
Small semi-weakly universal Turing machines

Damien Woods1 and Turlough Neary2

1 Department of Computer Science,
University College Cork, Ireland. d.woods@cs.ucc.ie

2 TASS, Department of Computer Science,
National University of Ireland Maynooth, Ireland. tneary@cs.may.ie

Abstract. We present two small universal Turing machines that have
3 states and 7 symbols, and 4 states and 5 symbols respectively. These
machines are semi-weak which means that on one side of the input they
have an infinitely repeated word and on the other side there is the usual
infinitely repeated blank symbol. This work can be regarded as a con-
tinuation of early work by Watanabe on semi-weak machines. One of
our machines has only 17 transition rules making it the smallest known
semi-weakly universal Turing machine. Interestingly, our two machines
are symmetric with Watanabe’s 7-state and 3-symbol, and 5-state and
4-symbol machines, even though we use a different simulation technique.

1 Introduction

Shannon [22] was the first to consider the question of finding the smallest possible
universal Turing machine, where size is the number of states and symbols. From
the early sixties, Minsky and Watanabe had a running competition to see who
could come up with the smallest machines [10, 11, 23–25]. In 1962, Minsky [11]
found a small 7-state, 4-symbol universal Turing machine. Minsky’s machine
worked by simulating 2-tag systems, which where shown to be universal by Cocke
and Minsky [2]. Rogozhin [20] extended Minsky’s technique of 2-tag simulation
and found small machines with a number of state-symbol pairs. Subsequently,
some of Rogozhin’s machines were reduced in size or improved by Robinson [19],
Rogozhin [21], Kudlek and Rogozhin [6], Baiocchi [1]. Neary and Woods [12, 15]
have recently found small machines that simulate another variant of tag systems
called bi-tag systems. All of the smallest known Turing machines, that obey the
standard definition (deterministic, one tape, one head), simulate either 2-tag or
bi-tag systems. They are plotted as circles in Figure 1.

Interestingly, Watanabe [23–25] managed to find small machines (some were
smaller than Minsky’s) by generalising the standard Turing machine definition.
Instead of having an infinitely repeated blank symbol to the left and right of the
input, Watanabe’s machines have an infinitely repeated word to one side of the
input and an infinitely repeated blank symbol to the other side. We call such
machines semi-weak. Watanabe found 7-state, 3-symbol, and 5-state, 4-symbol
semi-weakly universal machines that are plotted as hollow diamonds in Figure 1.

A further generalisation are weak machines where we allow an infinitely re-
peated word to the left of the input and another to the right. Cook [3] and



u : universal, bi-tag simulation, O(t6)
ld : semi-weakly universal, direct simulation, O(t2)
l : semi-weakly universal, cyclic-tag simulation, O(t4 log2 t)

∞ : weakly universal, Rule 110 simulation, O(t4 log2 t)

bc : universal, 2-tag simulation, O(t4 log2 t)
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Fig. 1. State-symbol plot of the smallest universal Turing machines to date. Our semi-
weak machines are shown as solid diamonds and Watanabe’s as hollow diamonds. The
standard and semi-weak machines are symmetric about the line where state = symbol.

Wolfram [26] have found very small weakly universal machines which are il-
lustrated as ∞ symbols in Figure 1. These weak machines simulate the cellular
automaton Rule 110. Cook [3] proved (the proof is also sketched in Wolfram [26])
that Rule 110 is universal by showing that it simulates cyclic tag systems, which
in turn simulate 2-tag systems.

The non-universal curve in Figure 1 is shown for the standard Turing ma-
chine definition. The 1-symbol case is trivial, and the 1-state case was shown by
Shannon [22] and, via another method, Hermann [4]. Pavlotskaya [16] and, via
another method, Kudlek [5], proved there are no universal 2-state, 2-symbol ma-
chines, where one transition rule is reserved for halting. Pavlotskaya [17] proved
there are no universal 3-state, 2-symbol machines, and also claimed [16], without
proof, that there are no universal 2-state, 3-symbol machines. Both cases assume
that one transition rule is reserved for halting. It is not difficult to generalise
these results to (semi-)weak machines with 1 state or 1 symbol. It is currently
unknown if all lower bounds in Figure 1 generalise to (semi-)weak machines.

