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Introduction
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References

Motivation
Intuition
Axiomatic Approach

Personal Background

Pure maths / theoretical computer science:

Combinatorics
Information Theory (Coding Theory)

Statistics/Machine Learning:

Maximum Entropy Principle
Cross entropy and Softmax Layers

Finance:

Risk Assessment
Portofolio Diversification

Molecular Programming: thermodynamics, ∆S and ∆G.

Entropy is everywhere!!
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Measuring Unpredictability

Entropy is a property of a probability distribution: a probability
distribution can have a low or a high entropy.

Which forecast leaves tomorrow’s weather the most unpredictable ?
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Measuring Unpredictability

Entropy can equivalently be seen as a:

Measure of lack of information / unpredictability

Measure of fairness

Measure of impurity (cf. decision trees)

Goal: we want to mathematically construct a measure of
unpredictability on probability distributions.
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Khinchin Axioms for Entropy

Let Σn be the set of probability distributions with n outcomes:

Σn = {(p1, . . . , pn) | pi ≥ 0 and
n∑
i=1

pi = 1}

And Σ = ∪nΣn. We wish to construct H : Σ→ R, our measure of
unpredictability, such that:

1 The function H is symmetric in (p1, . . . , pn), for example:
H(p1, p2) = H(p2, p1).

2 The restriction of H to Σn is maximal for the uniform
distribution Un = (1/n, 1/n, . . . , 1/n):
∀(p1, . . . , pn) ∈ Σn, H(p1, . . . , pn) ≤ H(1/n, . . . , 1/n).

3 Zero probabilities don’t count:
H(p1, . . . , pn, 0, 0, . . . , 0) = H(p1, . . . , pn).
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The Fourth Axiom

So far, our entropy function is defined for discrete probability
distributions. We extend it to discrete random variables:
H(X) = H(pX).

In order to get to the most common definitions of entropy we need
a fourth axiom. There is a weak and a strong version of the
axiom:

Weak: Let X,Y be two discrete independent random
variables, then: H(X × Y ) = H(X) +H(Y ).

Strong: For any discrete random variables X,Y , we have:
H(X × Y ) = H(X) +

∑
x Pr(X = x)H(Y |X = x).
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The Fourth Axiom

The weak version of the fourth axiom leads to a class of functions,
parametrised by α, b ≥ 0, called Rényi entropies:

Hα(X) =
1

1− α
logb

k∑
i=1

pαi
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Shannon’s Entropy

The strong version of the fourth axiom gives the Rényi entropy H1

(α = 1), which is referred as Shannon’s entropy:

H(X) = −
n∑
i=1

pilogb(pi)

Computer scientists will tend to choose b = 2 while physicists will
tend to use b = e.
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Shannon’s Entropy: Basic Properties

0 ≤ H(X) ≤ H(Un) = logb(n)

H(X1 ×X2 × · · · ×Xn) ≤
n∑
i=1

H(Xi) (subadditivity)
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Shannon’s Entropy: Relation to KL Divergence

The KL divergence of two distributions P = (p1, . . . , pn) and
Q = (q1, . . . , qn) is defined by:

DKL(P ||Q) = −
n∑
i=1

pilogb
qi
pi

It has the following properties:

1 0 ≤ DKL(P ||Q) <∞
2 DKL(P ||Q) = 0 iff P = Q
3 DKL(P ||Q) 6= DKL(Q||P )

Shannon’s entropy reflects the “distance” to the uniform
distribution Un = (1/n, . . . , 1/n):

H(X) = logb(n)−DKL(pX ||Un)
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Shannon’s Entropy: Continuous Generalization

In statistics or finance, a continuous version of Shannon’s entropy
is often used:

Let X be a continuous random variable with density f , the
continuous entropy of X, or differential entropy of X is given by:

h(X) = −
∫ ∞
−∞

f(x)logbf(x)dx

Warning: continuous entropy can be negative therefore it does
not inherit of all the properties of Shannon’s entropy. In that
sense, KL divergence can be seen as more fundamental than
entropy because it remains positive in the continuous domain:

DKL(f ||g) = −
∫ ∞
−∞

f(x)logb
g(x)

f(x)
≥ 0
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Counting With Entropy

Let [n] = {1, . . . , n}.
By a combinatorial argument, we can deduce that:

2n =

n∑
k=0

(
n

k

)
Indeed, we know that |P([n])| = 2n and P([n]) =

⋃n
k=0 Pk([n])

(disjoint). Hence 2n = |P([n])| =
∑n

k=0 |Pk([n])| =
∑n

k=0

(
n
k

)
.
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Counting With Entropy I

Now, what can we tell about partial sums
∑m

k=0

(
n
k

)
with

0 ≤ m ≤ n ?
Entropy gives an answer! Let H̃(α) be Shannon’s binary entropy,
i.e. H̃(α) = H(α, 1− α) in base 2. Then, for α < 1/2, for all n:

∑
k≤αn

(
n

k

)
≤ 2H̃(α)n
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Counting With Entropy II

For α < 1/2, for all n: ∑
k≤αn

(
n

k

)
≤ 2H̃(α)n

Proof. Let C =
⋃αn
k=0 Pk([n]), the set of subsets of [n] of size at

most αn. We have |C| =
∑

k≤αn
(
n
k

)
. Let X be selected uniformly

at random in C. We have H(X) = log2(|C|). Hence, we just have
to prove that H(X) ≤ H̃(αn). We write X = (X1, X2, . . . , Xn)
with Xk indicating that k ∈ X. By subadditivity and symmetry:

H(X) ≤ H(X1) + · · ·+H(Xn) = nH(X1)

We have: H(X1) = H̃(p) with p = Pr(1 ∈ X). We show p ≤ α.
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Counting With Entropy III

We have:

P (1 ∈ X) =

αn∑
m=0

P (1 ∈ X | |X| = m)P (|X| = m)

=

αn∑
m=0

m

n
P (|X| = m) ≤

αn∑
m=0

αn

n
P (|X| = m)

≤ α
αn∑
m=0

P (|X| = m) = α

Hence, p ≤ α, and, because α ≤ 1/2 we have H̃(p) ≤ H̃(α) and
the result: ∑

k≤αn

(
n

k

)
≤ 2H̃(α)n
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Counting With Entropy IV

Many more combinatorial applications, for instance:

In geometry: Loomis-Whitney theorem about counting
modulo projection

In linear algebra: Brégman’s theorem bounding matrix
permanents

In graph theory: Kahn-Lovász theorem about perfect
matchings or also counting proper colorings of a regular graph
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Coding Theory: Lossless Compression I

� Stately, plump Buck Mulligan came from the stairhead, bearing
a bowl of lather on which a mirror and a razor lay crossed. A
yellow dressinggown, ungirdled, was sustained gently behind him
on the mild morning air. � James Joyce, Ulysses.

There are 1,498,853 ascii characters in the book.

Stored in the standard 8 bits (1 byte) per character: 1.5 M
bytes

Question: Can we do better?

Intuitively: Yes because of the distribution of letters in the
English language.
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Coding Theory: Lossless Compression II

Intuitively: Yes because of the distribution of letters in the
English language. We could use a variable length code.
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Coding Theory: Formalism I

We consider our source (e.g. Ulysses) to be randomly sampled
from a random variable X with value in the alphabet
A = {a, b, c, . . . , z}. In the case of Ulysses, the probability
distribution of X is the one of the English language.
We want to construct an encoding function C : A → {0, 1}∗. For
instance, in ASCII:

C(a) = 01100001

C(b) = 01100010

...

C(z) = 01111010

We naturally extend C from A to A∗:
C(ab) = C(a)C(b) = 0110000101100010.
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Coding Theory: Formalism II

Requirement. We want C to be uniquely decodable:

∀w1, w2 ∈ A∗, w1 6= w2 ⇒ C(w1) 6= C(w2)

The following code is not uniquely decodable:

C(a) = 0

C(b) = 010

C(c) = 01

C(d) = 10

The code 010 could be either: b, ca or ad.
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Coding Theory: Formalism III

Evaluation Metric. We evaluate the efficiency of a code C by
average number of bits required to encode a character:

µ(C) = E[|C(X)|] =
∑
x∈A
|C(x)|Pr(X = x)

A code C∗ is optimal if it minimizes the function µ.
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Coding Theory: Entropy Bounds

Theorem. An optimal (uniquely decodable) code satisfies:

H(X) ≤ µ(C∗) ≤ H(X) + 1

Hence, entropy gives a bound on how much a source can be
compressed without loss. Entropy corresponds to the average
number of bits required to optimally encode data sampled from X.

Optimal codes can be constructed explicitely via Huffman
algorithm. This algorithm is behind all lossless compression
techniques (e.g. zip). Back to Ulysses:

Stored in the standard 8 bit (1 byte) per character: 1.5 M

Stored with an optimal uniquely decodable binary code: 889K

Compression ratio: x1.69
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Statistics: Maximum Entropy Distributions

Standard probability distributions can be seen as maximum entropy
distributions under some moment constraint.

Uniform: f(x) = 1
b−a . No constraints.

Exponential: f(x) = λexp(−λx). Constraint: E[X] = 1/λ.

Normal: f(x) = 1√
2πσ2

exp
(
− (x−µ)2

2σ2

)
. Constraints:

E[X] = µ and E[(X − µ)2] = σ2.

