
The Macroscopic Approach
The Microscopic Approach

References

Thermodynamics at the Macroscopic and
Microscopic Levels

Tristan Stérin
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Fundamental Equations

U =

Extensive Parameters︷ ︸︸ ︷
U(S ,V , ~N)

Requirements:

1 U ∈ C1, convex:

U(λx + (1− λ)y) ≤ λU(x) + (1− λ)U(y)

2 U positively homogeneous of degree 1:

∀α > 0, U(αx) = αU(x)

3 ∂U
∂S ≥ 0, temperature is positive

T ≡ ∂U

∂S
, P ≡ −∂U

∂V
, µi ≡ −

∂U

∂Ni︸ ︷︷ ︸
Intensive Parameters

S = S(U,V , ~N)

1 S ∈ C1,
concave

2 S positively
homogeneous
of degree 1

3 ∂S
∂U ≥ 0

∂S
∂U = 1/T

∂S
∂V = −P/T
∂S
∂Ni

= −µi/T
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What is Temperature ?

T (S ,V , ~N) = ∂U
∂S (S ,V , ~N), 1/T = ∂S

∂U
T (λx) = T (x), T is intensive (homogeneous of degree 0)

Source: Molecular Driving Forces, p.223

At small temperature, a gain in energy will result in a bigger gain
in entropy than at high temperature.
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Principles of Thermodynamics

1 Energy can vary for two reasons, heat or work:

dU = δq + δw

2 At fixed U = U0, thermodynamic equilibrium is reached for
the value of the extensive parameters which maximize
entropy:

Seq = S(U0,Veq, ~Neq) is maximal

Equivalently, at fixed S = S0, thermodynamic equilibrium is
reached for the value of the extensive parameters which
minimize energy.

3 At T = 0 we have S = 0.

Tristan Stérin About Thermodynamics 4



The Macroscopic Approach
The Microscopic Approach

References

Internal Energy and Entropy
Enthalpy
Gibbs Free Energy

Second Law Visualized

Maximizing S at fixed U Minimizing U at fixed S

Source: https://ps.uci.edu/~cyu/p115B/LectureNotes/Lecture13.pdf
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Enthalpy

U = U(S ,V , ~N)
P ≡ − ∂U

∂V

Enthalpy is the Legendre Transform of U with respect to V :

H = H(S ,P, ~N)
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Legendre Transform

Tristan Stérin About Thermodynamics 7



The Macroscopic Approach
The Microscopic Approach

References

Internal Energy and Entropy
Enthalpy
Gibbs Free Energy

Legendre Transform
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Legendre Transform

The Legendre Transform of a strictly convex function f : R→ R
is the representation of f in the slope/intercept plan. It is always a
strictly concave function.
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Legendre Transform

Formally, the Legendre Transform of a strictly convex function
f : R→ R is the function g such that:

{
g(s) = f (x)− s ∗ x
f ′(x) = s

⇔ g(s) = f (f ′−1(s))− s ∗ f ′−1(s)

Alternatively and more generally it can be defined as:

g(s) = infx (f (x)− s ∗ x)

The Legendre Transform of f expresses f in function of df
dx .

Example. The Legendre Transform of x 7→ x2 is s 7→ −s2/4
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Legendre Transform

The Legendre Transform is involutive.
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Back to Enthalpy

U = U(S ,V , ~N)
P ≡ − ∂U

∂V

Enthalpy is the Legendre Transform of U with respect to V :

g(s) = infx (f (x)− s ∗ x) with s =
∂f

∂x

Becomes:

H(S ,P, ~N) = infV (U(S ,V , ~N) + PV )

H(S ,P, ~N) = U(S ,V , ~N) + PV with V s.t
∂U

∂V
(S ,V , ~N) = −P

Which, in physics, becomes:

H = U + PV dH = dU + VdP + PdV
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Why Enthalpy?

At constant pressure we have:

dH = dU + VdP + PdV

dH = dU + PdV (Constant Pressure)

dH = δq + δw + PdV (First Principle)

dH = δq − PdV + PdV (Quasi-static Process)

dH = δq

At constant pressure, enthalpy changes reflect exactly the gain/loss
in heat of the system.

dH = δq
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Why Enthalpy? Because Heat

At constant pressure, enthalpy changes reflect exactly the gain/loss
in heat of the system.

dH = δq

Since the quantity δq
∂T is physically measurable, we have access

to ∂H
∂T = CP , the isobaric heat capacity.

Hence we can measure enthalpic and entropic changes since:

∆H =

∫ TB

TA

CP(T )dT and ∆S =

∫ TB

TA

CP(T )

T
dT

For the second point, notice: ∂H
∂T = ∂H

∂S
∂S
∂T = T ∂S

∂T .
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Isobaric Heat Capacity of Water

Source:
https://www.engineersedge.com/physics/properties_of_water_14467.htm

P = RI 2 Q = P∆t
∆t time required to
elevate water
temperature by 1◦

Knowing the isobaric heat capacity of water allows to do Coffee
Cup Calorimetry.
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From Theory to Experiment and Vice Versa

For a simple monoatomic ideal gas, CP = 5
2R is constant:

Source: Molecular Driving Forces, p.226

1/T = ∂S
∂U

H =
∫
T CPdT
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Gibbs Free Energy

Gibbs Free Energy is G = G (T , p, ~N) is the Legendre Transform of
H(S , p, ~N) with respect to S .