It is also known from the work of Margenstern [7] and Michel [9] that the
region between the non-universal curve and the smallest standard universal ma-
chines contains (standard) machines that simulate the 3x+1 problem and other
related problems. These results, along with the weakly and semi-weakly univer-
sal machines, lend weight to the idea that finding non-universal lowerbounds in
this region is difficult. For results on other generalisations of the Turing machine
model see [8, 18], for example.

Figure 1 shows our two new semi-weak machines as solid diamonds. These
machines simulate cyclic tag systems, which were used [3] to show that Rule 110



is universal. It is interesting to note that our machines are symmetric with those
of Watanabe, despite the fact that we use a different simulation technique. Our
4-state, 5-symbol machine has only 17 transition rules, making it the smallest
known semi-weakly universal machine (Watanabe’s 5-state, 4-symbol machine
has 18 transition rules). The time overhead for our machines is polynomial.
More precisely, if M is a single tape deterministic Turing machine that runs
in time t, then M is simulated by each of our semi-weak machines in time
O(t4 log2 t). See [13, 14, 27, 28] for further results and discussion related to the
time complexity of small universal Turing machines.

1.1 Preliminaries

All of the Turing machines considered in this paper are deterministic and have
one tape. Our 3-state, 7-symbol universal Turing machine is denoted U3,7 and
our 4-state, 5-symbol machine is denoted U4,5. We let 〈x〉 denote the encoding
of x. We write c1 ⊢ c2 when configuration c2 follows from c1 in 1 computation
step, and c1 ⊢t c2 when c2 follows from c1 in t steps.

2 Cyclic tag systems

We begin by defining cyclic tag systems [3].

Definition 1 (cyclic tag system). A cyclic tag system C = α0, α1, . . . , αp−1

is a list of binary words αm ∈ {0, 1}∗ called appendants.

A configuration of a cyclic tag system consists of (i) a marker m ∈ {0, 1, . . . , p−1}
that points to a single appendant αm in C, and (ii) a dataword w = x0x1 . . . xl−1 ∈
{0, 1}∗. Intuitively the list C is a program with the marker pointing at instruc-
tion αm. At the initial configuration the marker points at appendant α0 and w

is the binary input word.

Definition 2 (computation step of a cyclic tag system). A computation
step is deterministic and acts on a configuration in one of two ways:

– If x0 = 0 then x0 is deleted and the marker moves to appendant α(m+1) mod p.
– If x0 = 1 then x0 is deleted, the word αm is appended onto the right end

of w, and the marker moves to appendant α(m+1) mod p.

A cyclic tag system completes its computation if (i) the dataword is the empty
word, or (ii) it enters a repeating sequence of configurations. The complexity
measures of time and space are defined in the obvious way.

Example 1. (cyclic tag system computation) Let C = 00, 1010, 10 be a cyclic tag
system with input word 0010010. Below we give the first four steps of the com-
putation. In each configuration C is given on the left with the marked appendant
highlighted in bold font.

000000, 1010, 10 0010010 ⊢ 00,101010101010, 10 010010

⊢ 00, 1010,101010 10010 ⊢ 000000, 1010, 10 001010

⊢ 00,101010101010, 10 01010 ⊢ . . .



Cyclic tag systems were proved universal by their ability to simulate 2-tag
systems [3]. Recently we have shown that cyclic tag systems simulate Turing
machines in polynomial time:

Theorem 1 ([13]). Let M be a single-tape deterministic Turing machine that
computes in time t. There is a cyclic tag system CM that simulates the compu-
tation of M in time O(t3 log t).

Note that in order to calculate this upper bound we substitute space bounds for
time bounds whenever possible in the analysis.

