On the Computational Power of 6-bit Iterated Boolean Gate Arrays Tristan Stérin, Damien Woods

I. The Model

Proposed and implemented by Woods, Doty, Myhrvold, Hui, Zhou, Yin, Winfree, DNA 23 Track B, paper in preparation.

1) 6-bit Layer

- Programmer chooses 7 gates - User chooses 6 input bits - System computes by iterating

2) Example: Sorting Bits

3) Implemented Using DNA Tiles

4) n-bit Layer

Can simulate any Turing machine

But

Bits are expensive

II. Two Counting Problems

Counting to 63:

\% K

Is it possible to count to 64 in the 6-bit model? To 2^{n} in the n-bit?

III. The Layer Function

1) Definition

The Layer Function is represented by a 6×64 binary image.

2) Why Focus on the Layer Function?
-Same layer function = same computation $\cdot 2^{44}=1.8^{*} 10^{14} 6$-bit layers
-But merely $32 * 10^{9}$ layer functions -More abstract and structured object
3) A Structural Result

Theorem. (Structure of the layer function)

IV. No 6-bit Counters

1) Candidate Layer Function

Bijection

One 64-orbite i.e. Each string on 6 bits must appear once. Odd Bijection

Is missing! ils missing?

Theorem. (No odd bijections)
The model produces only even bijections.
2) Proof

Even!!
Conclusion: No 6-bit counter!
Going further: $-n$-bits counters: induction for even n -Positive results: 4607 counters to 63

