
Computer Sciences, Master I Internship 2016–2017
École Normale Supérieure de Lyon STÉRIN Tristan
Université Claude Bernard Lyon I M.Sc. in Computer Sciences

Intraclass Apparel Retrieval with Deep Neural
Features

Abstract : Retrieve an apparel in a brand’s catalogue given a photo of someone wearing it is
a challenging and little studied problem. This task involves dealing with very few data at train
time and state-of-the-art Computer Vision methods such as Deep Convolutional Neural Networks
(DCNNs) are originally not suited for this type of "small-data" problems. In this work, we adopt
a transfer learning approach and use the feature extraction power of ImageNet-trained DCNNs to
solve this lack of data issue. The Self-Organizing Map unsupervised method helps us to visualize
extracted features in an original way. Finally, we proceed to apparel retrieval by comparing different
methods. Our best technique, FCAvg, outperforms traditional non-DCNNs approaches such as ORB
Bag-Of-Words by achieving 89% at top-10 accuracy while the latter doesn’t go beyond 30%. Being
also very fast at request time, our retrieval method is a ready-to-use pipeline for potential industrial
apparel Catalogue Matching applications.

Keywords : Apparel Retrieval, Machine Learning, Transfer Learning, Feature Extraction,
DCNNs, SOM, Kohonen networks, Catalogue Matching.

Under the supervision of:
Gilles SABAS
gilles.sabas@a7emailing.com
A7 Emailing
57 rue Grimaldi - 98000 Monaco - Principality of Monaco

Marc SEBBAN
marc.sebban@univ-st-etienne.fr
University Jean Monnet, St-Etienne
Hubert Curien Lab
18 rue du Prof.Benoît Lauras - 42000 Saint-Etienne - France
http://perso.univ-st-etienne.fr/sebbanma/

mailto:gilles.sabas@a7emailing.com
mailto:marc.sebban@univ-st-etienne.fr
http://perso.univ-st-etienne.fr/sebbanma/

Intraclass Apparel Retrieval with Deep Neural Features Tristan STÉRIN

August 25, 2017

Acknowledgements
I would really sincerely like to thank my advisor, Gilles Sabas, CEO at A7 for having given me the
opportunity, resources and environment to realize this work. I also would like to thank my co-advisor
and former Machine Learning teacher Marc Sebban for all what I’ve learned in his course and the advice
he gave me during this internship. Finally, a big thank to my parents and all those I met during these
three months, Marie, Angela, Caroline, Luciano, Vincenzo, Tristan, Vincent, your presence helped me
work and being happy.

Contents
Introduction 1

1 Feature Extraction 2
1.1 Our Dataset . 2
1.2 Deep Convolutional Neural Networks . 3
1.3 Feature Extraction with DCNNs . 3

2 Feature Visualization with The Self-Organizing Map 5
2.1 The SOM Model . 5
2.2 Visualizing our Features Sets . 6
2.3 Emergent SOM and U-Matrix . 8

3 Apparel Retrieval 9
3.1 Methods Description and Results . 9
3.2 Error Analysis . 11
3.3 Going Further . 12

Conclusion 13

References 14

Appendices 17

Appendix A Python SOM Implementation 17

Appendix B Query SOM and ESOM visualization 19

Appendix C Institutional Context 22

2

Intraclass Apparel Retrieval with Deep Neural Features Tristan STÉRIN

Introduction

Figure 1: A query photo and its associated catalogue image

Let’s suppose I have the photo of someone wearing a dress that I really like. I would like to know
whether my favorite brand has a dress which is similar to it. This situation is illustrated in Figure 1.
We aim at designing a system that takes such queries as input and returns the most similar apparel
in the brand dresses’ catalogue. Stated as so, our problem is an instance of Content Based Image
Retrieval (CBIR, [35]). We call it intraclass because we do not try to differentiate pants from dresses
but dresses between themselves.

Research on apparel classification and retrieval is a relatively new field [21],[2],[15],[12],[22]. Authors
unanimely agree that it is a hard CBIR problem. Indeed, the representation of a garment between
a query picture and a standardized catalogue one can be widely different ; whether it is because of
the human wearing it or because of the picture’s context, Figure 1 showing both. This implies that
in order to be successful, the system we built has to ensure Cross-Domain Adaptation [12]. That
is the property of adapting knowledge from the catalogue domain, on which we have information,
to the query domain, on which we don’t. The main contributions of this field are contemporary to
the great successes of Deep Convolutional Neural Networks (DCNN or CNN) in Computer Vision
and often relie on it [15],[12],[22]. Indeed, these neural architectures are really good at Cross-Domain
Adaptation.

Deep Convolutional Neural Networks, introduced in [19], have revolutionized Computer Vision when
they outperformed by far traditionnal methods at the 2012 ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC). ImageNet [4] is a huge database of images – more than 14M – with about
20k classes, decomposed into roughly 30 super categories such as amphibians, vehicles or music in-
struments. The goal of the ILSVRC is to construct a classifier upon this data which correctly labels
input pictures. With further refinements of the 2012 AlexNet architecture [18], such as GoogleLeNet
[27], VGG [26] or ResNet [10], the total error went from 15% in 2012 to 3% in 2015 whereas, before
the CNN era, it was approximatively of 30%. Their performing that well on such heterogeneous data
implies that CNN are good at Cross-Domain Adaptation.

However, these systems are successful at Cross-Domain Adaptation because they are fed with a
huge amount of data and are thus confronted to different domains. We are exactly is the opposite
case: we have only one example per garment, all issued from the catalogue domain. Being specific
to one brand dresses catalogue also makes the number of classes small, about 200 compared to the
thousands of items per garment type in existing datasets [22], [15]. These two aspects are the main
characteristics of our work : to the best of our knowledge there is no pre-existing work in that field at
such a small scale. Learning with small data is an open problem with research efforts at the moment1.