3 3-state, 7-symbol universal Turing machine

U3,7 simulates cyclic tag systems. The cyclic tag system binary input dataword
is written directly to the tape, no special encoding is required. The cyclic tag
system’s list of appendants is reversed and encoded to the left of the input. This
encoded list is repeated infinitely often to the left. U3,7 computes by erasing one
encoded appendant for each 0 on the dataword. If the symbol 1 is read then
the next available (encoded) appendant to the left is appended to the dataword,
and the appendant is erased. Since the appendants are repeated to the left, this
process increments (mod p) through the list of appendants.

3.1 U3,7

u1 u2 u3

0 λLu1 1/Ru2 1/Ru3

1 λLu2 zRu2 zRu3

λ bRu1 bRu2 bRu3

0/ λLu1 λLu3 bRu2

1/ 0Lu2 1Lu2

z bRu1 1Lu2 bRu1

b λLu1 λLu2 bRu3

Table of behaviour for U3,7. The start state is u1 and the blank symbol is 1/.

3.2 Encoding

For our 3-state, 7-symbol machine an appendant α ∈ {0, 1}∗ is encoded in the
following manner. Firstly, the order of the symbols in α is reversed to give αR.
Then the symbol 0 is encoded as 0/0/, and 1 is encoded as b0/. The encoded αR

is then prepended with the two symbols z0/. For example, if α = 100 then this
appendant is encoded as 〈α〉 = z0/0/0/0/0/b0/. Finally the order of appendants are
also reversed so that the list of appendants α0, α1, . . . , αp−1 are encoded as
〈αp−1〉〈αp−2〉 . . . 〈α0〉. This encoded list is repeated infinitely often, to the left,
on the tape of U3,7. The blank symbol for U3,7 is 1/ and the cyclic tag system



input is written directly on the tape of U3,7. Thus the initial configuration of the
cyclic tag system given in Example 1 is encoded as

u1u1u1, . . . z0/0/0/b0/ z0/0/0/b0/0/0/b0/ z0/0/0/0/0/ 0010010 1/1/1/ . . . (1)

where the underline denotes the tape head position, the three encoded appen-
dants are repeated infinitely to the left, and the extra whitespace is for human
readability purposes only.

3.3 Simulation

To show how U3,7 computes we simulate the first 3 steps of the cyclic tag com-
putation from Example 1.

Example 2. Beginning with the configuration given in Equation (1), U3,7 reads
the leftmost 0 in the input, in state u1, and then indexes the second encoded
appendant to the left, changing each symbol to λ until it reaches z, to give the
configuration

u1u1u1, . . . z0/0/0/b0/ z0/0/0/b0/0/0/b0/ zλλλλλ λ010010 1/1/1/ . . .

These steps have the effect of reading and erasing the first 0 in the dataword
(input), and simulating the incrementing of the marker to the next (second)
appendant. The head then scans right, to read the second dataword symbol.

u1u1u1, . . . z0/0/0/b0/ z0/0/0/b0/0/0/b0/ bbbbbb b010010 1/1/1/ . . .

Again we read 0 in the dataword which causes us to index the third appendant

u1u1u1, . . . z0/0/0/b0/ zλλλλλλλλλ λλλλλλ λλ10010 1/1/1/ . . .

and then return to the third input symbol.

u1u1u1, . . . z0/0/0/b0/ bbbbbbbb bbbbbb bb10010 1/1/1/ . . .

The input symbol 1 causes U3,7 to enter a ‘print cycle’ which iterates the fol-
lowing: we scan left in state u2, if we read 0/0/ then we scan right in state u2 and
print 0, if we read b0/ then we scan right in state u3 and print 1. We exit the
cycle if we read z0/. We now contine our simulation to the point where we are
about to read an encoded 1 in the third appendant

u3u3u3, . . . z0/0/0/bλ λλλλλλλλ λλλλλλ λλλ0010 1/1/1/ . . .

This causes U3,7 to scan right, append a 1 to the dataword, and return left to
read the next encoded symbol in the third appendant

u3u3u3, . . . z0/0/λλλ λλλλλλλλ λλλλλλ λλλ0010 11/1/1/ . . .

which causes a 0 to be printed, and we return left

u3u3u3, . . . zλλλλλ λλλλλλλλ λλλλλλ λλλ0010 101/1/1/ . . .



where the string z0/ marks the end of the encoded appendant and causes U3,7 to
exit the print cycle and return to state u1; the index cycle.

u1u1u1, . . . z0/0/0/b0/ z0/0/0/b0/0/0/b0/ z0/0/0/0/0/ bbbbbb bbbbbbbb bbbbbb bbb0010 101/1/1/ . . .

