

It's not about DNA, It's all about Pizza

Ahmed Shalaby

2nd year PhD

Supervisor: Damien Woods

CS workshop [19/06/2024]

Funded by the European Union

Secondary structure

Single stranded DNA

Dirks et al. 2007

2

Secondary structure

Single stranded DNA

Polymer graph representation

Dirks et al. 2007

pseudoknotted

Energy models, Minimum Free Energy and Partition Function

Single stranded system

Multi stranded system of *s* strands

Energy models, Minimum Free Energy and Partition Function

Single stranded system

 $\Delta G(S)$

Energy model

Capture the free energy of secondary structure

Multi stranded system of *s* strands

Energy models, Minimum Free Energy and Partition Function

Single stranded system

Capture the free energy of secondary structure

$$MFE = \min_{S \in \Omega} \Delta G(S)$$

Minimum Free Energy

System secondary structures

Multi stranded system of *s* strands

Energy model: Loop model

$$\Delta G(S) = \sum_{l} \Delta G(l) + (c-1) \Delta G^{\text{assoc}}$$

$$\Delta G(S) = \sum_{l \in S} \Delta G(l)$$

$$\min_{S\in\Omega}\Delta G(S)$$

Ω : the set of all secondary structures

Energy model: Loop model (allowing repeats)

Computational complexity of Minimum Free Energy algorithms

MFE
$O(N^3)$
$O(N^3(c-1)!)$
?
NP – Complete

N bases, c strands

Computational complexity of Minimum Free Energy algorithms

Input Type	MFE	
Single Strand	$O(N^3)$	
Multiple unique Strands, Bounded ($\leq c$)	$O(N^{3}(c-1)!)$	
Multiple Strands allowing repeats, Bounded ($\leq c$)	?	
Multiple Strands, Unbounded	NP – Complete	
	N bases, c strands	
Open problem for $pprox 20$ years		

Why symmetry makes it difficult?

Input Type	MFE
Single Strand (Loop model)	$O(N^3)$
Multiple unique Strands, Bounded ($\leq c$)	$O(N^3(c-1)!)$
Multiple Strands, Bounded ($\leq c$)	?
	N bases, c strands

Why symmetry makes it difficult?

Input Type	MFE	
Single Strand (Loop model)	$O(N^3)$	Dynamic
Multiple unique Strands, Bounded ($\leq c$)	$O(N^3(c-1)!)$	algorithms
Multiple Strands, Bounded ($\leq c$)	?	
	N bases, c strands	

All of these are dynamic programming algorithms

Why symmetry makes it difficult?

Input Type	MFE	
Single Strand (Loop model)	$O(N^3)$	Dynamic
Multiple unique Strands, Bounded ($\leq c$)	$O(N^3(c-1)!)$	algorithms
Multiple Strands, Bounded ($\leq c$)	?	
	N bases, c strands	-

All of these are dynamic programming algorithms

Global property

Global property

Possible approach

Input Type	MFE
Single Strand (Loop model)	$O(N^3)$
Multiple unique Strands, Bounded ($\leq c$)	$O(N^{3}(c-1)!)$
Multiple Strands, Bounded ($\leq c$)	?

N bases, c strands

$$\Delta G(S) = \sum_{l} \Delta G(l) + (c-1)\Delta G^{\text{assoc}} + \mathbf{k}_{B}T * \log R$$

Possible approach

Input Type	MFE
Single Strand (Loop model)	$O(N^3)$
Multiple unique Strands, Bounded ($\leq c$)	$O(N^{3}(c-1)!)$
Multiple Strands, Bounded ($\leq c$)	?

N bases, c strands

$$\Delta G(S) = \sum_{l} \Delta G(l) + (c-1)\Delta G^{\text{assoc}} + \mathbf{k}_{B}T * \log R$$

$$\Delta G'(S) = \sum_{l} \Delta G(l) + (c - 1) \Delta G^{\text{assoc}}$$

Ignore symmetry

Let's ignore the symmetry for a while

ΔG'(

 $\Delta G'(S)$

 $\Delta G'(S)$

Our solution

$\Delta G'(S_x)$ $\Delta G'(S_y) \leq A$

$\Delta G'(S_x)$ VI $\Delta G'(S_y)$

S_x Symmetric

 S_y Symmetric

$\Delta G'(S_x)$ VI $\Delta G'(S_y)$

 S_x Symmetric

S_x and S_y Admissible cut

 S_y Symmetric

$\Delta G'(S_x)$ VI $\Delta G'(S_y)$

 S_x Symmetric

X

S_z Asymmetric

S_x and S_y Admissible cut

 S_y Symmetric

S_x Symmetric

Polynomial

Computational complexity of Minimum Free Energy algorithms

Input Type	MFE
Single Strand (Loop model)	$O(N^3)$
Multiple unique Strands, Bounded ($\leq c$)	$O(N^{3}(c-1)!)$
Multiple Strands, Bounded ($\leq c$)	$O(N^4(c-1)!)$
Multiple Strands, Unbounded	NP – Complete

N bases, c strands

Thanks

dna.hamilton.ie/shalaby

European Innovation Council