1See for instance this ICML 2016 workshop on "data-efficiency": https://sites.google.com/site/
dataefficientml/accepted-papers

1

https://sites.google.com/site/dataefficientml/accepted-papers
https://sites.google.com/site/dataefficientml/accepted-papers

Intraclass Apparel Retrieval with Deep Neural Features Tristan STÉRIN

In this work, we tackle down the lack of data issue by using CNNs as feature extractors then
present a way to visualize these features thanks to the Self-Organizing Map (SOM) and finally proceed
to apparel retrieval with various techniques.

1 Feature Extraction
In this section, we firstly present the dataset on which we are going to work and then we show how
we are going to use DCNNs as feature extractors.

1.1 Our Dataset

Figure 2: One of our dataset’s query with its ROI and its associated catalogue image

Existing articles on apparel classification have proposed large dataset for this task [21],[2],[15],[12],[22].
In particular, [22] and [15] gathered data for what they call "Street-to-shop" and which is similar to
our problem. However:

1. These datasets do not focus on one brand’s catalogue in particular but on a large collection of
them whereas the spirit of our work is really brand orientated: we want to deal with one specific
catalogue.

2. These datasets contain a lot of query pictures but without Region Of Interest (ROI) information.
That is we don’t know were the garment is localized in the picture. Brand-new methods, Mask
R-CNN [9], also using DCNNs, have given striking results for that problem. They could be, in
the future, integrated in our pipeline. Nevertheless, at the present moment it would be out of
the scope of this work. Furthermore, for an industrial application, we can suppose that the user
provides the ROI at query time, for instance, by circling the garment.

Consequently, we need a dataset which both satisfies our catalogue constraint and where garments
are easily localizable in query pictures. We mined our own2 from H&M dresses website3, it contains
around 200 dresses. This brand is convenient because they present each dress with both a catalogue
photo and a model wearing it. Furthermore, the models are all centered and a simple handcrafted
heuristic for the ROI works fine, see Figure 2. Enventually, the photos have a really good definition
which is nice in order to deal with details that often characterize garments.

2The mining script is available here https://github.com/tcosmo/dresscode/blob/master/get_dataset.py. Please
note that you might not mine the exact same as ours since H&M collections change frequently.

3This exact page: http://www2.hm.com/fr_fr/femme/catalogue-par-produit/robes.html?product-type=ladies_
dresses&image=model&sort=stock&offset=0&page-size=400

2

https://github.com/tcosmo/dresscode/blob/master/get_dataset.py
http://www2.hm.com/fr_fr/femme/catalogue-par-produit/robes.html?product-type=ladies_dresses&image=model&sort=stock&offset=0&page-size=400
http://www2.hm.com/fr_fr/femme/catalogue-par-produit/robes.html?product-type=ladies_dresses&image=model&sort=stock&offset=0&page-size=400

Intraclass Apparel Retrieval with Deep Neural Features Tristan STÉRIN

1.2 Deep Convolutional Neural Networks

Figure 3: A traditional DCNN architecture

Deep Convolutional Neural Networks are a class of Artificial Neural Networks (ANN) that were
originally designed to deal with images. They take images as inputs and process them through a
succession of Convolution, Pooling and Rectification Layers. At the end of that process, a Fully
Connected network, similar to the Multi-Layer Perceptron [7] (MLP), is learnt in order to achieve
classification. This process is depicted in Figure 3.

Here’s a brief summary of what each of these components does:

1. Convolution Layer (conv): it is the essential component of a DCNN. Each conv is a bank of
parametrized filters which compute discrete convolution over its input channels. The parameters
of these filters are learnt which makes the strength of DCNNs.

2. Pooling Layer (pool): pooling layers compress the information contained in a convolutionized
channel. They act by taking the max or the average in neighbourhoods of their input channels.

3. Rectification Layer (ReLu): it is known since the 80’ [11] that what makes the power of ANN
is the use of non-linearities. In that spirit, ReLu layers act non linearly on their inputs, for
instance by replacing negative values with 0s.

4. Fully Connected Layer (fc): at the end of the process the data is shrinked into relatively low
dimensional – typically around 1000 dimensions – vectors, called feature vectors. These feature
vectors, considered as abstract representation of the original images are the input of standard
fully connected classifiers such as MLPs. The last layer of this MLP is often a softmax which
gives a probability distribution over the classes in the dataset.

DCNN, like most ANN, are trained in a supervised manner upon a loss function describing how
far are the DCNN predictions from ground truth labels. It is this supervision4 process that requires
a lot of data.
For a more detailled and technical introduction to DCNNs please refer to [5].

1.3 Feature Extraction with DCNNs

We have extremely few data in comparison of what it takes to train a DCNN. In order to use DCNN’s
power we are going to use them in a transfer learning setting [14]. That is to use a network that
already has been trained on ImageNet in order to abstractly describe our images.

4Amusingly enough, the 2012 ILSVRC winner AlexNet model was called SuperVision.

3

Intraclass Apparel Retrieval with Deep Neural Features Tristan STÉRIN

Figure 4: InceptionV3 Architecture

What we want to work with are exactly the feature vectors that appear just before the fc layer.
Intuitively, a model that works well on ImageNet must produce feature vectors that abstractly describes
any image. Furthermore, two images with close visual content should have close feature vectors. We
use as a feature extractor the InceptionV3 model [28]. It is an improvement of GoogLeNet [27] which
integrates complex design, see Figure 4. It is almost at the state-of-the-art on the ImageNet challenge
and we can easily find pre-trained versions of it on the web [29]. We specifically use the pool_3:0
layer which produces 2048 sized feature vectors.