Tristan Stérin The Multiple Faces of Entropy 24



Introduction
Using Entropy

References

Pure Maths & CS
Statistics & Finance & Machine Learning
Statistical Physics & Thermodynamics & DNA Programming

Statistics: Maximum Entropy Principle

The maximum entropy principle can be use to discriminate between
several candidate distributions in a given statistical problem. This
principle will select the less specific/fairest distribution given a set
of constraints. In practice, this principle can be used for:

Prior/posterior selection in Bayesian inference

Maximum entropy models (e.g. logistic regression)

Probability density estimation
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Finance

Measuring the risk of a portofolio: entropy of the distribution
of returns

Measuring the diversity of a portofolio: entropy of the
distribution of investments
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Machine-Learning: Cross entropy Objective I

Typical Situation. We want to classify pictures of Cats and
Dogs. We are building a model mα parametrized by α:

Input: an image

Output: a probability distribution (pCat, pDog) in Σ2.

Our dataset D is a collection of pairs:

(image of a cat, (1, 0))

(image of a dog, (0, 1))

A common training objective for this situation is Cross entropy.
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Machine-Learning: Cross entropy Objective II

The cross entropy of two distributions p, q is defined as:

H(p, q) = H(p) +DKL(p||q) = −
∑

pilog(qi)

Information theory interpretation:

Entropy H(p): average number of bits needed to optimally
encode a stream of data sampled from p.

Cross entropy H(p, q): average number of bits needed to
optimally encode a stream of data sampled from unkown p
when we believe that the distribution is q.
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Machine-Learning: Cross entropy Objective III

The cross entropy of two distributions p, q is defined as:

H(p, q) = H(p) +DKL(p||q) = −
∑

pilog(qi)

Cross entropy loss:

J(α) =
1

|D|
∑

img,p∈D
H(p,mα(img))

Optimization-wise equivalent to KL divergence, it is the standard
loss in Computer Vision (AlexNet, VGG, Inception etc...).
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Machine-Learning: Softmax Layers I

In Machine-Learning, transforming a vector of numbers into a
probability distribution is very often done through a Softmax
Layer. This layer (of a neural network for instance) transforms the
vector (E1, . . . , En) ∈ Rn into (p1, . . . , pn) ∈ Σn by the rule:

pi =
1

Z
e−βEi

With Z =
∑
e−βEi the normalization factor and β a parameter of

the layer or a given constant.

But why use this distribution ?
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Machine-Learning: Softmax Layers

In Machine-Learning, transforming a vector of numbers into a
probability distribution is very often done through a Softmax
layer. This layer (of a neural network for instance) transforms the
vector (E1, . . . , En) ∈ Rn into (p1, . . . , pn) ∈ Σn by the rule:

pi =
1

Z
e−βEi

With Z =
∑
e−βEi the normalization factor and β a parameter of

the layer or a given constant.

But why use this distribution ? Because statistical physics and
the maximum entropy principle!!!!

Tristan Stérin The Multiple Faces of Entropy 31



Introduction
Using Entropy

References

Pure Maths & CS
Statistics & Finance & Machine Learning
Statistical Physics & Thermodynamics & DNA Programming

Statistical Physics: The Boltzmann Distribution I

Example DNA Secondary Structures.

Theoretically: (n+ 1)! possible secondary structures for a
strand of length n.

In practice: way less because they are not all physically
possible.
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Statistical Physics: The Boltzmann Distribution II

Thanks to thermodynamics, we can perform calorimetric
experiments to measure the energy of each secondary structure:
the more negative, the harder to melt.

Tristan Stérin The Multiple Faces of Entropy 33



Introduction
Using Entropy

References

Pure Maths & CS
Statistics & Finance & Machine Learning
Statistical Physics & Thermodynamics & DNA Programming

Statistical Physics: The Boltzmann Distribution III

In a testube, we have billion of strands. What will be the
secondary structure distribution ?

Energetic argument: low energy configurations should be
favored

Entropic argument: a variety of different configurations should
be covered

In statistical physics, the energy/entropy compromise is formalized
by Free Energy Minimization:

minp∈ΣnEp[ ~E]− kBTH(p)

With ~E = (E1, . . . , En) the measured energy vector, kB the
Boltzmann constant and T the temperature.
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Statistical Physics: The Boltzmann Distribution IV

minp∈ΣnEp[ ~E]− kBTH(p)

The Free Energy Minimization has a unique solution, the
Boltzmann distribution:

pi =
1

Z
e
− Ei

kBT =
1

Z
e−βEi

The normalization constant Z is seen as a function of
β = 1/(kBT ). It is called the partition function:

Z(β) =
∑

e−βEi

Extreme cases:

T = 0: the distribution is spiked at min Ei. Energy wins!