The latter configuration shows the next set of encoded appendants to the left.
At this point we have simulated the third computation step in Example 1. ⊓⊔

As can be seen in the preceding example, the computation of U3,7 is relatively
straightforward, so we refrain from giving a full proof of correctness.

Section 2 gives two conditions for a cyclic tag system completing its compu-
tation (halting). The first condition (empty dataword) is simulated by U3,7 in
a very straightforward way: if the dataword is empty then U3,7 reads a blank
symbol 1/ in state u1, and immediately halts. The second condition (repeating
sequence of cyclic tag configurations) causes U3,7 to simulate this loop in an
easily detectable way, where some fixed sequence of appendants are repeatedly
appended to the dataword.

4 4 state, 5 symbol machine

U4,5 bears some similarities to the previous machine in that it simulates cyclic
tag systems which are encoded to the left. However its computation is some-
what more complicated. U4,5 simulates a restricted cyclic tag system where the
dataword does not contain consecutive 1 symbols. In particular, we say that the
dataword and all appendants are words from {0, 10}∗. Such a cyclic tag system
simulates an arbitrary cyclic tag system with only a small constant factor slow-
down (using the simulation from [13]). Furthermore, in two different cycles, U4,5

makes special use of whether specific substrings on the tape are of odd or even
length. Intuitively this kind of encoding helps to keep the program small.

4.1 U4,5

u1 u2 u3 u4

0 λLu1 λLu2 0/Ru3 0/Ru4

1 0/Ru2 1Lu2 1Ru3 1Ru4

λ 0Ru2 0Ru1 0Ru4 0Ru3

0/ 0Lu2 0Lu2 1Lu2

1/ 0Lu2 λLu3

Table of behaviour for U4,5. The start state is u1 and the blank symbol is 0/.

4.2 Encoding

An appendant α ∈ {0, 10}∗ is encoded in the following manner. Firstly, the
order of the symbols in α is reversed to give αR. Then the symbol 0 is encoded
as 0λ1/0, and 1 is encoded as 00λ1/. The encoded αR is then prepended with the



symbol λ. For example, if α = 100 then this appendant is encoded as 〈α〉 =
λ0λ1/00λ1/000λ1/. Finally the order of appendants are also reversed so that the
list of appendants α0, α1, . . . , αp−1 are encoded as 〈αp−1〉〈αp−2〉 . . . 〈α0〉. This
encoded list is repeated infinitely often, to the left, on the tape of U4,5. The blank
symbol for U4,5 is 0/ and the cyclic tag system input, an element of {0, 10}∗, is
written directly on the tape of U4,5. Thus the initial configuration of the cyclic
tag system given in Example 1 is encoded as

u1u1u1, . . . λ0λ1/000λ1/ λ0λ1/000λ1/0λ1/000λ1/ λ0λ1/00λ1/0 0010010 0/0/0/ . . . (2)

where the underline denotes the tape head position, the three encoded appen-
dants are repeated infinitely to the left, and the extra whitespace is for human
readability purposes only.

4.3 Simulation

In order to show how U4,5 computes, we simulate the first 4 steps of the cyclic
tag computation from Example 1. Example 3 shows U4,5 reading two 0 symbols
in the dataword and indexing appendants. Example 4 shows U4,5 reading a 10 in
the dataword, printing one appendant and indexing the next. Lemmata 1 and 2
build on these examples to give a proof of correctness.

Example 3 (U4,5; reading 0). Beginning with the configuration given in Equa-
tion (2), U4,5 reads the leftmost 0 in the input, in state u1, and begins the process
of indexing the second appendant to the left, using states u1 and u2.

⊢3 u2u2u2, . . . λ0λ1/000λ1/ λ0λ1/000λ1/0λ1/000λ1/ λ0λ1/00λ0λ λ010010 0/0/0/ . . .

