Thermodynamics at the Macroscopic and Microscopic Levels

Tristan Stérin tristan.sterin@mu.ie Maynooth University Ireland

ERC No 772766, SFI 18/ERCS/5746

August 28, 2019

Internal Energy and Entropy Enthalpy Gibbs Free Energy

Fundamental Equations

Extensive Parameters

$$U = \overline{U(S, V, \vec{N})}$$

Requirements:

• $U \in C^1$, convex:

$$U(\lambda x + (1 - \lambda)y) \leq \lambda U(x) + (1 - \lambda)U(y)$$

2 U positively homogeneous of degree 1:

 $\forall \alpha > 0, \ U(\alpha x) = \alpha U(x)$

$$\underline{T \equiv \frac{\partial U}{\partial S}, P \equiv -\frac{\partial U}{\partial V}, \mu_i \equiv -\frac{\partial U}{\partial N_i}}_{i}$$

Intensive Parameters

 $S=S(U,V,\vec{N})$

 $\ \, {\bf S}\in {\cal C}^1,$

concave

S positively homogeneous of degree 1

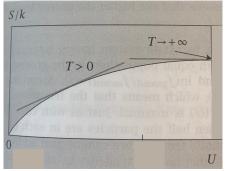
$$\frac{\partial S}{\partial U} = 1/T$$
$$\frac{\partial S}{\partial V} = -P/T$$
$$\frac{\partial S}{\partial N_{i}} = -\mu_{i}/T$$

Internal Energy and Entropy Enthalpy Gibbs Free Energy

What is Temperature ?

$$T(S, V, \vec{N}) = \frac{\partial U}{\partial S}(S, V, \vec{N}), \ 1/T = \frac{\partial S}{\partial U}$$

$$T(\lambda x) = T(x), \ T \text{ is intensive (homogeneous of degree 0)}$$



Source: Molecular Driving Forces, p.223

At small temperature, a gain in energy will result in a bigger gain in entropy than at high temperature.

Tristan Stérin

About Thermodynamics

Internal Energy and Entropy Enthalpy Gibbs Free Energy

Principles of Thermodynamics

Inergy can vary for two reasons, heat or work:

$$dU = \delta q + \delta w$$

At fixed U = U₀, thermodynamic equilibrium is reached for the value of the extensive parameters which maximize entropy:

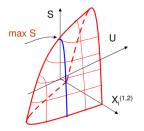
$$S_{
m eq} = S(\mathit{U}_{0}, \mathit{V}_{
m eq}, ec{\mathcal{N}}_{
m eq})$$
 is maximal

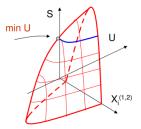
Equivalently, at fixed $S = S_0$, thermodynamic equilibrium is reached for the value of the extensive parameters which **minimize** energy.

• At
$$T = 0$$
 we have $S = 0$.

Internal Energy and Entropy Enthalpy Gibbs Free Energy

Second Law Visualized





Maximizing S at fixed U

Minimizing U at fixed S

Source: https://ps.uci.edu/~cyu/p115B/LectureNotes/Lecture13.pdf

Enthalpy

$$U = U(S, V, \vec{N})$$

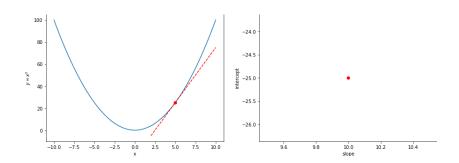
 $P \equiv -\frac{\partial U}{\partial V}$

Enthalpy is the **Legendre Transform** of U with respect to V:

$$H=H(S,P,\vec{N})$$

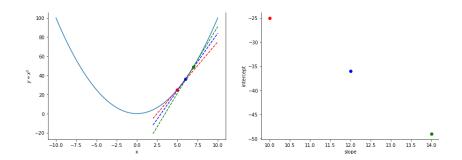
Internal Energy and Entropy Enthalpy Gibbs Free Energy

Legendre Transform



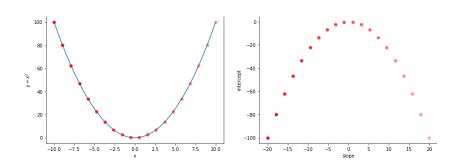
Internal Energy and Entropy Enthalpy Gibbs Free Energy

Legendre Transform



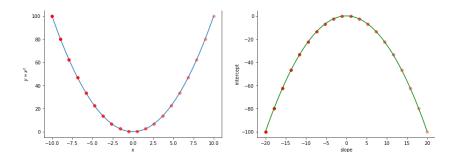
Internal Energy and Entropy Enthalpy Gibbs Free Energy

Legendre Transform



Internal Energy and Entropy Enthalpy Gibbs Free Energy

Legendre Transform



The **Legendre Transform** of a strictly convex function $f : \mathbb{R} \to \mathbb{R}$ is the representation of f in the slope/intercept plan. It is always a strictly concave function.