Said equivalently G is the Legendre Transform of U(S ,V , ~N) with
respect to the pair (S ,V ).

G (T , p, ~N) = infS (H(S , p, ~N)− TS)

= inf(S,V ) (U(S ,V , ~N)− TS + PV )

Which, in physics, becomes:

G = H − TS dG = −SdT + Vdp +
∑
i

µidNi
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Why Gibbs Free Energy? Because Chemistry

From the Second Law we can deduce that at constant T and P
equilibrium corresponds to the minimization of G .
Cool for chemistry! At equilibrium, dG = 0 =

∑
i µidNi

More generally, we can revisit the second law of thermodynamics
for all potentials:

Name Variables Reservoir “Expression” At Equilibrium

Entropy U,V , ~N Constant U S Maximal

Energy S ,V , ~N Constant S U Minimal

Helmotz Free Energy T ,V , ~N Constant T F = U - TS Minimal

Enthalpy U, p, ~N Constant P H = U + pV Minimal

Gibbs Free Energy T , p, ~N Constant T ,P G = H - TS Minimal

Thermodynamics potentials are convex in their extensive variables
and concave in their intensive ones.
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Interpreting ∆G

∆G = ∆H − T∆S

For a chemical reaction A→ B three possible cases:

1 ∆G > 0: the reaction A→ B cannot happen, B → A is
favored

2 ∆G = 0: equilibrium

3 ∆G < 0: the reaction can happen (maybe not kinetically
favored)

∆H < 0: exothermic reaction, releasing heat

∆H > 0: endothermic reaction, consuming heat
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Interpreting ∆G

∆G = ∆H − T∆S

In terms of ∆H and ∆S :

1 ∆H > 0 and ∆S < 0: thermodynamically impossible reaction.
An increase in enthalpy must result in an increase in entropy.
You can’t turn graphite into diamond.

2 ∆H > 0 and ∆S > 0: entropy driven reaction. Depends on
T . Example: NaNO3(s) → Na+(aq) + NO3−(aq)

3 ∆H < 0 and ∆S > 0: does not depend on T . Can be entropy
or enthalpy driven. Diamond degrades into graphite (but it’s
slow).

4 ∆H < 0 and ∆S < 0: enthalpy driven reaction. Example:
Na(s) + Cl2(g) → 2NaCl(s).
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Measuring ∆G : Van’t Hoff Plot

Dissociation Reaction: AB → A + B
Isobaric Reaction Constant: Kp = [A][B]

[AB]

Van’t Hoff Relations:

∆G = RT ln(Kp)
∂lnKp

∂(1/T ) = −∆H
R

Source: Molecular Driving Forces, p.245
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Measuring ∆G : Melting Temperature

The melting temperature is the temperature where half the
double-stranded are dissociated.

Tm = − ∆G

R ln [AB]initial

2

Easier way to get to ∆G !
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∆G for DNA

Simple secondary structure:

Source: https://en.wikipedia.org/wiki/Nucleic_acid_thermodynamics
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The Microscopic Setup

We have N possible states, with known energies Ei (1 ≤ i ≤ N).
In the case of DNA secondary structures, we have Ei = ∆G (si ).
We wish to find (p1, . . . , pN) the probability distribution of
appearance of these states.

At a fixed temperature T , we choose this distribution to be the
solution of the following free energy minimization problem:

min(p1,...,pN)G = min(p1,...,pN) < E > −kTS

With:

< E >=
∑

Eipi the average energy of the system

S = −
∑

pi ln(pi ) which is the Shannon entropy of the
distribution

Notice the implicit constraint:
∑

pi = 1.
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The Boltzmann Distribution

The free energy minimization problem:

min(p1,...,pN)G = min(p1,...,pN) < E > −kTS

Admits one unique solution which is Boltzmann Distribution:

pi =
1

Q
e−βEi

With β = 1/kT and Q =
∑

i e
−βEi the normalization constant.

Tristan Stérin About Thermodynamics 26



The Macroscopic Approach
The Microscopic Approach

References

Free Energy Minimization
Distribution of DNA Secondary Structures

The Partition Function

The normalization constant Q(β) =
∑

i e
−βEi is also called the

partition function. It is seen as a function of β.

We can deduce all equilibrium quantities from Q(β) at
temperature T :

< E >opt=
dQ
dβ (β(T ))

Sopt = k lnQ(β(T ))+ < E >opt /T

Gopt = −kT lnQ
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Nupack Example

Q =
∑
i

e−βEi pi =
1

Q
e−βEi Gopt = −kT lnQ
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Nupack Example

Q =
∑
i

e−βEi pi =
1

Q
e−βEi Gopt = −kT lnQ
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The End

Questions :) ?
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