
Waiting for Gödel
Tristan Stérin

Hamilton Institute & Computer Science Department
Maynooth University, Ireland

ERC No 772766, SFI 18/ERCS/5746

An old question

What is the result of this computation?

A new question

What does it mean to compute?

Naïvely: Doing something in an organised/programmed way.

A new question

What does it mean to compute?

Naïvely: Doing something in an organised/programmed way.

With this question, formalised in the 30’s, computer science was born!

● ~1930: Alonzo Church, Lambda Calculus
● 1936: Stephen Cole Kleene, general recursive functions
● 1936: Alan Turing, Turing machines
● 1943: Emil Post, Tag systems
● 1945: von Neumann, RAM model

A new question

What does it mean to compute?

These models look different:

Lambda Calculus

Recursive Functions

Tag Systems
Turing Machines

A new question

What does it mean to compute?

1. These models look different but they all can simulate one another

A new question

Church-Turing (philosophical) thesis.

Something is physically computable if and only if it can be computed by a Turing machine.

A low-level programming language running
on an ideal primitive computer.

What does it mean to compute?

1. These models look different but they all can simulate one another

2. Any computation we ever thought of, we have been able to implement with a Turing
machine (or any other of these models)

A new question

Church-Turing (philosophical) thesis.

Something is physically computable if and only if it can be computed by a Turing machine.

What does it mean to compute?

1. These models look different but they all can simulate one another

2. Any computation we ever thought of, we have been able to implement with a Turing
machine (or any other of these models)

Naively: Doing something in an organised/programmed way.

Another question

Can we know everything?

At least, can we know everything about the natural numbers?

At least, can we know everything about the natural numbers?

● The sum of two even numbers is even: True

At least, can we know everything about the natural numbers?

● The sum of two even numbers is even: True

● There are finitely many primes: False

At least, can we know everything about the natural numbers?

● The sum of two even numbers is even: True

● There are finitely many primes: False

● If a² ends in the pattern xyxyxyxyxy then xy is either 21, 61 or 84:
508853989^2 = 258932382121212121. True

At least, can we know everything about the natural numbers?

● The sum of two even numbers is even: True

● There are finitely many primes: False

● If a² ends in the pattern xyxyxyxyxy then xy is either 21, 61 or 84:
508853989^2 = 258932382121212121. True

● Every integer greater than 5 can be written as the sum of 3 primes. ?? Goldbach’s conjecture.

At least, can we know everything about the natural numbers?

No, we can’t :(

First Incompleteness Theorem (Kurt Gödel, 1931)

 For any consistent and computable set of axioms expressed in the language of arithmetic,
 There exists a statement that is true in the natural numbers but that cannot be proved from this set of axioms.

At least, can we know everything about the natural numbers?

No, we can’t :(

First Incompleteness Theorem (Kurt Gödel, 1931)

 For any consistent and computable set of axioms expressed in the language of arithmetic,
 There exists a statement that is true in the natural numbers but that cannot be proved from this set of axioms.

Such statement is said to be “undecidable” with respect to the system of axioms that was chosen:

● Maybe Goldbach’s conjecture is undecidable with respect to Peano Axiom’s?
● Maybe Goldbach’s conjecture is undecidable with respect to ZFC Axioms?

But in any case, Goldbach’s conjecture is either true or false in the natural numbers.

At least, can we know everything about the natural numbers?

No, we can’t :(

First Incompleteness Theorem (Kurt Gödel, 1931)

 For any consistent and computable set of axioms expressed in the language of arithmetic,
 There exists a statement that is true in the natural numbers but that cannot be proved from this set of axioms.

But how do we know that the statement is true if we cannot prove it??

The link with Turing Machines will make this clear.

Turing Machines

Traditionally represented like above but, arguably, we loose all
programmatic intuition with this representation!

Turing Machines

“This is a Python program”

Turing Machines

A Turing machine is a primitive (ideal) computer architecture
together with a primitive programming language.

Turing Machines

https://github.com/tcosmo/alang

Two major properties

1. There exists Turing machines that can compute anything: they
are called Universal Turing machines.

2. There exists functions that no Turing machine can compute.

Universal Turing Machines

6 instructions and 6
symbols is all it takes!

T. Neary, D. Woods.
The complexity of small universal Turing machines: A survey. SOFSEM 2012.
https://arxiv.org/abs/1110.2230

Uncomputable Functions

● We say that a function f: N → N, is computable if there is a Turing
machine such that, starting with ‘x’ on its tape will compute ‘f(x)’ and
write it on its tape.

