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We present two papers

“Binary representation of ancestors in the Collatz graph”,
T. Stérin, RP 2020

“The Collatz process embeds a base conversion algorithm”,
T. Stérin and D. Woods, RP 2020

Orthogonal results but same motivation

I.  Motivation: why study the Collatz process in binary?

lI.  Results:
A. Characterizing the binary representation of ancestors in the Collatz process
B. The Collatz process can solve base conversion 3 — 2 (not in ACO)

Slides, papers and code: https://dna.hamilton.ie/tsterin/



The Collatz map

- One of the simplest example of Switched Affine Maps. Formally introduced in

the 60s based on Lothar Collatz’'s work from the 30s.
J. C. Lagarias. “The 3x+1 problem: an annotated blibliography”.
2003, 2006
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The Collatz map

- One of the simplest example of Switched Affine Maps. Formally introduced in
the 60s based on Lothar Collatz’s work from the 30s.

(

12 if =0 mod 2

C(x) = A .
L3:17—|—1 if x =1 mod 2

Examples: 0(8) — 4 0(3) — 10



The Collatz map

- One of the simplest example of Switched Affine Maps. Formally introduced in
the 60s based on Lothar Collatz’s work from the 30s.

(

12 if =0 mod 2

C(x) = A .
L3:17—|—1 if x =1 mod 2

Examples: 0(8) — 4 0(3) — 10



The Collatz map, slightly fast forwarded

- One of the simplest example of Switched Affine Maps. Formally introduced in
the 60s based on Lothar Collatz’s work from the 30s.

f
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The Collatz process

cpiTat B2
@) =1 e+ 1)/2

Let’s iterate: 34,

if =0 mod 2
if x =1 mod 2



The Collatz process

) =z/2
k= {(3:c+ 1)/2

Let’s iterate: 34, 17,

if =0 mod 2
if x =1 mod 2



The Collatz process

) =z/2
k= {(3:c+ 1)/2

Let’s iterate: 34, 17, 26,

if =0 mod 2
if x =1 mod 2



The Collatz process

ot B2
@) =1 e+ 1)/2

Let’s iterate: 34, 17, 26, 13,

if =0 mod 2
if x =1 mod 2
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The Collatz process

)2 if z =0 mod 2
() = e
(3x+1)/2 if x =1 mod 2

Let's iterate: 34, 17, 26, 13, 20, 10, 5, 8, 4, 2, 1

11



The Collatz process

L) =

)2 if z =0 mod 2
(3x+1)/2 if x =1 mod 2

Let's iterate: 34, 17, 26, 13, 20, 10, 5,8,4,2,1,2,1, 2,1, ...

The “trivial” cycle.

12



The Collatz conjecture

/2 if x =0 mod 2
T(x) = .

B3z +1)/2 if x =1 mod 2
Let’s iterate: 34, 17, 26, 13, 20, 10, 5, 8,4, 2,1,2,1, 2,1, ...

Collatz conjecture: All strictly positive integers reach 1 under the action of the Collatz process.

13



The Collatz conjecture

(2) /2 if x =0 mod 2
L) =
B3z +1)/2 if x =1 mod 2
Let’s iterate: 34, 17, 26, 13, 20, 10, 5, 8,4,2,1,2,1,2,1, ...

Collatz conjecture: All strictly positive integers reach 1 under the action of the Collatz process.
Two seemingly independent components:

1. Cyclic conjecture: the only strictly positive cycle is 2,1,2,1,...
2. Non-divergence conjecture: No Collatz trajectory on the strictly positive integers diverges.

As of 2020, computer tested up to 267
D. Barina. The Journal of Supercomputing, 2020.
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Is the Collatz problem really about natural numbers?

15



Is the Collatz problem really about natural numbers?

B/ 2 if =0 mod 2

Bz +1)/2 if =1 mod 2
ze N

L) =

- N(+, %) is a semiring
- There is a “well-defined” parity function € : N — 7 /27
- ltis an homomorphism: (1) =1 e(z +y) = e(z) + €(y)
- It satisfies: e(x x y) = e(x) x €(y)
er)=0&2|x

16



Is the Collatz problem really about natural numbers?

T(z) = B2 if x =0 mod 2
T Br+1)/2 ifz=1mod?2

Parity function:

x € L e(x) = x mod 2

17



Is the Collatz problem really about natural numbers?

B2 if x =0 mod 2

T —
(@) (3x+1)/2 if =1 mod 2

Parity function:

x € L e(x) = x mod 2

Three known strictly negative cycles:
-1, 1, ...
-5,-7,-10, -5, ...
-17, -25, -37, -55, -82, -41, -61, -91, -136, -68, -34, 17, ...

No known divergent integers 18



Is the Collatz problem really about natural numbers?

B/ 2 if =0 mod 2
Bz +1)/2 if =1 mod 2

re{g|bodd} CQ L,

L) =

Examples:

217, -1/7, 217,117, 817, 11/7, 20/7, 10/7, 5I7, ...
5/3,3,5,8,4,2,1,2,1, 2, ...