Feature extraction with DCNNs for CBIR purpose has been explored by [34]. However they use
features of the entire image. It is something we cannot do, especially for the query because our
Inception model has seen humans while training. Consequently, even with the ROI specification, the
features we get are those describing humans because we often see human attributes as hands or arms
in the ROI. Also, intuitively, garments are often characterized by a very specific part of it. What we
truly want are the features of the characteristic part of the garment. We need to know where to look.

We tried to develop the so-called KDRP approach described in [30]. It consists in randomly sam-
pling zones with high SIFT [24] keypoints density. However it did not produce convincing results
on our data. The solution we adopted, less elegant, is simply to take all the features of fixed-size
overlapping sampling windows as shown in Figure 5. We are left with about 80 feature vectors per
image (both catalogue and query). We call theses ensembles of features features sets. The use of
GPUs, 2 x GeForce GTX 1080TI has been crucial for the feature extraction process efficiency.

Figure 5: Overlapping sliding windows over catalogue and query image

4

Intraclass Apparel Retrieval with Deep Neural Features Tristan STÉRIN

2 Feature Visualization with The Self-Organizing Map
This part is not crucial in the apparel retrieval pipeline and could be skipped at first read. It exposes
how the Self-Organizing Map (SOM) can help us visualizing the features we have extracted. To the
best of our knowledge, there is no pre-existing work in our field using SOMs to visualize DCNNs
features.

The Self-Organizing Map The Self-Organizing Map or Kohonen network is a neural model that
has been introduced in the 80’ by computer scientist Teuvo Kohonen [16]. Since the introductory
paper, the SOM has known a lot of refinements such as in [17]. A very extensive litterature on the
subject, both theoretical and applied, has been written about the SOM [6]. The SOM is a very efficient
tool for high-dimensional data visualization. It will organize on a 2D map high dimensional feature
vectors based on their similarity. One of its main advantage is that it is an unsupervised method:
no additional information than the raw data is needed for training. Surprinsigly, this model seems to
be a bit out of fashion nowadays.

Our implementation of SOMs can be accessed both in the Appendix A and here5.

2.1 The SOM Model

Figure 6: The rectangular lattice supporting a (5, 6, d)-SOM

In it’s simpliest version, a SOM can be described by a set of points, called cells, on a regular
rectangular h*w lattice, see Figure 6. Each one of these points is associated with a corresponding
feature vector of dimension d. Thus, the triplet (h,w, d) fully describes the structure of the SOM.

Training. Training a SOM consists in presenting it d-dimensional data and iteratively update the
feature vectors on the map so that they get closer to the data. Information is spread into neighbour-
hoods on the map so that close cells have close feature vectors. In order to ensure convergence, the
effect of each change and its influence on neighbours dimishes with time.

Concretely, at each time t, a vector Dt is randomly selected from the data and each cell with
feature vector Wt is updated according to the following rule:

Wt+1 = Wt + L(t) ∗N(δ, t) ∗ (Dt −Wt)

With:

1. L(t) the learning rate, of the form L(t) = L0 ∗ e
−t
λ . With L0 the initial learning rate and λ

the time scaling factor. They are hyper-parameters of the training.
5Full link: https://github.com/tcosmo/tcosmo.github.io/blob/master/assets/soms/code/som.py

5

https://github.com/tcosmo/tcosmo.github.io/blob/master/assets/soms/code/som.py
https://github.com/tcosmo/tcosmo.github.io/blob/master/assets/soms/code/som.py

Intraclass Apparel Retrieval with Deep Neural Features Tristan STÉRIN

2. N(δ, t) the neighbouring penalty where δ is the euclidian distance between the coordinates
of the cell we are currently updating and the coordinates of the Best Matching Unit (BMU).
The BMU is the cell on the SOM having the closest Wt to Dt before update. N(δ, t) is of the
Gaussian form:

N(δ, t) = e
− δ2

2σ(t)2

The spatial scaling factor σ(t) has a really close expression than L(t): σ(t) = σ0 ∗ e
−t
λ with the

same λ. We call σ0 the initial neighbourhood, it’s a hyper-parameter aswell. As time passes by,
this neighbourhood shrinkes toward the BMU and the changes on the SOM become more and
more local.

Starting and stopping. An important choice before training a SOM is how to initialize it and when
to stop the training. There are various ways of initializing a SOM such as: uniformly at random, with
a gaussian distribution, with a random sample of the data vectors etc. In the following experiments we
always have uniformly initialized the SOM. We chose to stop the learning process when the changes
only significally affect the BMU, that is when σ(t) < 1.

Choosing the hyper-parameters. We have 3 hyper-parameters: L0, λ, σ0. Like in many Machine
Learning algorithms, choosing the hyper-parameters is a crucial point in order to ensure a good
training. Here’s the common way to choose them:

1. L0: having L0 = 1 directly replaces Wt by Dt at t = 0. Experimentally, choosing 0.5 < L0 < 2
is often a good fit.

2. λ: given our stopping criterion λ drives the total time of learning. It is also crucial in the
evolving dynamic of the SOM. Typically choosing 50 < λ < 1000 was a good fit.

3. σ0: it is very common to set the initial neighbourhood to half the size of the SOM. For instance
we would choose σ0 = 20 for a (40, 40, d)-SOM.

2.2 Visualizing our Features Sets

The code that generates the following visualization is available in this notebook6. On purpose, the
online version is ran on a different dress for diversity.