● The set of all Turing machines is countable.

● The set of all functions f: N → N is not countable.

● Therefore, there must exists functions that cannot be computed.

Uncomputable Functions

● We say that a function f: N → N, is computable if there is a Turing
machine such that, starting with ‘x’ on its tape will compute ‘f(x)’ and
write it on its tape.

● The set of all Turing machines is countable.

● The set of all functions f: N → N is not countable.

● Therefore, there must exists functions that cannot be computed.

Can we exhibit one?

The Halting Problem, Alan Turing, 1936
Is there a program `Halt` such that:
● `Halt(M,i)` = 1 iff program M halts on i
● `Halt(M,i)` = 0 otherwise

The Halting Problem, Alan Turing, 1936
Is there a program `Halt` such that:
● `Halt(M,i)` = 1 iff program M halts on i
● `Halt(M,i)` = 0 otherwise

For instance we have:

Halt(CopyMachine,’00101’) = 1
Halt(WhileTrue,’0’) = 0
...

The Halting Problem, Alan Turing, 1936
Let suppose that `Halt` exists.

Then let’s build a new program Contradiction that takes as input a
program M:

Contradiction(M):
if Halt(M,M):

while true:
continue

else:
return

The Halting Problem, Alan Turing, 1936

Contradiction(M):
if Halt(M,M):

while true:
continue

else:
return

Does `Contradiction(Contradiction)`
halt?

● If it halts, it does not halt
● If it does not halt, it halts

Let suppose that `Halt` exists.

Then let’s build a new program Contradiction that takes as input a
program M:

The Halting Problem, Alan Turing, 1936

Contradiction(M):
if Halt(M,M):

while true:
continue

else:
return

Does `Contradiction(Contradiction)`
halt?

● If it halts, it does not halt
● If it does not halt, it halts

Contradiction!!
`Halt` does not exist

Let suppose that `Halt` exists.

Then let’s build a new program Contradiction that takes as input a
program M:

Making the link with mathematical knowledge

What is a proof?

● A finite object
● Which starts from axioms and applies rules of logic
● In order to reach a logically valid conclusion

Making the link with mathematical knowledge

What are axioms?
Robinson’s axioms of arithmetic

The language of arithmetic is:
● The symbol 0
● The successor function S
● The addition function +
● The multiplication function ×
● The order relation <

Example: The number “1” is represented by S0, the
number “2” is represented by SS0, etc..

Making the link with mathematical knowledge

What are axioms?
Robinson’s axioms of arithmetic The axioms say that:

1. x + 1 = 0 has no solution in N

2. x + 1 = y + 1 ⇒ x = y

3. x + 0 = x

4. x + (y+1) = (x+y) + 1

5. x * 0 = 0

6. x * (y+1) = (x*y) + x

Making the link with mathematical knowledge

A proof that 1+1 = 2
Robinson’s axioms of arithmetic

(axiom 4)

(instantiation)

(axiom 3)

(instantiation)
(replacement)

Making the link with mathematical knowledge

A proof that 1+1 = 2
Robinson’s axioms of arithmetic

(axiom 4)

(instantiation)

(axiom 3)

(instantiation)
(replacement)

1 + 1 = 2!!

Axioms describe

Axioms and proofs are part of
Knowledge

Mathematical objects are part of
Reality

Axioms describe

Axioms and proofs are part of
Knowledge

Objects are part of Reality

● A tree is tall
● A tree’s foliage is green
● A tree’s trunk is brown

Axioms describe

Axioms and proofs are part of
Knowledge

Objects are part of Reality

● A tree is tall
● A tree’s foliage is green
● A tree’s trunk is brown

1) We can end up
describing things
which are not what
we mean by “tree”.

Axioms describe

Axioms and proofs are part of
Knowledge

Objects are part of Reality

● A tree is tall
● A tree’s foliage is green
● A tree’s trunk is brown

1) We can end up
describing things
which are not what
we mean by “tree”.

2) There are some properties
about trees that we won’t
be able to deduce from our
primitive description.

Axioms describe

Axioms and proofs are part of
Knowledge

Mathematical objects are part of
Reality

Non standard models of
arithmetic

Undecidable statements, here the
commutativity of addition for instance.