Lagarias’ Periodicity Conjecture: J. C. Lagarias. The American Mathematical Monthly, 1985.
Every odd-denominator rational reaches a cycle. 19



Is the Collatz problem really about natural numbers?

r €N z € zc{p |bodd } CQ

é(x) = x mod 2 é(x) = x mod 2 e(r) = a mod 2

e(r) =02 x

20



Is the Collatz problem really about natural numbers?

r e N e A LEE{%“)Odd}C@

é(x) = x mod 2 é(x) = x mod 2 e(r) = a mod 2

e(r) =02 x

N

Binary decomposition algorithm
(i.e., on N, the standard binary encoding)

21



Is the Collatz problem really about natural numbers?

r N =N/ re{y|bodd } CQ

é(x) = x mod 2 é(x) = x mod 2 e(r) = a mod 2

e(r) =02 |

while true {
Store €(x)

r:=(xr—e(x))/2
}

N

Binary decomposition algorithm (unbounded)

22



Is the Collatz problem really about natural numbers?

r €N r & 4 LL‘E{%“)Odd}C@
é(r) = x mod 2 é(r) = x mod 2 e(r) = a mod 2
26
while true {
Store €(x)

r:=(x—€e(x))/2
} 2



Is the Collatz problem really about natural numbers?

r €N z €7 ze{f|bodd } CQ
é(x) = x mod 2 é(x) = x mod 2 e(r) = a mod 2
26
...0000011010
while true {
Store €(x)

r:=(x—€e(x))/2
} 24



Is the Collatz problem really about natural numbers?

r €N z €7 ze{f|bodd } CQ
é(x) = x mod 2 é(x) = x mod 2 e(r) = a mod 2
26 -1
...0000011010 11111111
while true {
Store €(x)

r:=(x—€e(x))/2
} 25



Is the Collatz problem really about natural numbers?

r €N z €7 ze{f|bodd } CQ
é(x) = x mod 2 é(x) = x mod 2 e(r) = a mod 2
26 -1 -2/7
...0000011010 11111111 ...(100)(100)10
while true {
Store €(x)

r:=(x—€e(x))/2
} 2%



Is the Collatz problem really about natural numbers?

r N x€Z re{y|bodd } CQ
é(r) = x mod 2 é(r) = x mod 2 e(r) = a mod 2
26 -1 -2/7
...0000011010 111111111 .(100)(100)10

\N

Z '2 The set of “2-adic integers” = semi-infinite binary strings

27



Is the Collatz problem really about natural numbers?

r €N €7 ze{y|bodd } CQ
é(x) = x mod 2 é(x) = x mod 2 e(r) = a mod 2
26 -1 =217
...0000011010 L1111 ...(100)(100)10
{(0)°w | we {0,1}*} {(1)*°w | w e {0,1}*} Eventually repeating strings
Zz - Zs(+, x) is a ring (uncountable! unordered!)

“2-adic integers” = the set of
semi-infinite binary strings
28



Is the Collatz problem really about natural numbers?

r €N €7 ze{y|bodd } CQ
é(x) = x mod 2 é(x) = x mod 2 e(r) = a mod 2
26 -1 =217
...0000011010 L1111 ...(100)(100)10
{(0)°w | we {0,1}*} {(1)*°w | w e {0,1}*} Eventually repeating strings
Zz - Zs(+, x) is a ring (uncountable!, unordered!)
L1111

“2-adic integers” = the set of +

semi-inifinite binary strings .. 0000001

29



Is the Collatz problem really about natural numbers?

r €N €7 ze{y|bodd } CQ
é(x) = x mod 2 é(x) = x mod 2 e(r) = a mod 2
26 -1 =217
...0000011010 L1111 ...(100)(100)10
{(0)°w | we {0,1}*} {(1)*°w | w e {0,1}*} Eventually repeating strings
Zz - Zs(+, x) is a ring (uncountable!, unordered!)
L1111

“2-adic integers” = the set of

semi-inifinite binary strings * .. 0000001

= 30

0000000



Is the Collatz problem really about natural numbers?

r €N €7 ze{y|bodd } CQ
é(x) = x mod 2 é(x) = x mod 2 e(r) = a mod 2
26 -1 =217
...0000011010 L1111 ...(100)(100)10
{(0)°w | we {0,1}*} {(1)*°w | w e {0,1}*} Eventually repeating strings
Zz - Zs(+, x) is a ring (uncountable!, unordered!)

- ¢(x) = LSB(x) is a suitable parity function

“2-adic integers” = the set of

semi-inifinite binary strings 6(:1;) — 0 <j,> 2 | 4 b 31



Is the Collatz problem really about natural numbers?

Zz - Zs(+, x) is a ring (uncountable!, unordered!)
- ¢(x) = LSB(z) is a suitable parity function

“2-adic integers” = the set of

semi-inifinite binary strings @

We can run the Collatz process in

Lagarias Periodicity Conjecture:

In ZQ , an eventually periodic input to the Collatz process yields to an

evenutally periodic Collatz sequence.

J. C. Lagarias, The American Mathematical Monthly, 1985. 32



Is the Collatz problem really about natural numbers?

33



Is the Collatz problem really about natural numbers?

No, the Collatz problem is about half-infinite binary
StringS. (for the scope of this talk)
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Is the Collatz problem really about natural numbers?

No, the Collatz problem is about half-infinite binary
StringS. (for the scope of this talk)

In that context, it is crucial to understand the action
of the Collatz process in binary.

35



Computer Science w.r.t the Collatz problem

Three fields (at least) are concerned by the Collatz problem:

Number Theory Computer Science

Logic

36



Computer Science w.r.t the Collatz problem

Three fields (at least) are concerned by the Collatz problem:

Number Theory Computer Science

e By its formulation
e The approach led to
numerous results:

J. C. Lagarias. “The 3x+1 problem: an annotated blibliography”.
2003, 2006

A No strictly positive cycle of length < 17.026.679.261
S. Eliahou. Discrete Mathematics, 1993.

[ “Almost all strictly positive integers almost lead to 1”
T. Tao. preprint, 2019.

