
An Intrinsic Difference Between
Vanilla RNNs and GRU Models

Tristan Stérin

Computer Science Department
École Normale Supérieure de Lyon

Email: tristan.sterin@ens-lyon.fr

Nicolas Farrugia

Electronics Department
IMT Atlantique

Email: nicolas.farrugia@imt-atlantique.fr

Vincent Gripon

Electronics Department
IMT Atlantique

Email: vincent.gripon@imt-atlantique.fr

Abstract—In order to perform well in practice, Recurrent
Neural Networks (RNN) require computationally heavy archi-
tectures, such as Gated Recurrent Unit (GRU) or Long Short
Term Memory (LSTM). Indeed, the original Vanilla model fails to
encapsulate middle and long term sequential dependencies. The
aim of this paper is to show that gradient training issues, which
have motivated the introduction of LSTM and GRU models, are
not sufficient to explain the failure of the simplest RNN. Using
the example of Reber’s grammar, we propose an experimental
measure of both Vanilla and GRU models, which suggest an
intrinsic difference in their dynamics. A better mathematical
understanding of this difference could lead to more efficient
models without compromising performance.

Index Terms—Recurrent Neural Networks; Gradient Backprop-
agation; Grammatical Inference; Dynamical Systems.

I. INTRODUCTION

Recurrent Neural Networks (RNN) [1] are a class of artifi-
cial neural networks that feature connections between hidden
layers that are propagated through time in order to learn
sequences. In recent years, such networks, and especially
variants such as Gated Recurrent Units (GRU) [2] or Long
Short-Term Memory (LSTM) networks [3] have demonstrated
remarkable performance in a wide range of applications in-
volving sequences, such as language modeling [4], speech
recognition [5], image captioning [6], and automatic trans-
lation [7]. Such networks often include a large number of
layers (i.e., deep neural networks), each containing many
neurons, resulting in a large set of parameters to be learnt.
The main reason explaining this challenge are vanishing or
exploding gradients while training parameters [8], [9], such
problems being likely to emerge when learning any large set
of parameters.

The conceptual leap from Vanilla RNN architectures to
LSTM or GRU was initially justified by the inability of Vanilla
RNN to learn long term sequential dependencies [3]. Theoret-
ically, it is not clear whether this limitation of Vanilla RNN
is indeed due to training issues, or to an intrinsic limitation
in their architecture. In this paper, we propose to revisit this
question by confronting GRU and Vanilla RNN by suggesting
the existence of intrinsic theoretical differences between two
models. We use the Embedded Reber Grammar and introduce
an experimental measure based on dynamical systems theory,

in order to highlight a limitation of Vanilla RNN architectures
without encountering vanishing or exploding gradient issues.

The remainder of the paper is organized as follows. In
Section II, we present the two RNN models that we evaluate,
Vanilla RNN and GRU. Section III presents the Embedded Re-
ber Grammar. In Section IV, we perform a set of experiments
using both models, and highlight limitations of the Vanilla
RNN while no issues with gradients can be demonstrated.
in Section V, we introduce a discrepancy measure and show
how it can be used to point out the limitations of the Vanilla
RNN model. Finally, we give conclusions and perspectives in
Section VI.

II. RECURRENT NEURAL NETWORK MODELS

In this section, we introduce the two models of recurrent
neural networks we discuss in this paper, namely Vanilla
RNNs and GRU.

A. Vanilla RNNs

Vanilla is the first model of recurrent artificial neural
networks that was introduced [1]. Relying on very simple
dynamics, this neural network is described with the following
set of equations, indexed by time-step t:

ht = �(Uhxt +Whht�1) (1)
yt = Oht (2)

where:

� xt 2 Rn is the input of the RNN,
� ht 2 R

k is called hidden state of the RNN, and acts
as a memory of the current state the dynamics is into.
When starting a sequence, it is set to the all zero vector
(h�1 = 0).

� yt 2 R
p is the output of the RNN,

� The logistic function �(x) = 1

1+e�x
is applied

component-wise,
� Uh;Wh; O are the network’s parameters.

Figure 1 depicts a Vanilla RNN with four input neurons,
a hidden layer with five neurons and one output neuron. The



output of such a neural network depends on both the input xt
and the hidden state ht�1 that stores information about the
past values observed in the sequence.

B. GRU

GRU neural networks are a LSTM variant based on the
following equations:

z = �(Uzxt +W zht�1)

r = �(Urxt +W rht�1)

h0 = tanh(Uh0xt +Wh0(ht�1 � r)

ht = (1� z) � h0 + z � ht�1

yt = Oht

where:

� xt 2 Rn is the input vector,
� ht 2 Rk is the hidden state vector, h�1 = 0,
� yt 2 R

p is the output vector,
� r 2 R

k is the “reset” vector, which is multiplied
component-wise with the hidden state vector ht when
updating it, hence its name,

� z 2 R
k is a combination vector, which acts as a

barycenter vector that combines the previous hidden state
and currently estimated one to produce the next one,

� The logistic function �(x) = 1

1+e�x
is applied

component-wise,
� Uz;r;h0 ;W z;r;h0 ; O are the network’s parameters.