Simulating Turing machines with numbers

The parity machine:
● Takes a binary input
● Has three states {even, odd, halt}
● Decides if the number of 1s in the input is odd or even

Parity:
even:

if read(0):
goto even

if read(1):
goto odd

if read(#):
goto halt

odd:
if read(0):

goto odd
if read(1):

goto even
if read(#):

goto halt

halt:
Halt

Simulating Turing machines with numbers

Primes Encoding:

Example of a valid trace starting on input `010`:

Head

Simulating Turing machines with numbers

Primes Encoding:

Example of a valid trace starting on input `010`:

Head

Simulating Turing machines with numbers

Primes Encoding:

Example of a valid trace starting on input `010`:

Head

Simulating Turing machines with numbers

Primes Encoding:

Example of a valid trace starting on input `010`:

Head

Simulating Turing machines with numbers

Primes Encoding:

Example of a valid trace starting on input `010`:

Halt!

Simulating Turing machines with numbers

Primes Encoding:

Example of a valid trace starting on input `010`:

Robinson’s arithmetic
is powerful enough to
“check” all these steps!

Halt!

Simulating Turing machines with numbers

We can formulate the Halting problem of our parity
solving machine in the language of arithmetic:

Example of a valid trace for the parity machine
starting on input `010`:

Simulating Turing machines with numbers

We can formulate the Halting problem of any
machine in the language of arithmetic:

Theorem
The machine `M` halts on input `i` if and only if there is a proof of the
statement ‘doesMachineHalt(M,i)’ from Robison’s axioms.

Back to the Halting Problem

Theorem
The machine `M` halts on input `i` if and only if there is a proof of the
statement ‘doesMachineHalt(M,i)’ from Robison’s axioms.

If any true statement was provable using Robison’s axioms, we could solve the Halting problem:

● Enumerate all proofs that use Robison’s axioms until either:
○ You find a proof that concludes `doesMachineHalt(M,i)` return true
○ You find a proof that concludes `not doesMachineHalt(M,i)` return false

That contradicts the uncomputability of the Halting Problem!

Hence, there must exists a statement about the natural numbers that is true but that we
cannot prove using Robinson’s axioms!

First Incompleteness Theorem

First Incompleteness Theorem (Kurt Gödel, 1931)

For any consistent and computable set of axioms A expressed in the language of arithmetic,
there exists a statement that is true in the natural numbers but that cannot be proved from this set
of axioms.

First Incompleteness Theorem

First Incompleteness Theorem (Kurt Gödel, 1931)

For any consistent and computable set of axioms A expressed in the language of arithmetic,
there exists a statement that is true in the natural numbers but that cannot be proved from this set
of axioms.

● If A is weaker than Robinson’s axioms, i.e. there is a Robinson axiom it
cannot prove, just take that statement as the unprovable true statement.

● If A is stronger than Robinson’s axioms:

○ You have enough logic to run Turing machines
○ Because A is computable you still can enumerate all proofs from A

First Incompleteness Theorem

First Incompleteness Theorem (Kurt Gödel, 1931)

For any consistent and computable set of axioms A expressed in the language of arithmetic,
there exists a statement that is true in the natural numbers but that cannot be proved from this set
of axioms.

● If A is weaker than Robinson’s axioms, i.e. there is a Robinson axiom it
cannot prove, just take that statement as the unprovable true statement.

● If A is stronger than Robinson’s axioms:

○ You have enough logic to run Turing machines
○ Because A is computable you still can enumerate all proofs from A

Christopher C. Leary. Lars Kristiansen. A Friendly Introduction to Mathematical Logic (2nd. ed.).
2015. Geneso, NY.

First Incompleteness Theorem
Non constructively we have reached the conclusion that, for any computable set of
axioms A stronger than Robinson:

If A is consistent then, there exists a machine `M` and input `i` such that neither
statements can be proven from A:

● `doesMachineHalt(M,i)`, meaning “The machine M halts on input i”
● `not doesMachineHalt(M,i)` meaning “The machine M does not halt on input i”

First Incompleteness Theorem
Non constructively we have reached the conclusion that, for any computable set of
axioms A stronger than Robinson:

If A is consistent then, there exists a machine `M` and input `i` such that neither
statements can be proven from A:

● `doesMachineHalt(M,i)`
● `not doesMachineHalt(M,i)`

BUT

First Incompleteness Theorem
Non constructively we have reached the conclusion that, for any computable set of
axioms A stronger than Robinson:

If A is consistent then, there exists a machine `M` and input `i` such that neither
statements can be proven from A:

● `doesMachineHalt(M,i)`
● `not doesMachineHalt(M,i)`

BUT, `doesMachineHalt(M,i)` is an existential-only statement !