Logic

37



Computer Science w.r.t the Collatz problem

Three fields (at least) are concerned by the Collatz problem:

Number Theory Computer Science Logic
e By its formulation e By its formulation in Zso
e The approach led to e Generalised Collatz Maps are
numerous results. Turing Complete (exponential slow down):.
J.H Conway. Number Theory Conference, 1972.

J. C. Lagarias. “The 3x+1 problem: an
annotated blibliography”. 2003, 2006 '33/5 + 2 if z=0mod 5

Tx—1)/54+3 ifx=1mod5
Gx)=<2(z—2)/5+1 ifxz=2mod5
6(x—3)/5+4 ifx=3modb5
| (z—4)/5 if 2 =4 mod 5
P. Koiran and C. Moore. TCS, 199.
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Computer Science w.r.t the Collatz problem

Three fields (at least) are concerned by the Collatz problem:

Number Theory Computer Science Logic
e By its formulation e By its formulation in Zso e Peano-independence
e The approach led to e Generalised Collatz Maps are in discrete dynamical
numerous results. Turing complete (exponential slow down). systems. Ex:

J. C. Lagarias. “The 3x+1 problem: an J.H Conway. Number Theory Conference, 1972.  Goodstein sequences.

annotated blibliography”. 2003, 2006

39



Computer Science w.r.t the Collatz problem

Three fields (at least) are concerned by the Collatz problem:

Number Theory

e By its formulation
e The approach led to
numerous results.

y

Is the Collatz conjecture true?

Computer Science

By its formulation in Zo
Generalised Collatz Maps are
Tu ring Complete (exponential slow down).

Logic

Peano-independence
in discrete dynamical
systems. EXx:
Goodstein sequences.
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Computer Science w.r.t the Collatz problem

Three fields (at least) are concerned by the Collatz problem:

Number Theory

e By its formulation
e The approach led to
numerous results.

y

Is the Collatz conjecture true?

Computer Science Logic

e By its formulation in Zo o
e Generalised Collatz Maps are
Turing Complete (exponential slow down).

y

Computational power of the Collatz process?

Is it Turing complete?

Peano-independence
in discrete dynamical
systems. EXx:
Goodstein sequences.
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Computer Science w.r.t the Collatz problem

Three fields (at least) are concerned by the Collatz problem:

Number Theory Computer Science Logic
e By its formulation e By its formulation in Zso e Peano-independence
e The approach led to e Generalised Collatz Maps are in discrete dynamical
numerous results. Turing complete (exponential slow down). systems. Ex:

Goodstein sequences.

Is the Collatz conjecture true? ,
Computational power of the Collatz process?

Is it Turing complete? .
9 comp Peano or ZFC independence?

42



Computer Science w.r.t the Collatz problem

Three fields (at least) are concerned by the Collatz problem:

Number Theory Computer Science Logic
e By its formulation e By its formulation in Zso e Peano-independence
e The approach led to e Generalised Collatz Maps are in discrete dynamical
numerous results. Turing complete (exponential slow down). systems. Ex:

@ Goodstein sequences.

Computational power of the Collatz process?

Is it Turing complete?

43



Computer Science w.r.t the Collatz problem

Computer Science

e By its formulation in Zo
e Generalised Collatz Maps are
Turing Complete (exponential slow down)

U

- Computational power of the Collatz procegs?
Is it Turing complete?

- Complexity of prediction problem?




Computer Science w.r.t the Collatz problem

Very minimalistic discrete dynamical

Computer Science systems are known to be efficient
Turing complete models:
e By its formulation in Zo | rale 110
e Generalised Collatz Map| & b AR aheaE e e .

Turing complete (exponential own) 0 ! L 0 1 1 1

- Computational power of the Collatz procegs? -
Is it Turing complete? —

- Complexity of prediction problem?

M. Cook. Complex Systems, 2004
T. Neary and D. Woods. ICALP, 2006. 45



Motivation

Computational power of the Collatz prog
Is it Turing complete?

Complexity of prediction problem?

ess?

46



The Collatz process in binary

Two operations to understand in binary:

o X/2
o 3x+1

47



The Collatz process in binary

Two operations to understand in binary:

o X/2
o 3x+1

x/2 corresponds to shifting the binary representation to the right:

111001010 > ...11100101

48



The Collatz process in binary
What about 3x + 1 in binary?

3x+1=x+(2x+1)
Meaning: “x + (left_shift(x) + 1)”
Take x =9 (1001 in binary):

1001

o+

49



The Collatz process in binary
What about 3x + 1 in binary?

3x+1=x+(2x+ 1)
Meaning: “x + (left_shift(x) + 1)”
Take x =9 (1001 in binary):

, 1001
10010

50



The Collatz process in binary
What about 3x + 1 in binary?

3x+1=x+(2x+1)
Meaning: “x + (left_shift(x) + 1)”
Take x =5 (1001 in binary):

, 1001
10011

51



The Collatz process in binary
What about 3x + 1 in binary?

3x+1=x+(2x+ 1)
Meaning: “x + (left_shift(x) + 1)”
Take x =9 (1001 in binary):

., 1001
_ 10011
11100

3*Q + 1 = 28

52



The Collatz process in binary

3x+1=x+(2x+ 1)

. 1001
10011
11100

Meaning:

“Each bit of the input gets added to its right neighbour
and the potential carry on that neighbour.”

1001

53



The Collatz process in binary

3x+1=x+(2x+ 1)

. 1001
10011
11100

Meaning:
“Each bit of the input gets added to its right neighbour

and the potential carry on that neighbour.”