Both models are known to be Turing complete [10] and
could theoretically achieve the same tasks. In practice, it is
readily seen that it is much harder to encapsulate long term
dependencies with Vanilla RNNs than with its LSTM-based
counterpart.

III. PERFORMANCE OF MODELS ON REGULAR AND
EMBEDDED REBER’S GRAMMAR

Here, we introduce the grammatical inference problem
associated with Reber’s grammar as in [3] (Figure 2). The
corresponding regular expression is BPT �V (PSEjV E) +
BTS�X(SEjXT �V (PSEjV E)).

We examine the ability of neural network models to infer
this automaton from a set of examples in the grammar.
Each letter is encoded using a one-hot encoding scheme,
thus the input dimension n equals the number of different
letters (n = 7). A word of length m is thus encoded as a
sequence of vectors x0 : : :xm�1. A valid word is a word for
which the automaton ends in the rightmost state. For instance,
BTSSXXTTTV PSE is valid and BTSSE is not. The
output space is also of size 7 and gives a –non normalised–
probability distribution on the following character given the
past input sequence. The RNN output –after softmax– can be
interpreted as follows:

Pr(xt+1jx0 : : :xt)

We first train a Vanilla RNN model on this
task using a dataset comprising 250 Reber strings.
Code can be found at https://github.com/brain-
bzh/IARIA17 RNNs/blob/master/ReberGrammars/.

The results are depicted in Figure 3 under the form of
heatmaps. Interestingly, this model was able to provide good
predictions after training, as we retrieve the edges of the
corresponding states in the automaton of Figure 2.

Figure 4 shows the heatmaps of the hidden vectors ht. Here,
a Vanilla RNN successfully infers some of the automaton’s
states, (e.g., q2 and q5). Hidden states are very similar even
when sequences used to reach them are different.

Hence, a Vanilla RNN model can be trained to infer Reber’s
grammar. This result can be explained by the fact that it is
sufficient to recall the two previous letters to infer which state
the automaton is in.

We now consider the example of the Embedded Reber’s
grammar. An automaton corresponding to this grammar is
depicted in Figure 5. In short, the Embedded Reber’s grammar
consists in two copies of Reber’s grammar, except that all
strings with a T (resp. P ) in second position must have a T

(resp. P ) at the end, thus exhibiting a long term sequential
dependency. We train a Vanilla RNN (k = 18) and a GRU
model (k = 10) with about the same number of parameters
(' 590), using the same dataset comprising 2000 example
sequences.

Figure 6 (resp. Figure 7) depicts the output given by a
Vanilla RNN (resp. a GRU model) on the prediction task. This
figures emphasizes the fact that Vanilla RNNs are unable to
capture long term dependencies, whereas GRU successfully
do so.

The confusion phenomenon observed in Figure 6 is already
true for the hidden layer, as depicted in Figure 8. In the next
sections, we investigate hypothesis regarding the origin of such
differences of performance between the two models.

IV. GRADIENT’S COEFFICIENTS DISTRIBUTION

A commonly used argument to justify the performance dif-
ference between Vanilla RNNs and GRU models, as presented
in [8], is related to the gradient instability when learning
parameters of Vanilla RNNs, leading to gradient’s coefficients
that either explode or vanish. We tested this hypothesis by
studying the statistical distributions of gradients when training
both neural network models. Figure 9 represents the obtained
distribution of absolute value of gradient’s coefficients for both
the training of Vanilla RNNs and the GRU model, over all
the examples in the training set (embedded Reber’s grammar).
Both distributions are similar and discredit the hypothesis that
instable gradient’s coefficients are responsible for the unability
of Vanilla RNNs to correctly infer the embedded Reber’s
grammar.



(xt)1

(xt)2

(xt)3

(xt)4

yt

Hidden
layer at t

W

Hidden
layer
at t-1

Wh
Input
layer

O

Output
layer

Fig. 1. Vanilla RNN with n = 4, k = 5 and p = 1.

Fig. 2. Reber’s grammar automaton.

V. THE (L,K)-DISCREPANCY

We now introduce a formal way to measure the discrepancy
capability of a recurrent neural network. More precisely, we
introduce a positive quantity that illustrates the ability a model
has to propagate long term dependencies.

Definition V.1 ((l,k)-discrepancy). Let us consider:

� Two integers l; k 2 N,
� A binary alphabet (n = 2), symbolically represented by
0 and 1 ,

� A RNN – either Vanilla RNN or GRU model – compris-
ing k neurons,

� The words u = 0

l�1
z }| {

0 : : :0 and v = 1

l�1
z }| {

0 : : :0 differing only
by their first bit,

� hu and hv the states where the model’s hidden state lands
after reading u and v.