⊢ u1u1u1, . . . λ0λ1/000λ1/ λ0λ1/000λ1/0λ1/000λ1/ λ0λ1/0000λ λ010010 0/0/0/ . . .

⊢4 u1u1u1, . . . λ0λ1/000λ1/ λ0λ1/000λ1/0λ1/000λ1/ λ0λ1/λλλλλ λ010010 0/0/0/ . . .

until we read λ0, to give the configuration

⊢5 u1u1u1, . . . λ0λ1/000λ1/ λ0λ1/000λ1/0λ1/000λ1/ λλλλλλλλλ λ010010 0/0/0/ . . . (3)

Upon reading λ in state u1, U4,5 scans right, switching between states u1 and u2.
There are an even number of consecutive λ symbols, thus we exit the string of λ

symbols in state u1, ready to read the next input symbol.

⊢10 u1u1u1, . . . λ0λ1/000λ1/ λ0λ1/000λ1/0λ1/000λ1/ 000000000 0010010 0/0/0/ . . .

It can be seen from the proceeding configurations, that whenever U4,5 enters an
encoded appendant from the right and in state u1, then the encoded appendant
is erased. Assume, for the moment, that every symbol in the dataword is 0. Then
for each erased appendant it is the case that exactly one dataword symbol has
also been erased. Encoded appendants are of odd length. Therefore the string
of consecutive λ symbols is always of even length immediately after erasing an
appendant, e.g. in configurations of the form given in Equation (3). Thus it can



be seen that even though U4,5 switches between two states, u1 and u2, while
scanning right through the string of λ symbols, it always exits this string on the
right to read the next binary dataword symbol in state u1.

We continue our simulation: the next dataword symbol (again 0) is erased
and the next appendant is erased to give:

⊢35 u1u1u1, . . . λ0λ1/000λ1/ λλλλλλλλλλλλλλλλλ λλλλλλλλλ λλ10010 0/0/0/ . . .

We then scan right through the (even length) string of λ symbols, switching
between states u1 and u2, to read the next dataword symbol in state u1:

⊢28 u1u1u1, . . . λ0λ1/000λ1/ 00000000000000000 000000000 0010010 0/0/0/ . . . (4)

The example is complete. ⊓⊔

The following example illustrates how U4,5 simulates the reading of 10 in the
dataword. Specifically, the 10 is erased from the dataword, we append and erase
the indexed appendant, and finally we erase the following appendant.

Example 4 (U4,5; reading 10). Recall that, for U4,5, any 1 in the dataword is
immediately followed by a 0. When U4,5 reads a 1 in the dataword it then
(i) erases the 10 pair, (ii) enters a print cycle (to simulate appending the indexed
appendant) and then enters (iii) an index cycle (to simulate the reading of the
0 and indexing the next appendant).

We continue from configuration (4) above.

⊢ u2u2u2, . . . λ0λ1/000λ1/ 00000000000000000 000000000 000/0010 0/0/0/ . . .

⊢ u2u2u2, . . . λ0λ1/000λ1/ 00000000000000000 000000000 000/λ010 0/0/0/ . . .

⊢ u2u2u2, . . . λ0λ1/000λ1/ 00000000000000000 000000000 000λ010 0/0/0/ . . .

⊢27 u2u2u2, . . . λ0λ1/000λ1/ 0λλλλλλλλλλλλλλλλ λλλλλλλλλ λλ0λ010 0/0/0/ . . .

We now begin reading the encoded appendant, which encodes 10.

⊢ u2u2u2, . . . λ0λ1/000λ1/ λλλλλλλλλλλλλλλλλ λλλλλλλλλ λλ0λ010 0/0/0/ . . .

This encoded appendant tells us that the symbol 1 (encoded as 00λ1/), and then
the symbol 0 (encoded as 0λ1/0), should be appended to the dataword.

⊢ u3u3u3, . . . λ0λ1/000λλ λλλλλλλλλλλλλλλλλ λλλλλλλλλ λλ0λ010 0/0/0/ . . .