10010

54



The Collatz process in binary

3x+1=x+(2x+ 1)

. 1001
10011
11100

Meaning:

“Each bit of the input gets added to its right neighbour
and the potential carry on that neighbour.”

10010

55



The Collatz process in binary

3x+1=x+(2x+ 1)

. 1001
10011
11100

Meaning:

“Each bit of the input gets added to its right neighbour
and the potential carry on that neighbour.”

10010
0

56



The Collatz process in binary

3x+1=x+(2x+ 1)

. 1001
10011
11100

Meaning:

“Each bit of the input gets added to its right neighbour
and the potential carry on that neighbour.”

10070
0

57



The Collatz process in binary

3x+1=x+(2x+ 1)

. 1001
10011
11100

Meaning:

“Each bit of the input gets added to its right neighbour
and the potential carry on that neighbour.”

10010
0

58



The Collatz process in binary

3x+1=x+(2x+ 1)

. 1001
10011
11100

Meaning:

“Each bit of the input gets added to its right neighbour
and the potential carry on that neighbour.”

10
00

59



The Collatz process in binary

3x+1=x+(2x+ 1)

. 1001
10011
11100

Meaning:

“Each bit of the input gets added to its right neighbour
and the potential carry on that neighbour.”

10710
00

60



The Collatz process in binary

3x+1=x+(2x+ 1)

. 1001
10011
11100

Meaning:

“Each bit of the input gets added to its right neighbour
and the potential carry on that neighbour.”

10010
00

61



The Collatz process in binary

3x+1=x+(2x+ 1)

. 1001
10011
11100

Meaning:

“Each bit of the input gets added to its right neighbour
and the potential carry on that neighbour.”

10010
100

62



The Collatz process in binary

3Xx+1=x+(2x+1) Meaning:

1001 “Each bit of the input gets added to its right neighbour
* 10011 and the potential carry on that neighbour.
11100

010
00

1

63



The Collatz process in binary

3x+1=x+(2x+ 1) Meaning:

“Each bit of the input gets added to its right neighbour
+ 1001 and the potential carry on that neighbour.”
10011 P Y JHROHT:
11100

0070
1100

64



The Collatz process in binary

3x+1=x+(2x+ 1)

. 1001
10011
11100

Meaning:

“Each bit of the input gets added to its right neighbour
and the potential carry on that neighbour.”

0010070

1100

65



The Collatz process in binary

3x+1=x+(2x+ 1)

. 1001
10011
11100

Meaning:

“Each bit of the input gets added to its right neighbour
and the potential carry on that neighbour.”

0010070

1100

66



The Collatz process in binary

3Xx+1=x+(2x+1) Meaning:

1001 “Each bit of the input gets added to its right neighbour
+ 10011 and the potential carry on that neighbour.
11100

67



The Collatz process in binary

3Xx+1=x+(2x+1) Meaning:

1001 “Each bit of the input gets added to its right neighbour
+ 10011 and the potential carry on that neighbour.”

.0010010
~..011100

3*9+1=28 o




The 3x+1 operation is 2-automatic

The 3x+1 binary FST

Caption
read : write

69



The 3x+1 operation is 2-automatic Caption

100

The 3x+1 binary FST



The 3x+1 operation is 2-automatic Caption

100

The 3x+1 binary FST



The 3x+1 operation is 2-automatic Caption
read : write

The 3x+1 binary FST



The 3x+1 operation is 2-automatic Caption
read : write

The 3x+1 binary FST



The 3x+1 operation is 2-automatic Caption
read : write

The 3x+1 binary FST



The 3x+1 operation is 2-automatic Caption
read : write

The 3x+1 binary FST



The 3%, 3x+1 and 3x+2 operations are 2-automatic

> 3X + 1

3X

3X + 1

> 3x+2

76




The 3%, 3x+1 and 3x+2 operations are 2-automatic

“Binary representation of ancestors in the Collatz graph’, :> Regular expressions
T. Stérin, RP 2020

“The Collatz process embeds a base conversion algorithm”, Base 2 — Base 3
T. Stérin and D. Woods, RP 2020

77



Binary representation of ancestors

“Binary representation of ancestors in the Collatz graph”, T. Stérin, RP 2020

Let’s run the Collatz process on 642:

642 1010000010

78



Binary representation of ancestors

“Binary representation of ancestors in the Collatz graph”, T. Stérin, RP 2020

Let’s run the Collatz process on 642:

321 101000001

79



Binary representation of ancestors

“Binary representation of ancestors in the Collatz graph”, T. Stérin, RP 2020

Let’s run the Collatz process on 642:

31 101000001°
964 1111000100 @

80



Binary representation of ancestors

“Binary representation of ancestors in the Collatz graph”, T. Stérin, RP 2020

Let’s run the Collatz process on 321:

31 101000001°
241 11110001 @
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Binary representation of ancestors

“Binary representation of ancestors in the Collatz graph”, T. Stérin, RP 2020

Let’s run the Collatz process on 642:

321 101000001°
241 11110001°
724 1911910100 @

82



Binary representation of ancestors

“Binary representation of ancestors in the Collatz graph”, T. Stérin, RP 2020

Let’s run the Collatz process on 642:

321 101000001°
241 11110001°
181 191101091 @

83



Binary representation of ancestors

“Binary representation of ancestors in the Collatz graph”, T. Stérin, RP 2020

Let’s run the Collatz process on 642:

321 1010000010
241 11100010
181 101101010
544 1000100000

)




Binary representation of ancestors

“Binary representation of ancestors in the Collatz graph”, T. Stérin, RP 2020

Let’s run the Collatz process on 642:

321 1010000010
241 11110001°
181 101101010

17 1000°

642 is an ancestor of 17

85



Binary representation of ancestors

“Binary representation of ancestors in the Collatz graph”, T. Stérin, RP 2020

Let’s run the Collatz process on 642:

321 1010000010
241 11110001°
181 101101010

17 1000°

642 is an ancestor of 17 at “odd-distance” k = 3

86



Binary representation of ancestors

“Binary representation of ancestors in the Collatz graph”, T. Stérin, RP 2020

Let’s run the Collatz process on 642:

321 1010000010
241 111100010

181 10110101°

17 1000°

Question:

What is the structure of all ancestors of 17 at “odd-distance” k = 3?
87



Binary representation of ancestors

“Binary representation of ancestors in the Collatz graph”, T. Stérin, RP 2020

Let’s run the Collatz process on 642:

101000001°
1110001° =

321
241

181

17
Question:

A

10°

1000°

191010

0 <
-

APPLE

US20(30100035A1

United States

B Download PDF a Find Prior Art z Similar

Inventor: Mathieu Ciet, Augustin J. Farrugia, Thomas Icart

Current Assignee :

Worldwide applications

2011 U8

Application US13/308,452 events ®
2011-11-01 * Priority to US201161554411P
2011-11-30 * Application filed by Apple Inc
2011-11-30 - Priority to US13/308,452
2011-11-30 - Assigned to APPLE INC. @

2013-05-02 * Publication of US20130108038A1

What is the structure of all ancestors of 17 at “odd-distance” k = 3?
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Binary representation of ancestors

“Binary representation of ancestors in the Collatz graph”, T. Stérin, RP 2020

Question: 101000001 - R e
What is the structure of all 11110001 r‘ﬂ
ancestors of 17 at “odd-distance” k = 37 Te110101 o PG

1 @@@1 &F (g
What is the structure of all ancestors of x
at “odd-distance” k?

THEOREM:

Let’s denote this set by Pred(k,x) > Pred(k,x) is regular

J. Shallit and D. A. Wilson. Bulletin of the EACTS, 1992.
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Binary representation of ancestors

“Binary representation of ancestors in the Collatz graph”, T. Stérin, RP 2020

Question:

What is the structure of all ancestors of x

at “odd-distance” k?

THEOREM:
Pred(k,x) is regular

J. Shallit and D. A. Wilson. Bulletin of the EACTS, 1992.

:> Doubly exponential regular expressions

90



Binary representation of ancestors

“Binary representation of ancestors in the Collatz graph”, T. Stérin, RP 2020

Question:

What is the structure of all ancestors of x
at “odd-distance” k?

THEOREM:

Pred(k,x) is regular

J. Shallit and D. A. Wilson. Bulletin of the EACTS, 1992.

Our work generalises:

Our Work

L. Colussi. TCS, 2011.
P. C. Hew. TCS, 2016.

—
I

Doubly exponential regular expressions

Simply exponential regular expressions +

Structure of these regular expressions
tightly related to the structure of the Collatz

process’s Parity Vectors
91



Binary representation of ancestors

“Binary representation of ancestors in the Collatz graph”, T. Stérin, RP 2020

Example: ancestors of 17 at distance 3.

(101000010010111101) *

642 101000001
1110001¢
101101010
1000°

17

)

10100)(000111)*

00

(01)*PL(8)*



Binary representation of ancestors

“Binary representation of ancestors in the Collatz graph”, T. Stérin, RP 2020

Example: ancestors of 17 at distance 3.

(101000010010111101)*{1L0100|(0O00111)HO0)(O1)*OL(0O)*

10°

1010000

10060°

17

111106001

191010

0

10100/00011106601
11110001610101
10110101

10001
17



Binary representation of ancestors

“Binary representation of ancestors in the Collatz graph”, T. Stérin, RP 2020

Example: ancestors of 17 at distance 3. There are 12 families.

[(101000010016111101)*10100(0600111)*60(01)*01(0)*
101000010010111101)*1010000(100011)*100(01)*01(0)*

)

)
101000010010111101)*101000010016011110(110001)*1100(01)*01
101000010010111101)*1010000100101(111000) *11100(01)*01(0)

) *01(0)*

(0)*
*

101000010010111101)*10100001001(011100)*011100(01)
101000010010111101)*1(001110)*0(01)*01(0)*

(

(

(

(

(
(10100001001@1111@1)*10100(000111)*0001(10)*1(0)*
(101000010010111101)*1010000(100011)*10001(10)*1(0)*
(101000010010111101)*10100001001011110(110001)*110001(10)*1(0)*
(101000010010111101)*1010000100101(111000)*1(10)*1(0)*
(101000010010111101)*10100001001(011100)*01(10)*1(0)*
(101000010010111101)*1(001110)*001(10)*1(0)*

Code: https://github.com/tcosmo/coreli



Binary representation of ancestors

“Binary representation of ancestors in the Collatz graph”, T. Stérin, RP 2020

Result: ancestors of x at distance k. There are  2¢-'3*—=families.

» Theorem 1. For all x € N, for all k € N there exists a regular expression reg, (x) that
defines € Predy(x). The reqular expression reg,(x) is structured as a tree with 2~83k(k=1)/2
branches, alphabetic width O(2*3F*+1/2) and star height equal to 1.



Binary representation of ancestors

“Binary representation of ancestors in the Collatz graph”, T. Stérin, RP 2020

Result: ancestors of x at distance k. There are 2¢-'3“"5 families.