Figure 7: A dress from our catalogue with a cat on it

The SOM will enable us to see what the DCNN "sees" on our garment features sets. Here, we do
not use the SOM as an analytical tool but only for this visualization purpose. It substracts a bit of

6Full link: https://github.com/tcosmo/dresscode/blob/master/Visualization_SOM.ipynb

6

https://github.com/tcosmo/dresscode/blob/master/Visualization_SOM.ipynb
https://github.com/tcosmo/dresscode/blob/master/Visualization_SOM.ipynb

Intraclass Apparel Retrieval with Deep Neural Features Tristan STÉRIN

the mystery surrounding the DCNNs features. We’ll take as an example the features set extracted
from the dress in Figure 13. This dress has the characteristic of having a very recognizable cat on it.
We extract all the sliding-window features as explained in Section 1.3, they constitute our features
set. We train on these 2048-dimensional features a (8, 8, 2048)-SOM with L0 = 1, λ = 200, σ0 = 4.
The training takes 416 iterations for 1.37s, note that our implementation is not optimized for GPU.

Here is what we obtain:

Figure 8: Visualization of the SOM trained on the cat dress

This visualization is done by simply aggregating the garment’s feature vectors on their BMU and
then plot the corresponding original sub-image. Please do not mind the grey vertical lines we couldn’t
get rid of.

Thanks to the SOM, we can see that the features divide the garment in categories that we, humans,
understand:

1. Top left: we see all what’s collar-related.

2. Around (2, 2), all what’s related to the ankles (the features seem symmetry invariant!) and the
sleeves.

3. More in the center, around (4, 4) the characteristic folds of the dress.

4. Bottom right: the cat! Interestingly enough, even parts of the cat are aggregated there whereas
on (0, 1) and (0, 2) the collar is dominant on the cat for the DCNN.

5. Bottom left: all the "junk" features that were mainly blank.

7

Intraclass Apparel Retrieval with Deep Neural Features Tristan STÉRIN

6. Empty cells: We also notice there are few empty cells such as (1, 0) or (0, 7). Their feature
vector is not the BMU of any of our data.

2.3 Emergent SOM and U-Matrix

A different type of behavior appears when we consider much larger SOMs. When almost all the data
has its own BMU the setting is called Emergent SOM. As suggested by [23], considering the U-Matrix
leads to a new type of visualization. The U-Matrix is a matrix of the same (h,w) dimension as the
SOM where each cell holds the sum of the distances between the corresponding SOM feature vector
and it’s 4 adjacent neighbours. It gives a notion of montains separating similarity plains.

We train a (50, 50, 2048)-SOM on our data with L0 = 1, λ = 200, σ0 = 24. Training runs for 775
iteration and takes 1m23s. We get the following contour diagram:

Figure 9: Visualization of the ESOM trained on the kitty dress

We still observe a nice repartition of our features but conclusions are a bit different. Especially for
the distinction between the cat on the collar and the cat by its own: these features appear to be a lot
closer, without an evident mountain to separate them. We observe a large plain containing the dress’s
drops. As we’ll mention in Section 3.3, this kind of representation could lead to analytical tools.

You’ll find in Appendix B the corresponding visualization for the associated query cat dress image.
We see that the topologies of these SOM and ESOM are quite different than from the catalogue dress.
Despite of their visualization power, SOM and ESOM don’t give a straightforward way to solve our
problem. During these internship, I’ve written a blog post containing more details and experiments
with SOMs, it can be found here7.

7Full link: https://tcosmo.github.io/2017/07/27/fun-with-som.html

8

https://tcosmo.github.io/2017/07/27/fun-with-som.html
https://tcosmo.github.io/2017/07/27/fun-with-som.html

Intraclass Apparel Retrieval with Deep Neural Features Tristan STÉRIN

3 Apparel Retrieval
Now that we have a collection of features for each item in the catalogue, we must retrieve one particular
dress given its associated query and this query’s feature vectors. We are going to experiment several
retrieval methods and compare them. Our measurement of success is top-10 accuracy: we want each
garment to be among the 10 first proposals. Nevertheless, we also display results at top-1,3,5 accuracy.
We also compute the average time per query for each method.

All of the following experiments were conducted in python with frameworks tensorflow for DCNNs,
opencv for image manipulation, sklearn for classifiers, numpy and scipy for calculus. The following
hardware setting was used: cpus: 2 x Intel Xeon 1.7 GHz, ram: 32GB, gpus: 2 x GTX 1080 Ti.

The following github repository contains all this internship’s experiments and code: https://
github.com/tcosmo/dresscode.

3.1 Methods Description and Results

Reference Methods. As a way to compare the results we are going to obtain, two reference methods
also have been implemented. They do not use our sub-sampled DCNN features sets.

1. Traditional Bag-Of-Words (BOW) method [20], with k-means clustered dictionaries based on
ORB features [25]. This kind of method that uses mathematical features, in the spirit of SIFT
[24] or SURF [1], were the most used before the DCNN era. We don’t use the query ROI
information when implementing this method. The notebook of this experiment is to be found
here8.

2. DCNN features extracted from the whole images (TakeAll) – no sub-sampling – on both queries
and items, the retrieval is performed by nearest cosine similarity. The code9 is to be found here
10.

Methods on our features sets. All the following methods use the features sets. They are imple-
mented on this notebook11.

1. Nearest Neighbours with Majority Vote (kNNMaj): we treat the features of the catalogue
images as one big set. For each query, for each feature vector, we find its nearest neighbour’s
class in the catalogue and then perform majority vote on all the query’s feature vectors.