T =∞: the distribution is uniform. Entropy wins!
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Thermodynamics: Clausius Entropy
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Thermodynamics: Clausius Entropy (theory)

S = S(U, V, ~N) Requirements.
1 S ∈ C1, concave
2 S positively homogeneous of degree 1:

∀α > 0, S(αU,αV, α ~N) = αS(U, V, ~N)

3 1
T = ∂S

∂U ≥ 0

Source: Molecular Driving Forces, p.223
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Thermodynamics: Clausius Entropy (practice)

Changes in Clausius entropy are physically measurable:

∆S =

∫ TB

TA

CP (T )

T
dT

Isobaric Heat Capacity. The function CP is the amount of energy
needed by the system to gain temperature at constant pressure.
You can have an approximation of water’s CP by measuring the
time needed by your kettle to boil 1L of water (use Q = P∆t).

Source: https://www.engineersedge.com/physics/properties_of_water_14467.htm
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Thermodynamics: Clausius Entropy (intuition)

Gas phase are more entropic than liquid phases than solid phases.
For water for instance:

Solid
∆S=22 J/(molK)−−−−−−−−−−−→ Liquid

∆S=118,89 J/(molK)−−−−−−−−−−−−−→ Gas

At a fixed volume, it takes more energy to heat a room than a pool
than an iceberg by 1C.

Although, intuitively, we want to relate Clausius entropy to the
inner disorder of matter, it is a controversial subject, see [1].

In statistical physics, Boltzmann entropy, kB log(W ) is
introduced. This quantity is closely related to Shannon’s entropy
and encompassed the same intuition. In some contexts it can be
associated to Clausius entropy.
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Thermodynamics: Second Law I

The second law of thermodynamic is a principle of entropy
maximization.

Maximizing S at fixed U Minimizing U at fixed S

Source: https://ps.uci.edu/~cyu/p115B/LectureNotes/Lecture13.pdf
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Thermodynamics: Second Law II

Name Variables Reservoir “Expression” At Equilibrium

Entropy U, V, ~N Constant U S Maximal

Energy S, V, ~N Constant S U Minimal

Helmotz Free Energy T, V, ~N Constant T F = U - TS Minimal

Enthalpy U, p, ~N Constant P H = U + pV Minimal

Gibbs Free Energy T, p, ~N Constant T, P G = H - TS Minimal

At equilibrium, chemical systems minimize their Gibbs Free
Energy:

∆G = ∆H − T∆S

This quantity is measurable since:

∆H =

∫ TB

TA

CP (T )dT and ∆S =

∫ TB

TA

CP (T )

T
dT
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Thermodynamics: Second Law III

For a chemical reaction A→ B three possible cases:

1 ∆G > 0: the reaction A→ B cannot happen, B → A is
favored

2 ∆G = 0: equilibrium

3 ∆G < 0: the reaction can happen (maybe not kinetically
favored)

Looking at two cases for ∆H and ∆S:

∆H > 0 and ∆S < 0: thermodynamically impossible
reaction. An increase in enthalpy must result in an increase in
entropy. You can’t turn graphite into diamond.

∆H > 0 and ∆S > 0: entropy driven reaction. Depends on
T . Example: NaNO3(s) → Na+(aq) + NO3−(aq)
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DNA Programming I

The goal of our field is to engineer structures out of DNA.

Folding DNA to create nanoscale shapes and patterns, P. Rothemund, Nature, 2006
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DNA Programming II

Ideally, structures that can compute.

Diverse and robust molecular algorithms using reprogrammable DNA self-assembly, D. Woods, D. Doty et al.,
Nature, 2019
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DNA Programming III

The thermochemistry of DNA is vital to our field.
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DNA Programming IV
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DNA Programming V
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Conclusion

Shannon’s entropy measures the lack of predictability of the
outcome of a random variable. Shannon’s entropy can be
applied in many fields. Each field shines a different light on
the concept.

Clausius entropy is related to the amount of heat necessary to
change the temperature of a body. Changes in Clausius
entropy are measurable. By the second law of
thermodynamics, Clausius entropy is maximized at
equilibrium.

The formal link between Shannon’s entropy and Clausius
entropy is obscure and controversial.

In the case of DNA Programming, Shannon’s entropy and
Clausius entropy work hand in hand in order to predict the
probability of formation of DNA structures.
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Conclusion

You can find these slides at the following URL:

https://dna.hamilton.ie/tsterin/

Thank you!!!

Questions :) ?
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Mathématiques. 24.4 (2015), pp. 641–689. doi:
10.5802/afst.1459. url:
https://hal.archives-ouvertes.fr/hal-00987177.

Rongxi Zhou, Ru Cai, and Guanqun Tong. “Applications of
Entropy in Finance: A Review”. In: Entropy 15 (Nov. 2013),
pp. 4909–4931. doi: 10.3390/e15114909.

Jonathan Fors. “Information Theory Lectures”. In: (2013).
url: https://www.icg.isy.liu.se/courses/
infotheory/lect3.pdf.
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