» Theorem 1. For all x € N, for all k € N there exists a regqular expression reg,(x) that

defines € Predy,(x). The regular expression reg,(x) is structured as a tree with Qhghtl—=1)/2

branches, alphabetic width O(2k3k(k+1)/2) and star height equal to 1. Erratum:
k:=k-1




Binary representation of ancestors

“Binary representation of ancestors in the Collatz graph”, T. Stérin, RP 2020

Example: ancestors of 17 at distance 3. There are 12 families.

101000010010111101
101000010010111101

* * * . .
%gg?%éém%gé}0%18{(0) e Complexity: at least as hard as solving

101000010010111101)*1010000100101(111000)*11100(01)*01(0)* > .
101000010010111101)*10100001001(011100)*011100(01)*01(0)* such that x = 2”*-i mod [3/K].
101000010010111101)*1(001110)*0 (01)*01(0)*

(
(
(
(
E
(101000010010111101)*10100(000111)*0001(10)*1
(
(
(
(
(

)
)
101000010010111101)*10100001001011110(110001)*1100(01)*01(0)* discrete logarithm in Z/3*kZ. l.e: find i’
)
)

(0)*
101000010010111101)*1010000(100011)*10001 (10)*1(0)* Take: len([(])-2, here 5-2 =3
101000010010111101)*10100001001011116(110001)*110001 (10)*1(0)*

101000010010111101)*1010000160101 (111000)*1 (10) *1(0) *

101000010010111101)*10100001001(011160)*01(10)*1(0)* 27-(3) = 1473 = 2744 = 17 mod 3”3
)

101000010010111101)*1(001110)*001(10)*1(0)*
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Binary representation of ancestors

“Binary representation of ancestors in the Collatz graph”, T. Stérin, RP 2020

Example: ancestors of 17 at distance 3. There are 12 families.

CRlSea i oll1i0]) P19190 (GRLLL) *00 gL 9L i) e Complexity: at least as hard as solving

)

101000010010111101)*1010000(100011)*100(01)*01(0)*

101000010010111101)*10100001001011110(110001)*1100 (0)* discrete logarithm in Z/32kZ. |.e: find i’
) * :

) such that x = 2”-i mod [3”K].

(01)*01
101000010010111101)*10100001600101(111000)*11100(01)*01(0)
101000010010111101)*10100001001(011100)*011100(01)*01(0)*
101000010010111101)*1(001110)*0(01)*01(0)*

(

(

(

E
(101000010010111101)*10100(000111)*0001(10)*1(0)*
(

(

(

(

(

(0 . . :
101000010010111101)*1010000(100011)*10001(10)*1(0)* L] Seeds’ are mySterIOUS:
101000010010111101)*10100001001011110(110001)*110001(10)*1(0)*

101000010010111101) *1010000100101 (111000) *1(10) *1(0) * _ -
101000010010111101)*10100001001(011100)*01(10)*1(0)* EQUIValent definitions:
101000010010111101)*1(001110)*001(10)*1(0)* O Repetend of 1/3”K in Z2
o Parity bits of 1/2”k in Z/S 7,
22 3}€ 1

o Binary expansion of 3%

Seeds approach Full Complexity:
J. Lopez and P. Stoll. Integers, 2012



Binary representation of ancestors

“Binary representation of ancestors in the Collatz graph”, T. Stérin, RP 2020

Example: ancestors of 17 at distance 3. There are 12 families.

101000010010111101)*10100(000111)*00(01)*01(0)*
101000010010111101)*1010000(100011)*100(01)*01(0)*
101000010010111101)*10100001001011110(110001)*1100(01)*01(0)*
101000010010111101)*1010000100101(111000)*11100(01)*01(0)*
101000010010111101)*10100001001(011100)*011100(01)*01(0)*
101000010010111101)*1(001110)*0(01)*01(0)*

101000010010111101)*10100(000111)*0001(10)*1
101000010010111101)*1010000(100011)*10001(10

— o g

Je

(0
JELLO)*
101000010010111101)*10100001001011110(110001)*110001(10)*1(0)*
10)*
B)=*

)
)
101000010010111101)*1010000100101(111000) *1( 1(0)*
101000010010111101)*10100001001(011100)*01(10)*1(0)*
101000010010111101)*1(001110)*001(10)*1(0)*

P e e e

Futur work:
Efficiently finding the smallest ancestor at distance k?
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Base conversion: The Collatz Quasi CA (CQCA)

“The Collatz process embeds a base conversion algorithm”, T. Stérin and D. Woods, RP 2020

Finite state automaton

100



Base conversion: The Collatz Quasi CA (CQCA)

“The Collatz process embeds a base conversion algorithm”, T. Stérin and D. Woods, RP 2020

Einite-stal | |

ﬁ

2D Cellular automaton

101



Base conversion: The Collatz Quasi CA (CQCA)

“The Collatz process embeds a base conversion algorithm”, T. Stérin and D. Woods, RP 2020

2D Cellular automaton

e 1D Base 2 and Base 3 CAs

M. Bruschi. preprint, 2005 Ours: CQCA, 2D

e 1D Base6CA Runs base 2, 3
and 6 simulteanously.

|. Korec. Mathematica Slovaca, 1992
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Base conversion: The Collatz Quasi CA (CQCA)

“The Collatz process embeds a base conversion algorithm”, T. Stérin and D. Woods, RP 2020

2D Cellular automaton

1D Base 2 and Base 3 CAs

M. Bruschi. preprint, 2005. Ours: CQCA, 2D

Runs base 2, 3

1D Base 6 CA i
and 6 simulteanously.

|. Korec. Mathematica Slovaca, 1992.