Then the (l,k)-discrepancy D(l; k) of the model is computed
with the following process:

Fig. 3. Heatmaps of the output layer for different sequences on a 5-neurons
Vanilla RNN model trained on Reber’s gramm.

� Compute a numerous time (2000 in the following) jjhu�
hvjj2 for different random affectations of the model’s
parameters (sampled over N (0; 1) in the paper).

� Average these norms, it is D(l; k).

The quantity D(l; k) is integrally computed without train-
ing. It summarizes the capacity of the k-neurons network to
distinguish between sequences of length l perfectly identical
but their first bit.

Figure 10 depicts the evolution of D(l; k) for various values
of l and k. Code can be found at https://github.com/brain-



Fig. 4. Heatmaps of the hidden layer for a 5-neurons Vanilla on different
observed sequences of a Reber’s grammar. Corresponding automaton’s states

are also listed.

bzh/IARIA17 RNNs/tree/master/lk-discrepancy/.
It shows that as soon as l becomes large, the discrepancy

ability of Vanilla RNNs becomes very close to 0, meaning that
the two binary sequences are indistinguishable.

In comparison, Figure 11 depicts the discrepancy for the
GRU model for various values of l and k. As we can see
here, the discrepancy does not goes to 0 for large values of
l, suggesting the ability of the dynamics of GRU to maintain
long term information in the hidden state of the network.

These profiles provide an intuitive explanation of the results
for the Reber’s grammar: the Vanilla could succeed in the first
problem because of the really short term memory required and
definitely failed in the embedded case because of out-of-range
dependencies.

VI. CONCLUSIONS AND FUTURE RESEARCH

Through Reber’s grammar example we saw that Vanilla and
GRU differenciate themselves more than just through learning
and gradients arguments. This observation motivates future
mathematical research to formally understand their intrinsic
difference in term of dynamical systems. A good starting point
could reside in the Echo States Network (c.f. [11]) theory and
the mathematical tools it develops. Understanding this differ-
ence could lead to simpler RNN models than GRU/LSTM, less
computationally heavy, and with better long term abilities.

ACKNOWLEDGEMENTS

This work was funded in part by the CominLabs project
“Neural Communication”.

REFERENCES

[1] Pineda and F. J., “Generalization of back-propagation to recurrent neural
networks”, Physical review letters, vol.59, pp.19, 1987.

[2] Cho K., Merriënboer B., Bahdanau D. and Bengio Y., “On the Properties
of Neural Machine Translation: Encoder-Decoder Approaches”, arXiv,
2014.

[3] Hochreiter S. and Schmidhuber J., “Long short-term memory”, Neural
Computation, vol.9, pp.1735-1780, 1997.

[4] Mikolov T., Karafiát, M., Burget, L., Cernocký, J. and Khudanpur S.,
“Recurrent neural network based language model”, Interspeech, vol.3,
pp.2, 2010.

[5] Graves A., Mohamed, A. and Hinton G., “Speech recognition with
deep recurrent neural networks”, 2013 IEEE international conference
on acoustics, speech and signal processing. , IEEE, 2013.

[6] Karpathy, A., and Fei-Fei, L., “Deep visual-semantic alignments for
generating image descriptions”, Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, IEEE, 2015.

[7] Sutskever, I., Oriol V. and Quoc V. Le., “Sequence to sequence learning
with neural networks”, Advances in neural information processing
systems, 2014.

[8] Bengio Y., Sinard P. and Frasconi P., “Learning Long-Term Dependen-
cies with Gradient Descent is Difficult”, IEEE transactions on neural
networks, vol.5, pp.2, 1994.

[9] Pascanu, R., Tomas M. and Bengio, Y., “On the difficulty of training
recurrent neural networks”, International Conference on Machine Learn-
ing, vol.3, pp.28, 2013.

[10] T. Siegelmann H. and D. Sontag E., “On the Computational Power of
Neural Nets”, Journal of computer and system sciences, vol.50, pp.132-
150, 1995.

[11] Jaeger H., “The ”echo state” approach to analysing ang training recurrent
neural networks”, TechReport, 2001.



Fig. 5. A depiction of the automaton corresponding to the Embedded Reber’s grammar.

Fig. 6. Vanilla RNN prediction on several sequences of the Embedded
Reber’s grammar.

Fig. 7. GRU prediction on several sequences of the Embedded Reber’s
grammar. The expected letters are correct and reflect the fact the embedded

Reber’s grammar has been correctly inferred.



Fig. 8. Hidden layer of a 18-neurons Vanilla RNN after training on the
embedded Reber’s grammar.

RNN

GRU
Fig. 9. Gradient’s coefficients for both Vanilla RNNs and GRU models

when learning the embedded Reber’s grammar from 2000 examples.

Fig. 10. Evolution of D(l; k) for a Vanilla RNN.

Fig. 11. Evolution of D(l; k) for the GRU model.