U4,5 now scans right, switching between state u3 and u4, eventually appending
either 0 or 1 to the dataword. If there are an odd number of λ symbols on, and
to the right of, the tape head then 1 is appended, if there is an even number
then 0 is appended. Such a printing mechanism uses a relatively small number
of transition rules.

⊢ u4u4u4, . . . λ0λ1/0000λ λλλλλλλλλλλλλλλλλ λλλλλλλλλ λλ0λ010 0/0/0/ . . .

⊢ u3u3u3, . . . λ0λ1/00000 λλλλλλλλλλλλλλλλλ λλλλλλλλλ λλ0λ010 0/0/0/ . . .

⊢30 u4u4u4, . . . λ0λ1/00000 00000000000000000 000000000 000/0010 0/0/0/ . . .



We now pass over the dataword and append a 1.

⊢3 u4u4u4, . . . λ0λ1/00000 00000000000000000 000000000 000/00/10/ 0/0/0/0/ . . .

⊢ u2u2u2, . . . λ0λ1/00000 00000000000000000 000000000 000/00/10/ 10/0/0/ . . .

We now scan left to find the next symbol to be appended

⊢37 u2u2u2, . . . λ0λ1/0λλλλ λλλλλλλλλλλλλλλλλ λλλλλλλλλ λλ0λ010 10/0/0/ . . .

which is an encoded 0. We erase this encoded 0:

⊢2 u3u3u3, . . . λ0λλλλλλλ λλλλλλλλλλλλλλλλλ λλλλλλλλλ λλ0λ010 10/0/0/ . . .

Now we are ready to scan right, switching between states u3 and u4. There are
an even number of λ symbols on, and to the right of, the tape head. This will
result in a 0 being appended to the dataword.

⊢41 u3u3u3, . . . λ00000000 00000000000000000 000000000 000/00/10/ 10/0/0/0/ . . .

⊢ u2u2u2, . . . λ00000000 00000000000000000 000000000 000/00/10/ 100/0/0/ . . .

U4,5 now scans left, in state u2, and since there are no more encoded 0 or 1
symbols, it eventually reads the ‘end of appendant’ marker λ.

⊢42 u2u2u2, . . . λλλλλλλλλ λλλλλλλλλλλλλλλλλ λλλλλλλλλ λλ0λ010 100/0/0/ . . .

Reading this λ in state u2 sends us to the right in the index cycle (switching
between states u2 and u1); however we enter the cycle in the ‘incorrect’ state u2

(we usually enter this cycle in state u1), but when we read the leftmost 0 in the
dataword

⊢37 u1u1u1, . . . 000000000 00000000000000000 000000000 000λ010 100/0/0/ . . .

this forces us to index another appendant (after which we will enter the next
index cycle in state u1; the ‘correct’ state). This is the main reason why we insist
that each 1 in the dataword is immediately followed by a 0.

We duplicate the configuration immediately above (while introducing some
shorthand notation for erased appendants and showing the next two encoded
appendants to the left).

u1u1u1, . . . λ0λ1/000λ1/0λ1/000λ1/ λ0λ1/00λ1/0 09 017 09 000λ010 100/0/0/ . . .

As already noted, we are forced to index the next appendant:

⊢50 u1u1u1, . . . λ0λ1/000λ1/0λ1/000λ1/ λλλλλλλλλ λ9 λ17 λ9 λλλλ010 100/0/0/ . . .

We then scan right through the (even length) string of λ symbols, switching
between states u1 and u2 to read the next dataword read symbol in state u1:

⊢48 u1u1u1, . . . λ0λ1/000λ1/0λ1/000λ1/ 000000000 09 017 09 0000010 100/0/0/ . . .

The example is complete. ⊓⊔



The halting conditions for U4,5 are the same as those for U3,7; if the cyclic tag
systems halts then U4,5 reads a 0/ in state u1 and halts, if the cyclic tag systems
enters a repeating sequence of configurations then U4,5 simulates this loop in an
easily detectable way.