2. Memory Vector and Nearest Neighbour (MemVec): we use the ideas expressed in [13] in order
to summarize each features set with a sum-memory vector. We then perform nearest neighbours
retrieval. However the Penrose-Moore memory vectors also described in [13] where not convincing
on our data.

3. Fully Connected with Majority Vote (FCMaj): we train a fully connected one layer (ReLu)
softmax neural network. It associates each feature vectors to a probability distribution over
catalogue images. Consequently, it has 2048 inputs and as many outputs as the catalogue has
items, 196. We use a 1024-sized hidden layer. We then perform retrieval by doing a majority
vote among the most probable prediction of the neural network on each of the query’s feature
vector.

8Full link: https://github.com/tcosmo/dresscode/blob/master/Results_ORB_BagOfWords.ipynb
9This code is extracted from previous work, it hasn’t the same global architecture as the rest.

10Full link: https://github.com/tcosmo/dresscode/blob/master/old/Results1,"TakeAll".ipynb
11Full link: https://github.com/tcosmo/dresscode/blob/master/Results_DCNNs.ipynb

9

https://github.com/tcosmo/dresscode
https://github.com/tcosmo/dresscode
https://github.com/tcosmo/dresscode/blob/master/Results_ORB_BagOfWords.ipynb
https://github.com/tcosmo/dresscode/blob/master/old/Results%201%2C%20%22Take%20All%22.ipynb
https://github.com/tcosmo/dresscode/blob/master/Results_DCNNs.ipynb
https://github.com/tcosmo/dresscode/blob/master/Results_ORB_BagOfWords.ipynb
https://github.com/tcosmo/dresscode/blob/master/old/Results 1, "Take All".ipynb
https://github.com/tcosmo/dresscode/blob/master/Results_DCNNs.ipynb

Intraclass Apparel Retrieval with Deep Neural Features Tristan STÉRIN

4. Fully Connected with Average probability (FCAvg) : with the same neural network, we average
the probability distributions of all the feature vectors on a features set and perform top-k retrieval
in this averaged distribution.

5. Random Forest with Majority Vote (RFMaj) : same as FCMaj but, instead of a neural network,
a Random Forest [3] as a classifier. Random Forests were proven efficients for our kind of problem
in [2].

6. Random Forest with Average probability (RFAvg) : same as FCAvg but, instead of a neural
network, a Random Forest [3] as a classifier.

Accuracies
Methods top-1 top-3 top-5 top-10 time per request (s)
BOW 7% 14% 20% 25% 0.01
TakeAll - - - 30% -
kNNMaj 53% 72% 77% 84% 0.7
MemVec 51% 64% 71% 80% 0.1
FCMaj 60% 74% 80% 86% 0.002
FCAvg 61% 75% 82% 89% 0.002
RFMaj 40% 51% 57% 69% 0.1
RFAvg 49% 67% 76% 85% 0.1

Figure 10: Results of described retrieval methods on our dresses dataset

Results. The results are shown in Figure 10. With BOW, the gap in efficiency between using old-
school features and neural features appears clearly. With TakeAll, we conclude that taking features
on entire images is not satisfying – as previsted in Section 1.3. With both the Fully Connected and
the Random Forest approaches, we see that the Avg method is preferable than majority vote. This
averaging method can be seen as an ensemble technique which is more resistant to noise and false
positive matches. Among all the retrieval techniques that we tested, FCAvg performs the best – we
selected the best neural model we had trained. Fully Connected techniques also do very well on our
timing measurement. However, timing is not a really fair comparison as only FC methods ran on
GPU.

The FCAvg method requires a non-negligeable, but still small, time budget at train time – around
5min. It appears to be fast and efficient at request time. Consequently it would be a good fit for an
industrial application.

10

Intraclass Apparel Retrieval with Deep Neural Features Tristan STÉRIN

3.2 Error Analysis

Figure 11: Summary of FCAvg errors

We are going to see whether we can explain the 11% error rate of the FCAvg method. Figure 11
summarize these errors as follow: it plots each ill-classified query with its associated garment in a
box. They are shown in increasing order of predicted rank, which is written in red. Finally, in each
box, the top left figure is a label enumerating these errors while the bottom left figure is the id of the
garment in our dataset. In the rest, we will only refer to the rank – red – and label – top left – of
an error. The mean rank of ill-classified queries is pretty high: 35. These ranks go from 11 to 143,
let’s recall that a success is being ranked in the 10 first proposals. Firstly, we can remark that a lot
of ill-classified garments are black, it can be explained by the fact that our dataset contains a lot of
black dresses thus to distinguish them is harder. Secondly we can spot four main reasons for errors:

1. Physiology of the model: the model deforms the garment when wearing it. Also, the model can
obstruct or modificate crucial details. As in errors labelled 9, 10, 11, 13, 14, 16, 17, 18, 21.

2. Pose orientation of the model: similarly, our method seems to be quite pertubated when the
model has not a frontal pose. As in errors labelled 5, 6, 15, 19, 20.

3. The ROI: sometimes the element we want to capture are not or just partially in the ROI. It is
the less dramatic kind of error because the ROI should be specified by the user. It is the case

11

Intraclass Apparel Retrieval with Deep Neural Features Tristan STÉRIN

for errors labelled: 1, 2 and 3. Generally, by adapting the ROI we achieve retrieval for errors 1,
2, 3, 8, 9 leading to a retrieval of 91% for FCAvg.

4. Fine-grained details: sometimes the characteristic elements of the garment can be hard to catch
with our sub-sampling method. As in errors labelled 4, 12.

