ωa⟷𝑠

⊂ 𝛀𝐬

𝛀𝐬

Class

Sub-
class

Class
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3
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a a

a

a a
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s s
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s

s

s

s s

Ωa

Ωa⟷𝑠

𝛀𝐬

Class

Sub-
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Class
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b

b

Adjacent domain
=

Direct neighbour 
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𝑄 Ωa⟷s = . .  .  = 𝑒
−∆𝐺(𝑀(𝑠))+∆𝐺𝑎𝑠𝑠𝑜𝑐

𝑘𝐵𝑇 ∗ 𝑒
−∆𝐺(𝑅 𝑎 , 𝐿 𝑠 )

𝑘𝐵𝑇 ∗ 𝑄 Ω𝒂

1 - Propagate information from only the previous layer (toehold matching possibility).

Class Ωa   Domain 2 Ωa⟷s  Domain 3

Can we use this recursive construction to propagate information through this hierarchy?

Information given: 𝑄 Ω𝐚 Information needed: 𝑄 Ωa⟷s

𝒌𝟏

…
1

1

𝒌𝟏

…
1

1
a

a a

a

a a

s

s s

Class Sub-class

Toehold matching possibility termMiddle domain binding and the entropic cost term



. . .. . .1 𝒌𝟑
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1
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3

a

a a

a

a a

s

s s

s

s

s

s

s s

Ωb

Ωb⟷𝑠

𝛀𝐬

Class

Sub-
class

Class
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b

b
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domain
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2 - Propagate information from all other prior layers (No toehold matching possibility).

Information needed: 𝑄 Ωb⟷sInformation given: 𝑄 Ω𝒃

b

Can we use this recursive construction to propagate information through this hierarchy ?

𝑄 Ωb⟷s = . .  .  = 𝑒
−∆𝐺(𝑀(𝑠))+∆Gassoc

𝑘𝐵𝑇 ∗ 𝑄 Ω𝒃

Class Ωb Domain 1 Ωb⟷s Domain 3
Class

Middle domain binding and the entropic cost term

Sub-class

b s
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. . .. . .

𝑄 Ωb⟷s = 𝑒
−∆𝐺(𝑀(𝑠))+∆𝐺assoc

𝑘𝐵𝑇 ∗ 𝑄 Ω𝒃

Middle domain binding
and the entropic cost

0

1

2

3

𝑄 Ωa⟷s = 𝑒
−∆𝐺(𝑀(𝑠))+∆𝐺assoc

𝑘𝐵𝑇 ∗ 𝑒
−∆𝐺(𝑅 𝑎 ,𝐿 𝑠 )

𝑘𝐵𝑇 ∗ 𝑄 Ω𝒂

Toehold matching possibility



𝑎

 



𝑏

 

𝛀𝐬

Class

+



𝑄 = 1 + 

𝑠∈𝑇

𝑄(Ω𝑠)

𝑄 𝛺𝑠 = 𝑒
−∆𝐺(𝑀(𝑠))+∆𝐺assoc

𝑘𝐵𝑇 ∗ 

𝑠′∈𝐿𝐷𝑠 

 𝑒

−∆𝐺 𝑅 𝑠′ , 𝐿 𝑠

𝑘𝐵𝑇 ∗ 𝑄 𝛺𝑠′ + 1 + 

𝑠′≺𝑠
𝑠′∉𝐿𝐷𝑠

𝑄 𝛺𝒑′

18

Previous: 1 simulation of length 13
Now: 280 simulations in 20 min [800 strands]

Benefits of Domain Based models !!
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𝟏

𝟐

𝟑

𝟒

Kinetic model for Scaffolded DNA computer
• The kinetic model for Scaffolded DNA Computer is a continuous-time Markov chain (CTMC) that satisfies detailed balance. 

GOAL
• Understanding system kinetics. 
• Ability to propose some ideas that may help in speeding up the system.
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3

4

Random walks

Possible kinetic scenario with the Scaffolded DNA computer



Proposal 1: Covers
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Scaffold with covers (here at the second, third, fourth, and sixth scaffold domains)

𝟏 𝟐 𝑵

...

. . . 



Proposal 2: Monotonically increasing competing strands concentrations along the scaffold
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⇓ ⇓⇓
1x 2x Nx

𝟏 𝟐 𝑵

...

. . . 

higher concentrationLower concentration
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Concentration trick experiment [LATE INPUT] with concentrations [1x, 1x, 3x, 5x] 

𝐀 𝐁 𝐂 𝐃 𝐄

ഥ𝐁

ഥ𝐁

ത𝐂

ത𝐂

Q
ഥ𝐃

ഥ𝐃

ത𝐄

𝟓𝐱𝟑𝐱𝟏𝐱

F

ഥ𝐀

𝟏𝐱
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Conclusions

• Our polynomial time algorithms for MFE and Partition Function give some evidence that Scaffolded DNA Computer 
is thermodynamically favourable.  

• The Scaffolded DNA Computer kinetic simulator confirms our intuition about the tricks that we think it will speed up 
the system.

• Our preliminary experiments are promising with respect to the proposed tricks.

Future Work
• Extending the work to the 2D case of "Algorithmic DNA Origami".

• Experimentally testing our tricks with bigger systems.

• Looking for other fast thermodynamic prediction algorithms for other engineered multistranded and/or 
pseudoknotted systems? 
▪ DNA strand displacement circuits
▪ DNA tile-based self-assembly systems
▪ DNA origami systems

DONE

In progress
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Postdoc, PhD
We're hiring!

Thanks

Cai Wood➔22

Abeer Eshra➔21
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