Legendre Transform

Formally, the Legendre Transform of a strictly convex function $f : \mathbb{R} \to \mathbb{R}$ is the function g such that:

$$\begin{cases} g(s) = f(x) - s * x \\ f'(x) = s \end{cases} \Leftrightarrow g(s) = f(f'^{-1}(s)) - s * f'^{-1}(s)$$

Alternatively and more generally it can be defined as:

$$g(s) = \inf_{x} (f(x) - s * x)$$

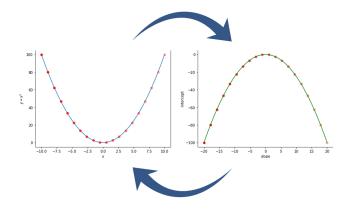
The Legendre Transform of f expresses f in function of $\frac{df}{dx}$.

Example. The Legendre Transform of $x \mapsto x^2$ is $s \mapsto -s^2/4$

Internal Energy and Entropy Enthalpy Gibbs Free Energy

Legendre Transform

The Legendre Transform is **involutive**.



Back to Enthalpy

$$U = U(S, V, \vec{N})$$
$$P \equiv -\frac{\partial U}{\partial V}$$

Enthalpy is the **Legendre Transform** of U with respect to V:

$$g(s) = \inf_{x} (f(x) - s * x)$$
 with $s = \frac{\partial f}{\partial x}$

Becomes:

$$H(S, P, \vec{N}) = \inf_{V} (U(S, V, \vec{N}) + PV)$$

$$H(S, P, \vec{N}) = U(S, V, \vec{N}) + PV \text{ with } V \text{ s.t } \frac{\partial U}{\partial V}(S, V, \vec{N}) = -P$$

Which, in physics, becomes:

$$H = U + PV$$
 $dH = dU + VdP + PdV$

Tristan Stérin

About Thermodynamics

Internal Energy and Entropy Enthalpy Gibbs Free Energy

Why Enthalpy?

At constant pressure we have:

$$dH = dU + VdP + PdV$$

$$dH = dU + PdV$$
 (Constant Pressure)

$$dH = \delta q + \delta w + PdV$$
 (First Principle)

$$dH = \delta q - PdV + PdV$$
 (Quasi-static Process)

$$dH = \delta q$$

At constant pressure, enthalpy changes reflect exactly the gain/loss in heat of the system.

$$dH = \delta q$$

Internal Energy and Entropy Enthalpy Gibbs Free Energy

Why Enthalpy? Because Heat

At constant pressure, enthalpy changes reflect exactly the gain/loss in heat of the system.

$$dH = \delta q$$

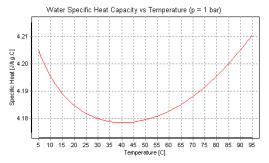
Since the quantity $\frac{\delta q}{\partial T}$ is **physically measurable**, we have access to $\frac{\partial H}{\partial T} = C_P$, the **isobaric heat capacity**. Hence we can measure enthalpic and entropic changes since:

$$\Delta H = \int_{T_A}^{T_B} C_P(T) dT \text{ and } \Delta S = \int_{T_A}^{T_B} \frac{C_P(T)}{T} dT$$

For the second point, notice: $\frac{\partial H}{\partial T} = \frac{\partial H}{\partial S} \frac{\partial S}{\partial T} = T \frac{\partial S}{\partial T}$.

Internal Energy and Entropy Enthalpy Gibbs Free Energy

Isobaric Heat Capacity of Water



 $P = RI^2 \ Q = P\Delta t$ Δt time required to elevate water temperature by 1°

Source:

https://www.engineersedge.com/physics/properties_of_water_14467.htm

Knowing the isobaric heat capacity of water allows to do **Coffee Cup Calorimetry**.

Internal Energy and Entropy Enthalpy Gibbs Free Energy

From Theory to Experiment and Vice Versa

For a simple monoatomic ideal gas, $C_P = \frac{5}{2}R$ is constant:

$$1/T = \frac{\partial S}{\partial U}$$

$$H = \int_T C_P dT$$

Source: Molecular Driving Forces, p.226

Gibbs Free Energy

Gibbs Free Energy is $G = G(T, p, \vec{N})$ is the Legendre Transform of $H(S, p, \vec{N})$ with respect to S.