However this analysis is, for most of it, intuitive. Therefore it has a limited explanatory power and
doesn’t tell why, for instance, error 1 is pretty well ranked whereas most of its ROI is centered on an
off-topic giant cat. At the same time, other errors which seem pretty fine, like 16, are really badly
ranked.

3.3 Going Further

In this section we inspect four of the main directions this work could take in the future.

Figure 12: Style transfer example, from [32]

Texture Networks. Texture Networks [31], [32], are a very successful method used in a completely
different DCNN field: Style Transfer. Style Transfer consists in mixing the style of an image with the
content of an another, Figure 12 issued from [32], illustrates this process. What could be interesting
for our work is the concept of Texture Loss, introduced in [8], that Texture Networks use to get those
results. This Texture Loss function says how two images differ in texture. This pseudo metric is based
on statistical information coming from DCNN’s convolution features’ maps. In terms of apparels we
can intuitively think that such a texture metric could be interesting for retrieval – even if some research
tempers the importance of texture in apparel recognition [36]. We tried to integrate the texture loss
in our process without success. We still think it could be of use.

The Self-Organized-Map. In Section 2, we introduced the SOM as a tool for visualization. How-
ever, the Emergent SOM shown in Section 2.3 can be used for analytical purpose. Indeed various
clustering methods [23], [33], have been developed in order to decompose the ESOM in clusters in
an unsupervised way. We could use it in order to automatically segmentize our garments according
to the sub-sampled features and perform retrieval by comparing segments. For instance, comparing
collars with collars, sleeves with sleeves etc...

12

Intraclass Apparel Retrieval with Deep Neural Features Tristan STÉRIN

More Queries. The need we had for a simple ROI on the query side left us with a few queries to test
our system. A lot of queries can be mined on the internet, especially with social networks. However
we would not have the associated ROI. As suggested in Section 1.1, the use of modern methods such
as Mask R-CNN would enable us to automatize the search of the ROI and perform high-scale testing.
As this method is really new, it is a challenge to fully understand it and to reproduce the result
of the introductory article [9] which relies on a quite thick literature. An other point is that, as
our system has been trained on high quality data, it’s not obvious that it would behave well with
standard quality images. Nevertheless, we tested the system with photos of friends taken from a
mediocre-quality cellphone and had good proposal results. If high scale testing showed that quality
was an issue, we could use standard image distortion techniques in order to perturbate our samples
and hopefully make the system more robust.

General Catalogue Matching. If we abstract a bit from our apparel application field we can
derive a generalization of the problem we are trying to solve. We call it Catalogue Matching.
Catalogue Matching consists in having:

1. A specialized, thus pretty small, catalogue of n same-class items. By n small we mean for instance
n < 10000.

2. For each item, less than k standard visual descriptions of it with k really small. For instance
k < 10 – here k = 1.

3. Unknown queries of these objects in natural settings.

The object of Catalogue Matching being to correctly associate queries to catalogue items. As men-
tioned in the Introduction, being a "small data" problem, it is very challenging to solve it with current
tools in Machine Learning. On top of good features extractors, unsupervised methods, such as SOMs,
are very likely to be crucial tools in order to solve Catalogue Matching. Quite obviously, this problem
has a lot of industrial instances.

Conclusion
In this work, we constructed a custom dataset in order to solve Catalogue Matching in the case of

apparel intraclass retrieval. We saw that this problem was inherently challenging because of the little
data it implies to work with and that it had been littlely addressed in the associated litterature. We
have seen how DCNNs, used as feature extractors, could be applied on such small datasets in a transfer
learning way. Thanks to the SOM, we have explored an unsupervised tool in order to visualize our
DCNNs features in a way we havn’t found in existing work. Finally we tested and compared several
retrieval methods, among those, the Fully Connected layer with Average probability appeared to be
superior according to accuracy and timing criterions. In a nutshell, we built an apparel retrieval
pipeline which could be tested, as it, in an industrial application.

On a more personal side, we re-enforced our technical knowledge about DCNNs and had a first
experience with "small-data" problems. We also were introduced to the Self-Organizing Map and its
high-dimensional data visualization power. Our experiments with the SOM gave us the intuition that
such unsupervised methods could help to understand the black boxes DCNNs currently are.

13

Intraclass Apparel Retrieval with Deep Neural Features Tristan STÉRIN

References
[1] Herbert Bay, Tinne Tuytelaars, and Luc J. Van Gool. SURF: speeded up robust features. In

Computer Vision - ECCV 2006, 9th European Conference on Computer Vision, Graz, Austria,
May 7-13, 2006, Proceedings, Part I, pages 404–417, 2006.

[2] Lukas Bossard, Matthias Dantone, Christian Leistner, Christian Wengert, Till Quack, and Luc
J. Van Gool. Apparel classification with style. In Computer Vision - ACCV 2012, 11th Asian
Conference on Computer Vision, Daejeon, Korea, November 5-9, 2012, Revised Selected Papers,
Part IV, pages 321–335, 2012.

[3] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09, 2009.

[5] Adit Deshpande. A beginner’s guide to understanding convolutional neural networks,
2016. Available at https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner%
27s-Guide-To-Understanding-Convolutional-Neural-Networks/.

[6] Kaski et al. Bibliography of self-organizing map (som) papers: 1981-1997, 1997. Available at
http://cis.legacy.ics.tkk.fi/research/som-bibl/vol1_4.pdf.

[7] Yoav Freund and Robert E. Schapire. Large margin classification using the perceptron algorithm.
In Proceedings of the Eleventh Annual Conference on Computational Learning Theory, COLT
1998, Madison, Wisconsin, USA, July 24-26, 1998., pages 209–217, 1998.