The previous two examples provide the main mechanics for the workings
of U4,5. The two lemmata below generalise these examples, and cover the cases
of read symbols 0 and 1 respectively. We assume that the cyclic tag dataword
and appendants are from {0, 10}∗, as described at the beginning of Section 4.

Lemma 1. Let c1 be a configuration of cyclic tag system C with read symbol 0,
and let c2 be the unique configuration that follows c1 using C (i.e. c1 ⊢C c2).
Given an encoding of C and c1, then U4,5 computes the encoding of c2.

Proof. In the encoding of c1, U4,5 is reading 0 in state u1. This causes the head
to move left leaving a string of λ symbols. An encoded appendant is a word
over λ{〈0〉, 〈1〉〈0〉}∗. Notice if we enter either 〈0〉 = 0λ1/0 or 〈1〉 = 00λ1/ from
the right, in state u1, then we exit to the left, in the same state, leaving λλλλ

on the tape. Eventually the entire appendant is erased (converted into a string
of λ symbols), and U4,5 is reading the leftmost λ in the encoded appendant, in
state u1.

From the encoding, the length of each encoded appendant is odd. Further-
more, the number of erased appendants is equal to number of erased dataword
symbols. Thus, the sum of the number of erased dataword symbols plus the
number of symbols in the erased appendants is even. We begin reading this even
length string of λ symbols from the left in state u1, alternating between states u1

and u2 as we scan right. We exit the string of λ symbols in state u1. We have
completed the index cycle and are reading the the leftmost (next read) symbol
from the dataword in state u1. From above, the next appendant is indexed. Thus
the tape encodes configuration c2. ⊓⊔

Lemma 2. Let c1 be a configuration of cyclic tag system C with read symbol 1,
and let c2 be the unique configuration that follows c1 using C (i.e. c1 ⊢C c2).
Given an encoding of C and c1, then U4,5 computes the encoding of c2.

Proof. Recall that any 1 in the dataword is immediately followed by a 0. Thus
our proof has two parts, a print cycle followed by an index cycle.

In the encoding of c1, U4,5 is reading 1 in state u1. This 1 is changed to 0/, and
the head moves to the right and erases an extra 0 symbol. The 0/ is changed to 0
(which is used to trigger an extra index cycle below). The head then scans left
in state u2 leaving a string of λ symbols until we read the first (rightmost) non-
erased encoded appendant. An encoded appendant is a word over λ{〈0〉, 〈1〉〈0〉}∗.

Notice that if we enter 〈0〉 = 0λ1/0 from the right in state u2, we then (i) exit
to the right in state u4. However if we enter 〈1〉 = 00λ1/ from the right in state u2

we then (ii) exit to the right in state u3. In both cases we then scan to the right,
reading an odd number of λ symbols (a string of the form λ2i0λ, i ∈ N), while
switching between states u3 and u4. We pass to the right over the dataword,



which does not cause us to change state. Then in case (i) we append 0 to the
dataword and in case (ii) we append a 1 to the dataword.

We continue appending 0 or 1 symbols until we reach the leftmost end of the
(currently indexed) appendant by reading the symbol λ in state u2. We then scan
right, through a string of the form λ2j+10λ, j ∈ N, switching between states u2

and u1. After 2j + 1 steps we read 0 in state u1, which triggers an index cycle
(Lemma 1). After the index cycle we pass over the rightmost λ (which occupies
the location of the extra erased 0 mentioned above) and we are reading the next
encoded dataword symbol in state u1. Thus the tape encodes configuration c2.

⊓⊔

Let C be a cyclic tag system that runs in time t. After simulating t steps
of C, machines U3,7 and U4,5 have used O(t) workspace. Therefore both machines
simulate the computation of C in time O(t2). By applying Theorem 1 directly
we find that given a single-tape deterministic Turing machine M that computes
in time t, then machines U3,7 and U4,5 both simulate M in time O(t6 log2 t). We
observe that in the simulation from [13] the space used by C is only a constant
times that used by M . This observation, along with an (as yet unpublished)
improvement to [13], improve the time bound to O(t4 log2 t) for U3,7 and U4,5

simulating Turing machines M .
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