First Incompleteness Theorem
Non constructively we have reached the conclusion that, for any computable set of
axioms A stronger than Robinson:

If A is consistent then, there exists a machine `M` and input `i` such that neither
statements can be proven from A:

● `doesMachineHalt(M,i)`
● `not doesMachineHalt(M,i)`

BUT, `doesMachineHalt(M,i)` is an existential-only statement !
SO, if you cannot prove it…. Then it is false. Hence, `not doesMachineHalt(M,i)` holds.

First Incompleteness Theorem
Non constructively we have reached the conclusion that, for any computable set of
axioms A stronger than Robinson:

If A is consistent then, there exists a machine `M` and input `i` such that neither
statements can be proven from A:

● `doesMachineHalt(M,i)`
● `not doesMachineHalt(M,i)`

BUT, `doesMachineHalt(M,i)` is an existential-only statement !
SO, if you cannot prove it…. Then it is false. Hence, `not doesMachineHalt(M,i)` holds.

BUT WAIT, I just gave a proof that the machine does not halt!!

First Incompleteness Theorem
Non constructively we have reached the conclusion that, for any computable set of
axioms A stronger than Robinson:

If A is consistent then, there exists a machine `M` and input `i` such that neither
statements can be proven from A:

● `doesMachineHalt(M,i)`
● `not doesMachineHalt(M,i)`

BUT, `doesMachineHalt(M,i)` is an existential-only statement !
SO, if you cannot prove it…. Then it is false. Hence, `not doesMachineHalt(M,i)` holds.

BUT WAIT, I just gave a proof that the machine does not halt!!

First Incompleteness Theorem
Non constructively we have reached the conclusion that, for any computable set of
axioms A stronger than Robinson:

If A is consistent then, there exists a machine `M` and input `i` such that neither
statements can be proven from A:

● `doesMachineHalt(M,i)`
● `not doesMachineHalt(M,i)`

BUT, `doesMachineHalt(M,i)` is an existential-only statement !
SO, if you cannot prove it…. Then it is false. Hence, `not doesMachineHalt(M,i)` holds.

BUT WAIT, I just gave a proof that the machine does not halt!!

Conclusion: the set of axioms A cannot prove its own consistency!

Second Incompleteness Theorem

Second Incompleteness Theorem (Kurt Gödel, 1931)

For any consistent and computable set of axioms A expressed in the language of arithmetic,
which is at least as strong as Peano’s axioms then the following statement is not provable in A:

Peano’s axioms = Robinson’s axioms + induction

Conclusion: you cannot prove that it is not possible to prove 0 = 1 from Peano’s axiom if
you limit yourself to using Peano’s axioms.

Second Incompleteness Theorem

Second Incompleteness Theorem (Kurt Gödel, 1931)

For any consistent and computable set of axioms A expressed in the language of arithmetic,
which is at least as strong as Peano’s axioms then the following statement is not provable in A:

Peano’s axioms = Robinson’s axioms + induction

Conclusion: you cannot prove that it is not possible to prove 0 = 1 from Peano’s axiom if
you limit yourself to using Peano’s axioms.

You can prove Peano’s consistency using ZFC axioms. But you wont prove ZFC’s. Etc...

Incomprehensible Machines

● A machine that iterates all proofs in Peano/ZFC and halts if and only if it finds a proof
of 0 = 1
○ People have actually built such a machine: 7,910 instructions

● There is a 27-instruction Turing machine that halts iff Goldbach Conjecture is true

● There is a 744-instruction Turing machine that halts iff Riemann Hypothesis is true

A. Yedidia and S. Aaronson
A Relatively Small Turing Machine Whose Behavior Is Independent of Set Theory.
https://arxiv.org/abs/1605.04343
S. Aaronson
The Busy Beaver frontier. https://www.scottaaronson.com/papers/bb.pdf

Incomprehensible Machines

● Scott Aaronson conjectures:

○ There is a 10-instruction Turing machine whose halting problem is independent of
Peano’s axioms

○ There is a 20-instruction Turing machine whose halting problem is independent of
ZFC’s axioms

Good contenders are Collatz-like:

H. Marxen and J. Buntrock. Attacking the Busy Beaver 5. 1990.
EATCS.

Incomprehensible Machines

Questions :)?

Alan Turing Kurt Gödel