Said equivalently G is the Legendre Transform of $U(S, V, \vec{N})$ with respect to the pair (S, V).

$$G(T, p, \vec{N}) = \inf_{S} (H(S, p, \vec{N}) - TS)$$

= $\inf_{(S,V)} (U(S, V, \vec{N}) - TS + PV)$

Which, in physics, becomes:

$$G = H - TS$$
 $dG = -SdT + Vdp + \sum_{i} \mu_{i}dN_{i}$

Why Gibbs Free Energy? Because Chemistry

From the Second Law we can deduce that at **constant T and P** equilibrium corresponds to the minimization of *G*. Cool for chemistry! At equilibrium, $dG = 0 = \sum_i \mu_i dN_i$

More generally, we can revisit the second law of thermodynamics for all potentials:

Name	Variables	Reservoir	"Expression"	At Equilibrium
Entropy	U, V, \vec{N}	Constant U	S	Maximal
Energy	S, V, \vec{N}	Constant S	U	Minimal
Helmotz Free Energy	T, V, \vec{N}	Constant T	F = U - TS	Minimal
Enthalpy	U, p, \vec{N}	Constant P	H = U + pV	Minimal
Gibbs Free Energy	T, p, \vec{N}	Constant T, P	G = H - TS	Minimal

Thermodynamics potentials are **convex** in their extensive variables and **concave** in their intensive ones.

Tristan Stérin

About Thermodynamics

Interpreting ΔG

$\Delta G = \Delta H - T \Delta S$

For a chemical reaction $A \rightarrow B$ three possible cases:

- $\ \, \bullet G > 0: \ \, {\rm the \ reaction} \ \, A \to B \ \, {\rm cannot} \ \, {\rm happen}, \ \, B \to A \ \, {\rm is} \ \, {\rm favored} \ \,$
- **2** $\Delta G = 0$: equilibrium
- ΔG < 0: the reaction can happen (maybe not kinetically favored)
 - $\Delta H < 0$: exothermic reaction, releasing heat
 - $\Delta H > 0$: endothermic reaction, consuming heat

The Macroscopic Approach The Microscopic Approach References Gibbs Free Energy

Interpreting ΔG

$\Delta G = \Delta H - T \Delta S$

In terms of ΔH and ΔS :

- ΔH > 0 and ΔS < 0: thermodynamically impossible reaction. An increase in enthalpy must result in an increase in entropy. You can't turn graphite into diamond.
- ② $\Delta H > 0$ and $\Delta S > 0$: entropy driven reaction. Depends on *T*. Example: NaNO_{3(s)} → Na+_(aq) + NO3-_(aq)
- ΔH < 0 and ΔS > 0: does not depend on T. Can be entropy or enthalpy driven. Diamond degrades into graphite (but it's slow).
- $\label{eq:lambda} \begin{array}{l} \bullet & \Delta H < 0 \text{ and } \Delta S < 0 \text{: enthalpy driven reaction. Example:} \\ & \mathsf{Na}_{(\mathsf{s})} + \mathsf{Cl2}_{(\mathsf{g})} \to 2\mathsf{Na}\mathsf{Cl}_{(\mathsf{s})}. \end{array}$

The Macroscopic Approach Internal Energy and Entropy The Microscopic Approach Enthalpy References

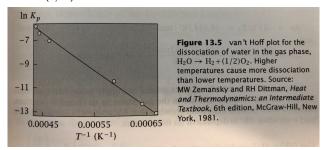
Gibbs Free Energy

Measuring ΔG : Van't Hoff Plot

Dissociation Reaction: $AB \rightarrow A + B$ Isobaric Reaction Constant: $K_p = \frac{[A][B]}{[AB]}$

Van't Hoff Relations:

- $\Delta G = RT \ln(K_p)$
- $\frac{\partial \ln K_p}{\partial (1/T)} = -\frac{\Delta H}{R}$



Source: Molecular Driving Forces, p.245

Internal Energy and Entropy Enthalpy Gibbs Free Energy

Measuring ΔG : Melting Temperature

The melting temperature is the temperature where half the double-stranded are dissociated.

$$T_m = -\frac{\Delta G}{R \ln \frac{[AB]_{\text{initial}}}{2}}$$

Easier way to get to $\Delta G!$

Internal Energy and Entropy Enthalpy Gibbs Free Energy

ΔG for DNA

Table 1. Nearest-neighbor parameters for DNA/DNA

duplexes in 1 M NaCl.^[13]