[8] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. Texture synthesis using convolutional
neural networks. In Advances in Neural Information Processing Systems 28: Annual Confer-
ence on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec,
Canada, pages 262–270, 2015.

[9] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. Mask R-CNN. CoRR,
abs/1703.06870, 2017.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. CoRR, abs/1512.03385, 2015.

[11] Kurt Hornik, Maxwell B. Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural Networks, 2(5):359–366, 1989.

[12] Junshi Huang, Rogério Schmidt Feris, Qiang Chen, and Shuicheng Yan. Cross-domain image
retrieval with a dual attribute-aware ranking network. In 2015 IEEE International Conference
on Computer Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015, pages 1062–1070, 2015.

[13] Ahmet Iscen, Teddy Furon, Vincent Gripon, Michael G. Rabbat, and Hervé Jégou. Memory
vectors for similarity search in high-dimensional spaces. CoRR, abs/1412.3328, 2014.

[14] Andrej Karpathy. Transfer learning, 2017. Available at http://cs231n.github.io/
transfer-learning/.

[15] M. Hadi Kiapour, Xufeng Han, Svetlana Lazebnik, Alexander C. Berg, and Tamara L. Berg.
Where to buy it: Matching street clothing photos in online shops. In 2015 IEEE International
Conference on Computer Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015, pages 3343–
3351, 2015.

[16] Teuvo Kohonen. Self-organized formation of topologically correct feature maps. Biological Cy-
bernetics, 43(1):59–69, January 1982.

14

https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
http://cis.legacy.ics.tkk.fi/research/som-bibl/vol1_4.pdf
http://cs231n.github.io/transfer-learning/
http://cs231n.github.io/transfer-learning/

Intraclass Apparel Retrieval with Deep Neural Features Tristan STÉRIN

[17] Teuvo Kohonen. The self-organizing map. Proceedings of the IEEE, 78:1464–1480, 1990.

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems 25: 26th
Annual Conference on Neural Information Processing Systems 2012. Proceedings of a meeting
held December 3-6, 2012, Lake Tahoe, Nevada, United States., pages 1106–1114, 2012.

[19] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied
to document recognition. In Proceedings of the IEEE, volume 86, pages 2278–2324, 1998.

[20] Jialu Liu. Image retrieval based on bag-of-words model. CoRR, abs/1304.5168, 2013.

[21] Si Liu, Zheng Song, Guangcan Liu, Changsheng Xu, Hanqing Lu, and Shuicheng Yan. Street-
to-shop: Cross-scenario clothing retrieval via parts alignment and auxiliary set. In 2012 IEEE
Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, June 16-21,
2012, pages 3330–3337, 2012.

[22] Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, and Xiaoou Tang. Deepfashion: Powering robust
clothes recognition and retrieval with rich annotations. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages
1096–1104, 2016.

[23] Jörn Lötsch and Alfred Ultsch. Exploiting the structures of the u-matrix. In Advances in Self-
Organizing Maps and Learning Vector Quantization - Proceedings of the 10th International Work-
shop, WSOM 2014, Mittweida, Germany, July, 2-4, 2014, pages 249–257, 2014.

[24] David G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal
of Computer Vision, 60(2):91–110, 2004.

[25] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary R. Bradski. ORB: an efficient alter-
native to SIFT or SURF. In IEEE International Conference on Computer Vision, ICCV 2011,
Barcelona, Spain, November 6-13, 2011, pages 2564–2571, 2011.

[26] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556, 2014.

[27] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.
In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA,
USA, June 7-12, 2015, pages 1–9, 2015.

[28] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages
2818–2826, 2016.

[29] Tensorflow. Inceptionv3 pre-trained model. Available at https://www.tensorflow.org/
tutorials/image_recognition.

[30] J. T. Turner, Kalyan Moy Gupta, Brendan Morris, and David W. Aha. Keypoint density-based
region proposal for fine-grained object detection and classification using regions with convolutional
neural network features. CoRR, abs/1603.00502, 2016.

[31] Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, and Victor S. Lempitsky. Texture networks:
Feed-forward synthesis of textures and stylized images. In Proceedings of the 33nd International
Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016,
pages 1349–1357, 2016.

15

https://www.tensorflow.org/tutorials/image_recognition
https://www.tensorflow.org/tutorials/image_recognition

Intraclass Apparel Retrieval with Deep Neural Features Tristan STÉRIN

[32] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. Improved texture networks: Maximiz-
ing quality and diversity in feed-forward stylization and texture synthesis. CoRR, abs/1701.02096,
2017.

[33] Juha Vesanto and Esa Alhoniemi. Clustering of the self-organizing map. IEEE Trans. Neural
Netw. Learning Syst., 11(3):586–600, 2000.

[34] Ji Wan, Dayong Wang, Steven Chu-Hong Hoi, Pengcheng Wu, Jianke Zhu, Yongdong Zhang, and
Jintao Li. Deep learning for content-based image retrieval: A comprehensive study. In Proceedings
of the ACM International Conference on Multimedia, MM ’14, Orlando, FL, USA, November 03
- 07, 2014, pages 157–166, 2014.

[35] Wikipedia. Content-based image retrieval, 2017. Available at https://en.wikipedia.org/wiki/
Content-based_image_retrieval.

[36] Qin Zou, Zheng Zhang, Qian Wang, Qingquan Li, Long Chen, and Song Wang. Who leads the
clothing fashion: Style, color, or texture? A computational study. CoRR, abs/1608.07444, 2016.