Quasi base 2 CA
T. Cloney, E. Goles and G. Vichiniac. Complex Systems, 1987.

Eric Goles, Nicolas Ollinger,
and Guillaume Theyssier.
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Base conversion: The Collatz Quasi CA (CQCA)

“The Collatz process embeds a base conversion algorithm”, T. Stérin and D. Woods, RP 2020

The CQCA: defined in 7,2

(@ local rule non-local rule (b)

§2 1= 89+ ¢+ s mod 2 leftmost tralhng 0 gets a carry T F

90+C()+91>2)

ML ) mom

.deﬁned sum & carry -deﬁned sum, undefined carry Dundeﬁned sum & carry
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Base conversion: The Collatz Quasi CA (CQCA)

“The Collatz process embeds a base conversion algorithm”, T. Stérin and D. Woods, RP 2020

The CQCA: defined in 7,2

(@ local rule non-local rule (b)

$2: =89+ cp+s1 mod 2 leftmost tralhng 0 gets a carry F F

c1:=(sop+co+s1>2)

. -

.deﬁned sum & carry -deﬁned sum, undefined carry Dundeﬁned sum & carry

Simulator: ‘simcqca’

Code: https://github.com/tcosmo/simcqca 105




Base conversion: The Collatz Quasi CA (CQCA)

“The Collatz process embeds a base conversion algorithm”, T. Stérin and D. Woods, RP 2020

Base 3’: Base 3:

] 0
0 1
1

1 2
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Base conversion: The Collatz Quasi CA (CQCA)

“The Collatz process embeds a base conversion algorithm”, T. Stérin and D. Woods, RP 2020

Base 3’: Base 3:

Line by Line

i 1

107



Base conversion: The Collatz Quasi CA (CQCA)

“The Collatz process embeds a base conversion algorithm”, T. Stérin and D. Woods, RP 2020

Column by column

.0
(b) T

he z/2 base 3’ FST.

1120° =42
108



Base conversion: The Collatz Quasi CA (CQCA)

“The Collatz process embeds a base conversion algorithm”, T. Stérin and D. Woods, RP 2020

Column by column

.0
(b) T

he z/2 base 3’ FST.

2100 =21 1120 =42
109



Base conversion: The Collatz Quasi CA (CQCA)

“The Collatz process embeds a base conversion algorithm”, T. Stérin and D. Woods, RP 2020

Column by column

.0
(b) T

he z/2 base 3’ FST.

101 =10 2100 =21 "1120" =42 110



Base conversion: The Collatz Quasi CA (CQCA)

“The Collatz process embeds a base conversion algorithm”, T. Stérin and D. Woods, RP 2020

o

0 0 1 00100 0

1
(0] 1

5

o
~ o Elo
(SN
oo fo o
= O g~ o
o +lfjo ~Ijjo I
o

*
& EN N
= o
g
s o o
mg o~ =
z. 5 [
o o
=
8
S
=]
=
)
o ol fjo ol
o
5 o
2
e

Column by column

]
=
o
&

A
%\_/
>:|:
£e
&
3
e
24
g
o
g
&
=
e}
9]
=]

(d) Vertical applications of the local rule
simulate the /2 FST.

.0
(b) T

: he z/2 base 3’ FST.
(a) The 3z + 1 binary FST.

W

101" =10 210°=21 *1120" = 42 Dual Transducers
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Base conversion: The Collatz Quasi CA (CQCA)

“The Collatz process embeds a base conversion algorithm”, T. Stérin and D. Woods, RP 2020

(=)

00110010

=3
o

*
EN N
o
o
=
o

~ o Elo

(SN

oo flo o

= O g~ o

o +lfjo ~Ijjo I
o

Column by column

]
=
o
&

=
= o
g
LSl © <
mg o~ =
z. 5 [
o o
=
8
S
=]
=
)
o ol fjo ol
o
5 o
2
e

A
%\_/
>:|:
£e
&
3
e
24
g
o
g
&
=
e}
9]
=]

(d) Vertical applications of the local rule
simulate the /2 FST.

(b) The x/2 base 3" FST.

(a) The 3z + 1 binary FST.

W

101" =10 210°=21 *1120" = 42 Dual Transducers
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Base conversion: The Collatz Quasi CA (CQCA)

“The Collatz process embeds a base conversion algorithm”, T. Stérin and D. Woods, RP 2020

Complexity of prediction:

(c) c
upper z-rectangle %
-
|
. a5 Z
T"(2) AY) @
o 0
- - )
z in base 2; n bits
b
o XO

=lo o=

QQ\:{Q/
2

lower z-rectangle

o o o
o olo o o

(@)

& oseq ur (z)ul

- o
o ol

o ol o o

Motivation

- Computational power of the Collatz
process? s it Turing complete?
- Complexity of prediction problem?

o Hl = o

O =] =l

= = = o ol

o Il

=

o o ol

1
T
0

o o Hl o
ol o ol ol

O =)

o ~l o ol o

ACO polysize, constant depth, arbitrary fanin, Bolean circuits
NC1 . polysize, log depth, fanin <= 2, Bolean circuits

ACO != P, problem pARITY notin ACO
Theorem 28 (arxiv numbering):

The upper z-rectangle prediction problem
is in NC1 and not in ACO.
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Base conversion: The Collatz Quasi CA (CQCA)

“The Collatz process embeds a base conversion algorithm”, T. Stérin and D. Woods, RP 2020

Motivation

- Computational power of the Collatz
process? s it Turing complete?

CO m p I eXity Of p red i Cti O n : - Complexity of prediction problem?