Nearest-neighbor sequence (5'-3'/3'-5')	ΔH° kJ/mol	ΔS° J/(mol·K)	$\Delta G^\circ_{ m 37}$ kJ/mol
AA/TT	-33.1	-92.9	-4.26
AT/TA	-30.1	-85.4	-3.67
TA/AT	-30.1	-89.1	-2.50
CA/GT	-35.6	-95.0	-6.12
GT/CA	-35.1	-93.7	-6.09
CT/GA	-32.6	-87.9	-5.40
GA/CT	-34.3	-92.9	-5.51
CG/GC	-44.4	-113.8	-9.07
GC/CG	-41.0	-102.1	-9.36
GG/CC	-33.5	-83.3	-7.66
Terminal A/T base pair	9.6	17.2	4.31
Terminal G/C base pair	0.4	-11.7	4.05

Simple secondary structure:

- \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow
- 5' C-G-T-T-G-A 3'
- 3' G-C-A-A-C-T 5'

$$\begin{split} \Delta G^\circ{}_{37}(\text{predicted}) &= \Delta G^\circ{}_{37}(\text{C/G}\text{ initiation}) + \Delta G^\circ{}_{37}(\text{CG/GC}) + \Delta G^\circ{}_{37}(\text{CG/GC}) \\ \Delta G^\circ{}_{37}(\text{GA/CT}) + \Delta G^\circ{}_{37}(\text{A/T}\text{ initiation}) \end{split}$$

Source: https://en.wikipedia.org/wiki/Nucleic_acid_thermodynamics

The Microscopic Setup

We have N possible states, with known energies E_i $(1 \le i \le N)$. In the case of DNA secondary structures, we have $E_i = \Delta G(s_i)$. We wish to find (p_1, \ldots, p_N) the probability distribution of appearance of these states.

At a fixed temperature T, we choose this distribution to be the solution of the following free energy minimization problem:

$$\min_{(p_1,\ldots,p_N)}G = \min_{(p_1,\ldots,p_N)} < E > -kTS$$

With:

- $< E >= \sum E_i p_i$ the average energy of the system
- S = −∑ p_iln(p_i) which is the Shannon entropy of the distribution

Notice the implicit constraint: $\sum p_i = 1$.

Tristan Stérin

Free Energy Minimization Distribution of DNA Secondary Structures

The Boltzmann Distribution

The free energy minimization problem:

$$\min_{(p_1,\ldots,p_N)}G = \min_{(p_1,\ldots,p_N)} < E > -kTS$$

Admits one unique solution which is **Boltzmann Distribution**:

$$p_i = rac{1}{Q} e^{-eta E_i}$$

With $\beta = 1/kT$ and $Q = \sum_{i} e^{-\beta E_{i}}$ the normalization constant.

Free Energy Minimization Distribution of DNA Secondary Structures

The Partition Function

The normalization constant $Q(\beta) = \sum_{i} e^{-\beta E_i}$ is also called the **partition function**. It is seen as a function of β .

We can deduce all equilibrium quantities from $Q(\beta)$ at temperature T:

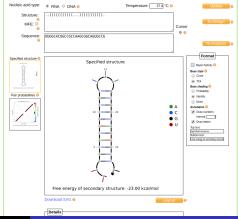
•
$$\langle E \rangle_{opt} = \frac{dQ}{d\beta}(\beta(T))$$

• $S_{opt} = k \ln Q(\beta(T)) + \langle E \rangle_{opt} / T$
• $G_{opt} = -kT \ln Q$

Free Energy Minimization Distribution of DNA Secondary Structures

Nupack Example

$$Q = \sum_{i} e^{-\beta E_{i}}$$
 $p_{i} = \frac{1}{Q} e^{-\beta E_{i}}$ $G_{\text{opt}} = -kT \ln Q$



Tristan Stérin

About Thermodynamics

Free Energy Minimization Distribution of DNA Secondary Structures

0.1 %

28 nt

Nupack Example

$$Q = \sum_{i} e^{-\beta E_{i}} \qquad p_{i} = \frac{1}{Q} e^{-\beta E_{i}} \qquad G_{opt} = -kT \ln Q$$
Details
Sequence properties ?
Free energy: -23.01 kcal/mol ?
Base Number %
A 4 14.3 ?
Ensemble defect: 0.0 nt ?

Normalized ensemble defect:

Nucleotides:

с

G

U

Other

10

10

4

0

35.7 🕜

35.7 🕜

14.3 🕜

0.0 🕜

Free Energy Minimization Distribution of DNA Secondary Structures

The End

Questions :) ?

References

- Molecular Driving Forces, text book, Dill et al.
- Intropy and Partial Differential Equations, text book, C. Evans https:

//math.berkeley.edu/~evans/entropy.and.PDE.pdf

https://en.wikipedia.org/wiki/Nucleic_acid_ thermodynamics