16

https://en.wikipedia.org/wiki/Content-based_image_retrieval
https://en.wikipedia.org/wiki/Content-based_image_retrieval

Intraclass Apparel Retrieval with Deep Neural Features Tristan STÉRIN

Appendix A Python SOM Implementation

import numpy as np
import itertools

class SOM(object):

def __init__(self ,h,w,dim_feat):
"""

Construction of a zero -filled SOM.
h,w,dim_feat: constructs a (h,w,dim_feat) SOM.

"""
self.shape = (h,w,dim_feat)
self.som = np.zeros ((h,w,dim_feat))

Training parameters
self.L0 = 0.0
self.lam = 0.0
self.sigma0 = 0.0

self.data = []

self.hit_score = np.zeros ((h,w))

def train(self ,data ,L0 ,lam ,sigma0 ,initializer=np.random.rand ,frames=None):
"""

Training procedure for a SOM.
data: a N*d matrix , N the number of examples ,

d the same as dim_feat=self.shape [2].
L0 ,lam ,sigma0: training parameters.
initializer: a function taking h,w and dim_feat (*self.shape) as

parameters and returning an initial (h,w,dim_feat) tensor.
frames: saves intermediate frames if not None.

"""
self.L0 = L0
self.lam = lam
self.sigma0 = sigma0

self.som = initializer (*self.shape)

self.data = data

for t in itertools.count ():
if frames != None:

frames.append(self.som.copy ())

if self.sigma(t) < 0.5:
print("final␣t:", t)
#print (" quantization error:", self.quant_err ())
break

i_data = np.random.choice(range(len(data)))

17

Intraclass Apparel Retrieval with Deep Neural Features Tristan STÉRIN

bmu = self.find_bmu(data[i_data])
self.hit_score[bmu] += 1

self.update_som(bmu ,data[i_data],t)

def quant_err(self):
"""

Computes the quantization error of the SOM.
It uses the data fed at last training.

"""
bmu_dists = []
for input_vector in self.data:

bmu = self.find_bmu(input_vector)
bmu_feat = self.som[bmu]
bmu_dists.append(np.linalg.norm(input_vector -bmu_feat))

return np.array(bmu_dists).mean()

def find_bmu(self , input_vec):
"""

Find the BMU of a given input vector.
input_vec: a d=dim_feat=self.shape [2] input vector.

"""
list_bmu = []
for y in range(self.shape [0]):

for x in range(self.shape [1]):
dist = np.linalg.norm((input_vec -self.som[y,x]))
list_bmu.append (((y,x),dist))

list_bmu.sort(key=lambda x: x[1])
return list_bmu [0][0]

def update_som(self ,bmu ,input_vector ,t):
"""

Calls the update rule on each cell.
bmu: (y,x) BMU’s coordinates.
input_vector: current data vector.
t: current time.

"""
for y in range(self.shape [0]):

for x in range(self.shape [1]):
dist_to_bmu = np.linalg.norm((np.array(bmu)-np.array ((y,x))))
self.update_cell ((y,x),dist_to_bmu ,input_vector ,t)

def update_cell(self ,cell ,dist_to_bmu ,input_vector ,t):
"""

Computes the update rule on a cell.
cell: (y,x) cell’s coordinates.
dist_to_bmu: L2 distance from cell to bmu.
input_vector: current data vector.
t: current time.

"""
self.som[cell] += self.N(dist_to_bmu ,t)*self.L(t)

18

Intraclass Apparel Retrieval with Deep Neural Features Tristan STÉRIN

*(input_vector -self.som[cell])

def update_bmu(self ,bmu ,input_vector ,t):
"""

Update rule for the BMU.
bmu: (y,x) BMU’s coordinates.
input_vector: current data vector.
t: current time.

"""
self.som[bmu] += self.L(t)*(input_vector -self.som[bmu])

def L(self , t):
"""

Learning rate formula.
t: current time.

"""
return self.L0*np.exp(-t/self.lam)

def N(self ,dist_to_bmu ,t):
"""

Computes the neighbouring penalty.
dist_to_bmu: L2 distance to bmu.
t: current time.

"""
curr_sigma = self.sigma(t)
return np.exp(-(dist_to_bmu **2)/(2* curr_sigma **2))

def sigma(self , t):
"""

Neighbouring radius formula.
t: current time.

"""
return self.sigma0*np.exp(-t/self.lam)

Appendix B Query SOM and ESOM visualization

Figure 13: The query associated to the cat dress

19

Intraclass Apparel Retrieval with Deep Neural Features Tristan STÉRIN

Figure 14: Visualization of the SOM trained on the cat dress query

20

Intraclass Apparel Retrieval with Deep Neural Features Tristan STÉRIN

Figure 15: Visualization of the ESOM trained on the cat dress query

21

Intraclass Apparel Retrieval with Deep Neural Features Tristan STÉRIN

Appendix C Institutional Context
This internship took place at A7 Interactive, a Monaco-based IT company, under the supervision of its
CEO, Gilles Sabas. The internship was co-advised by Marc Sebban, Professor in Computer Sciences
and Deputy Director of the LabHC laboratory at the University Jean-Monnet, St-Etienne.

22

	Introduction
	Feature Extraction
	Our Dataset
	Deep Convolutional Neural Networks
	Feature Extraction with DCNNs

	Feature Visualization with The Self-Organizing Map
	The SOM Model
	Visualizing our Features Sets
	Emergent SOM and U-Matrix

	Apparel Retrieval
	Methods Description and Results
	Error Analysis
	Going Further

	Conclusion
	References
	Appendices
	Appendix Python SOM Implementation
	Appendix Query SOM and ESOM visualization
	Appendix Institutional Context