ACO polysize, constant depth, arbitrary fanin, Bolean circuits
NC1 . polysize, log depth, fanin <= 2, Bolean circuits

(c) z 00
upper z-rectangle . 0710 ACO != P, problem pARITY notin ACO
e 000
o5 ; 00 000
‘bﬁe‘b" £ _0100T0T0D Theorem 28 (arxiv numbering):
T"(2) ‘j/ 2 T : The upper z-rectangle prediction problem
. : B o T ITITII 1 1 is in NC1 and not in ACO.
z in base 2; n bits =511 5 Tl1lelT 1 ol0lalG
T0
W \;07" _________ (0]

o
o

W. Hesse, E. Allender and D. Barrington.

Journal of Computer Science and System Science, 2002.

Hlo o o

o olo o o

=lo o=

o olo o

o |l o

o =l =l
o

0

& oseq ur (z)ul
)
o)
%
Y

lower z-rectangle
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Base conversion: The Collatz Quasi CA (CQCA)

“The Collatz process embeds a base conversion algorithm”, T. Stérin and D. Woods, RP 2020

Motivation

- Computational power of the Collatz
process? s it Turing complete?

CO m p I eXity Of p red i Cti O n : - Complexity of prediction problem?

ACO polysize, constant depth, arbitrary fanin, Bolean circuits
NC1 . polysize, log depth, fanin <= 2, Bolean circuits

(c) < 00
upper z-rectangle . 0710 ACO != P, problem pARITY notin ACO
3, 000
o ‘; 070 000
‘bﬁe‘&" o _ 010 0 Theorem 28 (arxiv numbering):
T"(2) b L A e : The upper z-rectangle prediction problem
i : I G TTTTT 1 1 is in NC1 and not in ACO.
z in base 2; n bits 1511 1T T13I61T 1 5lTl1l0
] % 1E 0]
S . S | e | o= = o o e e o w-
= o XO DA T i ITo00
= i 0/0 00 To0 .
£ ,b,QQ“ 0/0070 e mior Soes s Syaon Sooncn. 200
g 00070
o 1/00 .
& lower z-rectangle Answering if a base 3-encoded number

is odd or even reduces to PARITY.



Base conversion: The Collatz Quasi CA (CQCA)

“The Collatz process embeds a base conversion algorithm”, T. Stérin and D. Woods, RP 2020

Future Work

(©)

upper z-rectangle

Motivation

- Computational power of the Collatz

process? s it Turing complete?

- Complexity of prediction problem?

0

¢ oseq UI 2

o
- o
o ol

(@]

QQ\:{Q/
2

& oseq ur (z)ul

Hlo o o
o olo o o
=lo o=
o olo o
o ~l O

0

lower z-rectangle

o o Hl o
ol o ol ol

0
0
0

o Hl = o
o = = = o ol
o
o =
o |-
ﬁ o ~l o ol o

o =l =l
o

Theorem 28 (arxiv numbering):
The upper z-rectangle prediction problem
is in NC1 and not in ACO.

What about the lower z-rectangle?
In P, not in ACO. Can we get matching
bounds?
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Base conversion: The Collatz Quasi CA (CQCA)

“The Collatz process embeds a base conversion algorithm”, T. Stérin and D. Woods, RP 2020

Motivation

- Computational power of the Collatz

prOCESS’? Is it Turing complete?
F utu re WO rk - Complexity of prediction problem?

What about this ?

=

Magenta column: x = "1120102" = 1145
Blue line: x = "10001111001" = 1145

1
i
T
[u
i
10
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Base conversion: The Collatz Quasi CA (CQCA)

“The Collatz process embeds a base conversion algorithm”, T. Stérin and D. Woods, RP 2020

Future Work

=
1
O
0
0O

Motivation

-Cmptt IpwerfthCIIt

ooooooooooooooooooooooooooo

EEI D == -

ol =

What about this diagonal?

Magenta column: x = "1120102" = 1145
Blue line: x = "10001111001" = 1145

Diagonal is x in base 6

s B B BB B

2 3 4 5
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Base conversion: The Collatz Quasi CA (CQCA)

“The Collatz process embeds a base conversion algorithm”, T. Stérin and D. Woods, RP 2020

Motivation
- Computational power of the Collatz

2
Futu re Work ] pcror(;(?js tl)sllt';u;ng;on;plete’; I

Need to further understand this encoding

e Link with Chinese Remainder
e LinkwithZ2 xZ3 =276

o= B B BB B

3 4 5 19

i
1
1
il
Il

N

ol =




Base conversion: The Collatz Quasi CA (CQCA)

“The Collatz process embeds a base conversion algorithm”, T. Stérin and D. Woods, RP 2020

Future Work

Motivation

- Computational power of the Collatz

prOCESS? Is it Turing complete?
- Complexity of prediction problem?

What about that other diagonal?

e What does it compute?

X =5145 = 1145

y = 32054 = 4354 -
HERHH
il H
0 1 3 4 5



Conclusion

e Using base 2/3/6 Finite State Automaton and Cellular
Automaton descriptions of the Collatz process brings it in the
scope of Computer Science.

e [n that context we have a sound framework to ask:

What is the computational power of the
Collatz process? Is it Turing complete?
Complexity of prediction problem?

121



Conclusion

e Using base 2/3/6 Finite State Automaton and Cellular
Automaton descriptions of the Collatz process brings it in the

scope of Computer Science.

In that context we have a sound framework to ask:

What is the computational power of the
Collatz process? Is it Turing complete?
Complexity of prediction problem?

So, what’s next?
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